Biochemical Markers of Renal Hypoperfusion, Hemoconcentration, and Proteinuria after Extreme Physical Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Runs
2.2. Samples
2.3. Measurements
2.3.1. Urinalysis
2.3.2. Blood Morphology Was Established Before and After the Race
2.3.3. Sodium, Potassium, Creatinine, Urea, and Uric Acid Were Measured in Serum and Spot Urine
2.3.4. Albuminuria
2.3.5. Calculations and Equations
2.3.6. Ethics
2.3.7. Statistics
3. Results
3.1. Runners and the Race
3.2. Basic Biochemical Results
3.3. Renal Hypoperfusion Results
3.4. Albuminuria
3.5. Hemoconcentration
4. Discussion
4.1. Renal Hypoperfusion
4.2. Proteinuria
4.3. Plasma Volume Change
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Glaser, J.; Lemery, J.; Rajagopalan, B.; Diaz, H.F.; García-Trabanino, R.; Taduri, G.; Madero, M.; Amarasinghe, M.; Abraham, G.; Anutrakulchai, S.; et al. Climate change and the emergent epidemic of CKD from heat stress in rural communities: The case for heat stress nephropathy. Clin. J. Am. Soc. Nephrol. 2016, 11, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Bongers, C.C.W.G.; Alsady, M.; Nijenhuis, T.; Tulp, A.D.M.; Eijsvogels, T.M.H.; Deen, P.M.T.; Hopman, M.T.E. Impact of acute versus prolonged exercise and dehydration on kidney function and injury. Physiol. Rep. 2018, 6, e13734. [Google Scholar] [CrossRef]
- Saotome, T.; Ishikawa, K.; May, C.N.; Birchall, I.E.; Bellomo, R. The impact of experimental hypoperfusion on subsequent kidney function. Intensive Care Med. 2010, 36, 533–540. [Google Scholar] [CrossRef]
- Poortmans, J.R. Exercise and renal function. Sports Med. 1984, 1, 125–153. [Google Scholar] [CrossRef]
- Kawakami, S.; Yasuno, T.; Matsuda, T.; Fujimi, K.; Ito, A.; Yoshimura, S.; Uehara, Y.; Tanaka, H.; Saito, T.; Higaki, Y. Association between exercise intensity and renal blood flow evaluated using ultrasound echo. Clin. Exp. Nephrol. 2018, 22, 1061–1068. [Google Scholar] [CrossRef]
- Carvounis, C.P.; Nisar, S.; Guro-Razuman, S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int. 2002, 62, 2223–2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewitte, A.; Biais, M.; Petit, L.; Cochard, J.F.; Hilbert, G.; Combe, C.; Sztark, F. Fractional excretion of urea as a diagnostic index in acute kidney injury in intensive care patients. J. Crit. Care 2012, 27, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Alis, R.; Sanchis-Gomar, F.; Primo-Carrau, C.; Lozano-Calve, S.; Dipalo, M.; Aloe, R.; Blesa, J.R.; Romagnoli, M.; Lippi, G. Hemoconcentration induced by exercise: Revisiting the Dill and Costill equation. Scand. J. Med. Sci. Sports 2015, 25, e630–e637. [Google Scholar] [CrossRef]
- Van Beaumont, W. Evaluation of hemoconcentration from hematocrit measurements. J. Appl. Physiol. 1972, 32, 712–713. [Google Scholar] [CrossRef]
- Zar, T.; Kohn, O.F.; Kaplan, A.A. Fractional excretion of urea in pre-eclampsia: A clinical observation. Iran. J. Kidney Dis. 2011, 5, 398–403. [Google Scholar]
- Kaplan, A.A.; Kohn, O.F. Fractional excretion of urea as a guide to renal dysfunction. Am. J. Nephrol. 1992, 12, 49–54. [Google Scholar] [CrossRef]
- Shephard, R.J. Exercise proteinuria and hematuria: Current knowledge and future directions. J. Sports Med. Phys. Fit. 2016, 56, 1060–1076. [Google Scholar]
- Shirley, D.G.; Unwin, R.J. Renal physiology, Chapter 2. In Comprehensive Clinical Nephrology; Floege, J., Johnson, R.J., Feehally, J., Eds.; Saunders Elsevier: St Louis, MO, USA, 2010; pp. 15–28. [Google Scholar]
