Increased Glomerular Filtration Rate in Early Stage of Balkan Endemic Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups
2.2. Study Protocol
2.3. Laboratory Analyses
- by calculation of the 24-h creatinine clearance before (Ccr) and after administration of cimetidne (CcrC) using the standard formula and recalculated on BSA;
- by calculation of iohexol clearance (measured GFR-mGFR) as described by Schwartz et al. [12];
- by estimation with the MDRD (eGFR-MDRD) and CKD-EPI (eGFR-CKD-EPI) [13] equations using serum creatinine levels.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stefanovic, V.; Djukanovic, L.; Čukuranović, R.; Bukvic, D.; Lezaic, V.; Maric, I.; Ogrizovic, S.S.; Jovanovic, I.; Vlahovic, P.; Pesic, I.; et al. Beta2-Microglobulin and Alpha1-Microglobulin as Markers of Balkan Endemic Nephropathy, a Worldwide Disease. Ren. Fail. 2011, 33, 176–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norden, A.G.W.; Lapsley, M.; Unwin, R.J. Urine retinol-binding protein 4: A functional biomarker of the proximal renal tubule. Adv. Clin. Chem. 2014, 63, 85–122. [Google Scholar]
- Jelaković, B.; Nikolić, J.; Radovanović, Z.; Nortier, J.; Cosyns, J.P.; Grollman, A.P.; Bašić-Jukić, N.; Belicza, M.; Bukvić, D.; Čavaljuga, S.; et al. Consensus statement on screening, diagnosis, classification and treatment of endemic (Balkan) nephropathy. Nephrol. Dial. Transplant. 2014, 29, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Djukanović, L.; Bukvic, D.; Marić, I. Creatinine clearance and kidney size in Balkan endemic nephropathy patients. Clin. Nephrol. 2004, 61, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Perrone, R.D.; Madias, N.E. Serum Creatinine and Renal Function. Annu. Rev. Med. 1988, 39, 465–490. [Google Scholar] [CrossRef]
- Van Acker, B.A.; Koomen, G.C.; Koopman, M.G.; de Waart, D.R.; Arisz, L. Creatinineclearance during cimetidine administration for measurement of glomerular filtration rate. Lancet 1992, 340, 1326–1329. [Google Scholar] [CrossRef]
- Serdar, M.A.; Kurt, I.; Ozcelik, F.; Urhan, M.; Ilgan, S.; Yenicesu, M.; Kenar, L.; Kutluay, T. A practical approach to glomerular filtration rate measurements: Creatinine clearance estimation using cimetidine. Ann. Clin. Lab. Sci. 2001, 31, 265–273. [Google Scholar] [PubMed]
- Spithoven, E.M.; Meijer, E.; Boertien, W.E.; Sinkeler, S.J.; Tent, H.; De Jong, P.E.; Navis, G.; Gansevoort, R.T. Tubular Secretion of Creatinine in Autosomal Dominant Polycystic Kidney Disease: Consequences for Cross-sectional and Longitudinal Performance of Kidney Function Estimating Equations. Am. J. Kidney Dis. 2013, 62, 531–540. [Google Scholar] [CrossRef]
- Delanaye, P.; Ebert, N.; Melsom, T.; Gaspari, F.; Mariat, C.; Cavalie, E.; Björk, J.; Christensson, A.; Nyman, U.; Porrini, E.; et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: A review. Part 1: How to measure glomerular filtration rate with iohexol? Clin. Kidney J. 2016, 9, 682–699. [Google Scholar] [CrossRef]
- Djukanović, L.; Marinković, J.; Marić, I.; Lezaić, V.; Dajak, M.; Petronić, D.; Matić, M.; Bukvić, D. Contribution to the definition of diagnostic criteria for Balkan endemic nephropathy. Nephrol. Dial. Transplant. 2008, 23, 3932–3938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DuBois, D.; DuBois, E.F. Clinical calorimetry. Tenth paper. A formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1916, 17, 863–871. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Abraham, A.G.; Furth, S.L.; Warady, B.A.; Munoz, A. Optimizing iohexol plasma disappearance curves to measure the glomerular filtration rate in children with chronic kidney disease. Kidney Int. 2010, 77, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, E.I.; Hughes, J.T.; Chatfield, M.D.; Lawton, P.D.; Jones, G.R.; Ellis, A.G.; Cass, A.; Thomas, M.; MacIsaac, R.J.; O’Dea, K.; et al. Hyperfiltration in Indigenous Australians with and without diabetes. Nephrol. Dial. Transplant. 2015, 30, 1877–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coresh, J.; Astor, B.C.; Greene, T.; Eknoyan, G.; Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 2003, 41, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wetzels, J.; Kiemeney, L.; Swinkels, D.; Willems, H.; Heijer, M.D. Age- and gender-specific reference values of estimated GFR in Caucasians: The Nijmegen Biomedical Study. Kidney Int. 2007, 72, 632–637. [Google Scholar] [CrossRef] [Green Version]
- Tanchev, I.; Tancheva, D. Study of kidney function by radioisotopic methods in Balkan endemic nephropathy. Vutr. Boles. 1977, 16, 80–85. [Google Scholar]
- Trnacevic, S.; Halilbasic, A.; Ferluga, D.; Plavljanic, D.; Vizjak, A.; Durakovic, H.; Habul, V.; Mesić, E.; Imamović, G.; Hranisavljević, J.; et al. Renal function, protein excretion and pathology of Balkan endemic nephropathy. I. Renal function. Kidney Int. 1991, 40 (Suppl. S34), S49–S51. [Google Scholar]
- Čukuranović, R.; Savic, V.; Stefanović, N.; Stefanovic, V. Progression of Kidney Damage in Balkan Endemic Nephropathy: A 15-Year Follow-Up of Patients with Kidney Biopsy Examination. Ren. Fail. 2005, 27, 701–706. [Google Scholar] [CrossRef]
- Bukvic, D.; Jankovic, S.; Marić, I.; Stosovic, M.; Arsenovic, A.; Djukanović, L. Today Balkan endemic nephropathy is a disease of the elderly with a good prognosis. Clin. Nephrol. 2009, 72, 105–113. [Google Scholar] [CrossRef]
- Sjöström, P.A.; Odlind, B.G.; Wolgast, M. Extensive tubular secretion and reabsorption ofcreatinine in humans. Scand. J. Urol. Nephrol. 1988, 22, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Musso, C.G.; Oreopoulos, D.G. Aging and physiological changes of the kidneysincluding changes in glomerular filtration rate. Nephron Physiol. 2011, 119 (Suppl. 1), 1–5. [Google Scholar] [CrossRef]
- Helal, I.; Fick-Brosnahan, G.M.; Reed-Gitomer, B.; Schrier, R.W. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 2012, 8, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Chakkera, H.A.; Denic, A.; Kremers, W.K.; Stegall, M.D.; Larson, J.J.; Ravipati, H.; Taler, S.J.; Lieske, J.C.; Lerman, L.O.; Augustine, J.J.; Rule, A.D. Comparison of high glomerular filtration rate thresholds for identifying hyperfiltration. Nephrol. Dial. Transplant. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.; Scholey, J.W.; A Miller, J. Insights into the regulation of renal hemodynamic function in diabetic mellitus. Curr. Diabetes Rev. 2008, 4, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Sasson, A.N.; Cherney, D.Z. Renal hyperfiltration related to diabetes mellitus and obesity in human disease. World J. Diabetes 2012, 3, 1–6. [Google Scholar] [CrossRef]
- Jelaković, B.; Karanović, S.; Vuković-Lela, I.; Miller, F.; Edwards, K.L.; Nikolić, J.; Tomić, K.; Slade, N.; Brdar, B.; Turesky, R.J.; et al. Aristolactam-DNA adducts are a biomarker of environmental exposure to aristolochic acid. Kidney Int. 2012, 81, 559–567. [Google Scholar] [CrossRef]
- Depierreux, M.; Van Damme, B.; Houte, K.V.; Vanherweghem, J.L. Pathologic Aspects of a Newly Described Nephropathy Related to the Prolonged Use of Chinese Herbs. Am. J. Kidney Dis. 1994, 24, 172–180. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, W.; Wang, H.; Liang, Y.; Wang, Y.; Yao, W.; Chen, W.; Li, Q.; Ying, P.H.; Shi, X.; Peng, W. Renal microvascular injury in chronic aristolochic acid nephropathy and protective effects of Cozaar. Ren. Fail. 2012, 34, 60–67. [Google Scholar] [CrossRef]