- Honoré, P.M.; Jacobs, R.; Joannes-Boyau, O.; Boer, W.; De Waele, E.; Van Gorp, V.; Spapen, H.D. Fractional excretion of urea to differentiate transient from persistent acute kidney injury: Should we still trust old tools in the biomarker era? J. Crit. Care 2012, 27, 514–515. [Google Scholar] [CrossRef]
- Varela, C.F.; Greloni, G.; Schreck, C.; Bratti, G.; Medina, A.; Marenchino, R.; Pizarro, R.; Belziti, C.; Rosa-Diez, G. Assessment of fractional excretion of urea for early diagnosis of cardiac surgery associated acute kidney injury. Ren. Fail. 2015, 37, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwinnell, B.G.; Anderson, R.J. Diagnostic evaluation of the patient with acute renal failure. Chapter 12. In Atlas of Diseases of Kidney; Schrier, R.W., Ed.; Current Medicine Inc.: Philadelphia, PA, USA, 1999; pp. 1–12. [Google Scholar]
- Lima, C.; Macedo, E. Urinary biochemistry in the diagnosis of acute kidney injury. Dis. Markers 2018, 4907024. [Google Scholar] [CrossRef]
- Taie, A.; Hosny, M.; Abdellateef, E.; Samir, N. Reliability of FEUA in AKI and its combination with other renal failure indices. Med. J. Cairo Univ. 2012, 80, 181–189. [Google Scholar]
- Steinhäuslin, F.; Burnier, M.; Magnin, J.L.; Munafo, A.; Buclin, T.; Diezi, J.; Biollaz, J. Fractional excretion of trace lithium and uric acid in acute renal failure. J. Am. Soc. Nephrol. 1994, 4, 1429–1437. [Google Scholar]
- Bagshaw, S.M.; Langenberg, C.; Bellomo, R. Urinary biochemistry and microscopy in septic acute renal failure: A systematic review. Am. J. Kidney Dis. 2006, 48, 695–705. [Google Scholar] [CrossRef]
- Keenswijk, W.; Ilias, M.I.; Raes, A.; Donckerwolcke, R.; Walle, J.V. Urinary potassium to urinary potassium plus sodium ratio can accurately identify hypovolemia in nephrotic syndrome: A provisional study. Eur. J. Pediatr. 2018, 177, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Tonneijck, L.; Muskiet, M.H.; Smits, M.M.; van Bommel, E.J.; Heerspink, H.J.; van Raalte, D.H.; Joles, J.A. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 2017, 28, 1023–1039. [Google Scholar] [CrossRef]
- Bosma, R.J.; Krikken, J.A.; van der Heide, J.J.H.; de Jong, P.E.; Navis, G.J. Obesity and renal hemodynamics. Contrib. Nephrol. 2006, 151, 184–202. [Google Scholar] [PubMed]
- Ataga, K.I.; Derebail, V.K.; Archer, D.R. The glomerulopathy of sickle cell disease. Am. J. Hematol. 2014, 89, 907–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibino, S.; Abe, Y.; Watanabe, S.; Yamaguchi, Y.; Nakano, Y.; Tatsuno, M.; Itabashi, K. Proteinuria caused by glomerular hypertension during adolescence associated with extremely premature birth: A report of two cases. Pediatr. Nephrol. 2015, 30, 1889–1892. [Google Scholar] [CrossRef] [PubMed]
- Tylicki, L.; Lizakowski, S.; Rutkowski, B. Renin-angiotensin-aldosterone system blockade for nephroprotection: Current evidence and future directions. J. Nephrol. 2012, 25, 900–910. [Google Scholar] [CrossRef]
- Ferrari, P.; Marti, H.P.; Pfister, M.; Frey, F.J. Additive antiproteinuric effect of combined ACE inhibition and angiotensin II receptor blockade. J. Hypertens. 2002, 20, 125–130. [Google Scholar] [CrossRef]
- Koçer, G.; Basralı, F.; Kuru, O.; Şentürk, Ü.K. The renin-angiotensin system, not the kinin-kallikrein system, affects post-exercise proteinuria. Nephron 2018, 139, 299–304. [Google Scholar] [CrossRef]