- Jadot, I.; Declèves, A.-E.; Nortier, J.; Caron, N.; Valentovic, M. An Integrated View of Aristolochic Acid Nephropathy: Update of the Literature. Int. J. Mol. Sci. 2017, 18, 297. [Google Scholar] [CrossRef]
- Ferluga, D.; Hvala, A.; Vizjak, A.; Trnavcevic, S.; Halibasic, A. Renal function, protein excretion, and pathology of Balkan endemic nephropathy. III. Light and electron microscopic studies. Kidney Int. 1991, 40 (Suppl. 34), S54–S67. [Google Scholar]
- Sindjić, M. Morphological changes in kidneys affected by endemic nephropathy. In Endemic Nephropathy; Radovanović, Z., Sindjić, M., Polenaković, M., Djukanović, L., Petronić, V., Eds.; Office for Textbooks and Teaching Aids: Belgrade, Serbia, 2000; pp. 153–252. [Google Scholar]
- Michels, W.M.; Grootendorst, D.C.; Verduijn, M.; Elliott, E.G.; Dekker, F.W.; Krediet, R.T. Performance of the Cockcroft-Gault, MDRD, and New CKD-EPI Formulas in Relation to GFR, Age, and Body Size. Clin. J. Am. Soc. Nephrol. 2010, 5, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Bhuvanakrishna, T.; Blake, G.M.; Hilton, R.; Burnapp, L.; Sibley-Allen, C.; Goldsmith, D. Comparison of estimated GFR and measured GFR in prospective living kidney donors. Int. Urol. Nephrol. 2015, 47, 201–208. [Google Scholar] [CrossRef]
BEN Patients | Healthy Controls | p Value | |
---|---|---|---|
Gender—M/F, number | 10/11 | 8/7 | 0.753 |
Age, years | 60.48 ± 9.01 | 54.80 ± 8.89 | 0.110 |
BMI, kg/m2 | 26.41 ± 2.99 | 25.98 ± 2.78 | 0.717 |
BSA, m2 | 1.87 ± 0.17 | 1.81 ± 0.20 | 0.362 |
Blood pressure—systolic, mmHg | 134.29 ± 13.99 | 128.09 ± 6.09 | 0.053 |
Blood pressure—diastolic, mmHg | 83.57 ± 10.14 | 78.79 ± 4.42 | 0.074 |
Blood pressure >140/80 mmHg, number | 7 | 0 | 0.027 |
ACEI treated, number | 9 | 0 | 0.005 |
U-protein, mg/mmol | 17.10 (7.70–26.95) | 7.70 (6.10–10.70) | 0.011 |
U-albumin, mg/mmol | 2.40 (0.94–3.25) | 1.00 (0.81–1.85) | 0.031 |
U-alfa1microglobulin, mg/mmol | 1.57 (0.90–2.63) | 0.89 (0.71–0.99) | 0.025 |
BEN Patients | Healthy Controls | p Value | |
---|---|---|---|
Ccr, mL/min/1.73 m2 | 129.19 ± 32.08 | 116.77 ± 30.36 | 0.337 |
CcrC, mL/min/1.73 m2 | 117.51 ± 28.31 | 102.29 ± 25.38 | 0.126 |
mGFR, mL/min/1.73 m2 | 122.02 ± 28.03 | 101.15 ± 27.32 | 0.032 |
GFR-HF, mL/min/1.73 m2 | 123.52 ± 9.01 | 130.33 ± 8.82 | 0.031 |
Ccr/CcrC | 1.10 ± 0.19 | 1.14 ± 0.17 | 0.405 |
Ccr/mGFR | 1.07 ± 0.23 | 1.13 ± 0.19 | 0.383 |
CcrC/mGFR | 1.01 ± 0.26 | 1.01 ± 0.09 | 0.960 |
mGFR/GFR-HF | 0.97 ± 0.20 | 0.80 ± 0.23 | 0.033 |
eGFR-CKD-EPI, mL/min/1.73 m2 | 85.09 ± 18.29 | 87.47 ± 19.23 | 0.753 |
eGFR-MDRD, mL/min/1.73 m2 | 83.91 ± 16.77 | 84.76 ± 19.90 | 0.884 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djukanović, L.; Ležaić, V.; Bukvić, D.; Mirković, D.; Marić, I. Increased Glomerular Filtration Rate in Early Stage of Balkan Endemic Nephropathy. Medicina 2019, 55, 155. https://doi.org/10.3390/medicina55050155
Djukanović L, Ležaić V, Bukvić D, Mirković D, Marić I. Increased Glomerular Filtration Rate in Early Stage of Balkan Endemic Nephropathy. Medicina. 2019; 55(5):155. https://doi.org/10.3390/medicina55050155
Chicago/Turabian StyleDjukanović, Ljubica, Višnja Ležaić, Danica Bukvić, Dušan Mirković, and Ivko Marić. 2019. "Increased Glomerular Filtration Rate in Early Stage of Balkan Endemic Nephropathy" Medicina 55, no. 5: 155. https://doi.org/10.3390/medicina55050155
APA StyleDjukanović, L., Ležaić, V., Bukvić, D., Mirković, D., & Marić, I. (2019). Increased Glomerular Filtration Rate in Early Stage of Balkan Endemic Nephropathy. Medicina, 55(5), 155. https://doi.org/10.3390/medicina55050155