- Geraldini, S.; Cruz, I.F.; Romero, A.; Fonseca, F.L.A.; Campos, M.P. Isotonic sports drink promotes rehydration and decreases proteinuria following karate training. J. Bras. Nefrol. 2017, 39, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Alis, R.; Sanchis-Gomar, F.; Lippi, G.; Roamgnoli, M. Microcentrifuge or automated hematological analyzer to assess hematocrit in exercise? Effect on plasma volume loss calculations. J. Lab. Autom. 2016, 21, 470–477. [Google Scholar] [CrossRef]
Before Race | After Race | p | |
---|---|---|---|
K (mmol/L) | 4.43 ± 0.35 | 4.74 ± 0.51 | <0.05 |
Na (mmol/L) | 142 ± 1.64 | 142.89 ± 2.39 | n.s. |
Creatinine (mg/dL) | 0.89 ± 0.1 | 1.18 ± 0.22 | <0.05 |
Urea (mg/dL) | 33.78 ± 6.5 | 59.56 ± 14.86 | <0.05 |
UA (mg/dL) | 4.81 ± 0.9 | 5.96 ± 1.31 | <0.05 |
Before Race | After Race | p | |
---|---|---|---|
FeNa (%) | 0.82 ± 0.36 | 0.44 ± 0.37 | <0.05 |
FeUrea (%) | 47.28 ± 10.73 | 31.50 ± 11.95 | <0.05 |
u/sCr (mg/mg) | 109.2 ± 78.58 | 151.46 ± 62 | <0.05 |
sUrea/Cr (mg/mg) | 38.04 ± 7.32 | 50.50 ± 10.11 | <0.05 |
uNa (mmol/L) | 103.3 ± 51.74 | 75.26 ± 52.56 | <0.05 |
uNa/K (mmol/mmol) | 4.57 ± 2.06 | 0.82 ± 0.74 | <0.05 |
uK/(K+Na) (mmol/mmol) | 0.21 ± 0.01 | 0.61 ± 0.18 | <0.05 |
Albumin (mg/L) | 4.90 ± 4.86 | 91.01 ± 114.70 | <0.05 |
ACR (mg/g) | 6.28 ± 3.84 | 48.43 ± 51.64 | <0.05 |
Uncorrected Parameter | Corrected Parameter (According to Dill and Costill Equation) | Corrected Parameter (According to van Beaumont Equation) | |
---|---|---|---|
K (mmol/L) | 4.74 ± 0.51 | 4.84 ± 0.58 | 4.93 ± 0.58 |
Na (mmol/L) | 142.89 ± 2.39 | 146.15 ± 11.87 | 148.87 ± 12.52 * |
Creatinine (mg/dL) | 1.18 ± 0.22 | 1.21 ± 0.24 | 1.23 ± 0.26 |
Urea (mg/dL) | 59.56 ± 14.86 | 61 ± 16.6 | 62.15 ± 17.03 |
UA (mg/dL) | 5.96 ± 1.31 | 6.12 ± 1.64 | 6.25 ± 1.75 |
Values Typical for Renal Hypoperfusion | Comments | |
---|---|---|
FeNa (%) | <1% [6,7,16,17] | FeNA <1% is typical in healthy subjects ATN: FeNa >1% [6,7,16,17]; ATN: FeNa >2% [16] |
FeUrea (%) | <35% [10,11,15,17] <40% [7] | FeUrea in healthy well-hydrated subjects: 50–65% [6,10] ATN: >40% [18]; ATN: >35% [17] |
FeLi (%) | <7% [16] | ATN: >15% [19] |
u/sCr (mg/mg) | >20 [6,17,18] >40 [7,20] | ATN: <15 [6] ATN: <20 [17,20] |
sUrea/Cr (mg/mg) | >40 [20] | ATN <20–30 [20] |
uNa | <15 mmol/L [6,7,18] <20 [20] | ATN: >40 mmol/L [16] ATN: >20 mmol/L [6] |
uNa/K | <1 [7] | |
uK/(K+Na) | >0.5–0.6 [21] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wołyniec, W.; Kasprowicz, K.; Rita-Tkachenko, P.; Renke, M.; Ratkowski, W. Biochemical Markers of Renal Hypoperfusion, Hemoconcentration, and Proteinuria after Extreme Physical Exercise. Medicina 2019, 55, 154. https://doi.org/10.3390/medicina55050154
Wołyniec W, Kasprowicz K, Rita-Tkachenko P, Renke M, Ratkowski W. Biochemical Markers of Renal Hypoperfusion, Hemoconcentration, and Proteinuria after Extreme Physical Exercise. Medicina. 2019; 55(5):154. https://doi.org/10.3390/medicina55050154
Chicago/Turabian StyleWołyniec, Wojciech, Katarzyna Kasprowicz, Patrycja Rita-Tkachenko, Marcin Renke, and Wojciech Ratkowski. 2019. "Biochemical Markers of Renal Hypoperfusion, Hemoconcentration, and Proteinuria after Extreme Physical Exercise" Medicina 55, no. 5: 154. https://doi.org/10.3390/medicina55050154
APA StyleWołyniec, W., Kasprowicz, K., Rita-Tkachenko, P., Renke, M., & Ratkowski, W. (2019). Biochemical Markers of Renal Hypoperfusion, Hemoconcentration, and Proteinuria after Extreme Physical Exercise. Medicina, 55(5), 154. https://doi.org/10.3390/medicina55050154