NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases
Abstract
:1. Introduction
2. Neurotropism of SARS-CoV-2
3. Methodology
4. Microglia Activation and Neuroinflammation
5. NOX2 Increases Oxidative Stress
6. Role of NOX2 in Neurodegenerative Diseases
6.1. NOX2 in Parkinson’s Disease
6.2. NOX2 in Alzheimer’s Disease
6.3. NOX2 in Amyotrophic Lateral Sclerosis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Battaglini, D.; Brunetti, I.; Anania, P.; Fiaschi, P.; Zona, G.; Ball, L.; Giacobbe, D.R.; Vena, A.; Bassetti, M.; Patroniti, N.; et al. Neurological Manifestations of Severe SARS-CoV-2 Infection: Potential Mechanisms and Implications of Individualized Mechanical Ventilation Settings. Front. Neurol. 2020, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Meyerowitz, E.A.; Richterman, A.; Gandhi, R.T.; Sax, P.E. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Ann. Intern. Med. 2021, 174, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, E.; Bramanti, A.; Ciurleo, R.; Tchorbanov, A.I.; Giordano, A.; Fagone, P.; Belizna, C.; Bramanti, P.; Shoenfeld, Y.; Nicoletti, F. Entangling COVID-19 associated thrombosis into a secondary antiphospholipid antibody syndrome: Diagnostic and therapeutic perspectives (Review). Int. J. Mol. Med. 2020, 46, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Gavriatopoulou, M.; Korompoki, E.; Fotiou, D.; Ntanasis-Stathopoulos, I.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Organ-specific manifestations of COVID-19 infection. Clin. Exp. Med. 2020, 20, 493–506. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, E.G.; Šimončičová, E.; Carrier, M.; Vecchiarelli, H.A.; Robert, M.È.; Tremblay, M.-È. Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Front. Cell. Neurosci. 2021, 15, 647378. [Google Scholar] [CrossRef]
- Geng, L.; Fan, L.M.; Liu, F.; Smith, C.; Li, J.-M. Nox2 dependent redox-regulation of microglial response to amyloid-β stimulation and microgliosis in aging. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Barrett, J.; Alvarez-Croda, D.-M.; Stoica, B.A.; Faden, A.I.; Loane, D.J. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav. Immun. 2016, 58, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.M.; Geng, L.; Cahill-Smith, S.; Liu, F.; Douglas, G.; McKenzie, C.-A.; Smith, C.; Brooks, G.; Channon, K.M.; Li, J.-M. Nox2 contributes to age-related oxidative damage to neurons and the cerebral vasculature. J. Clin. Investig. 2019, 129, 3374–3386. [Google Scholar] [CrossRef]
- Cahill-Smith, S.; Li, J.-M. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: A role of NADPH oxidase. Br. J. Clin. Pharmacol. 2014, 78, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Loffredo, L.; Ettorre, E.; Zicari, A.M.; Inghilleri, M.; Nocella, C.; Perri, L.; Spalice, A.; Fossati, C.; De Lucia, M.C.; Pigozzi, F.; et al. Oxidative Stress and Gut-Derived Lipopolysaccharides in Neurodegenerative Disease: Role of NOX2. Oxidative Med. Cell. Longev. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Violi, F.; Oliva, A.; Cangemi, R.; Ceccarelli, G.; Pignatelli, P.; Carnevale, R.; Cammisotto, V.; Lichtner, M.; Alessandri, F.; De Angelis, M.; et al. Nox2 activation in Covid-19. Redox Biol. 2020, 36, 101655. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Yang, L.; You, R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol. Res. 2020, 157, 104833. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef]
- Doobay, M.F.; Talman, L.S.; Obr, T.D.; Tian, X.; Davisson, R.L.; Lazartigues, E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am. J. Physiol. Integr. Comp. Physiol. 2007, 292, R373–R381. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef]
- Sulzer, D.; Antonini, A.; Leta, V.; Nordvig, A.; Smeyne, R.J.; Goldman, J.E.; Al-Dalahmah, O.; Zecca, L.; Sette, A.; Bubacco, L.; et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside. NPJ Park. Dis. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef]
- Butowt, R.; Bilinska, K. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection. ACS Chem. Neurosci. 2020, 11, 1200–1203. [Google Scholar] [CrossRef] [Green Version]
- Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020, 11, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-Y.; Li, X.-L.; Yan, Z.-R.; Sun, X.-P.; Han, J.; Zhang, B.-W. Potential neurological symptoms of COVID-19. Ther. Adv. Neurol. Disord. 2020, 13. [Google Scholar] [CrossRef] [Green Version]
- Desforges, M.; Le Coupanec, A.; Stodola, J.K.; Meessen-Pinard, M.; Talbot, P.J. Human coronaviruses: Viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014, 194, 145–158. [Google Scholar] [CrossRef]
- Zhou, Z.; Kang, H.; Li, S.; Zhao, X. Understanding the neurotropic characteristics of SARS-CoV-2: From neurological manifestations of COVID-19 to potential neurotropic mechanisms. J. Neurol. 2020, 267, 2179–2184. [Google Scholar] [CrossRef]
- Dube, M.; Le Coupanec, A.; Wong, A.H.M.; Rini, J.M.; Desforges, M.; Talbot, P.J. Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Román, G.C.; Spencer, P.S.; Reis, J.; Buguet, A.; Faris, M.E.A.; Katrak, S.M.; Láinez, M.; Medina, M.T.; Meshram, C.; Mizusawa, H.; et al. The neurology of COVID-19 revisited: A proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. J. Neurol. Sci. 2020, 414, 116884. [Google Scholar] [CrossRef]
- Davies, J.; Randeva, H.S.; Chatha, K.; Hall, M.; Spandidos, D.A.; Karteris, E.; Kyrou, I. Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol. Med. Rep. 2020, 22, 4221–4226. [Google Scholar] [CrossRef]
- Filho, A.J.M.C.; Gonçalves, F.; Mottin, M.; Andrade, C.H.; Fonseca, S.N.S.; Macedo, D.S. Repurposing of Tetracyclines for COVID-19 Neurological and Neuropsychiatric Manifestations: A Valid Option to Control SARS-CoV-2-Associated Neuroinflammation? J. Neuroimmune Pharmacol. 2021, 16, 213–218. [Google Scholar] [CrossRef]
- Jakhmola, S.; Indari, O.; Chatterjee, S.; Jha, H.C. SARS-CoV-2, an Underestimated Pathogen of the Nervous System. SN Compr. Clin. Med. 2020, 2, 2137–2146. [Google Scholar] [CrossRef]
- Matschke, J.; Lütgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schröder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 2020, 19, 919–929. [Google Scholar] [CrossRef]
- Deigendesch, N.; Sironi, L.; Kutza, M.; Wischnewski, S.; Fuchs, V.; Hench, J.; Frank, A.; Nienhold, R.; Mertz, K.D.; Cathomas, G.; et al. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology. Acta Neuropathol. 2020, 140, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Goel, R.; Shukla, S.; Shukla, R.; Hanif, K. Angiotensin Receptor Blockade by Inhibiting Glial Activation Promotes Hippocampal Neurogenesis Via Activation of Wnt/β-Catenin Signaling in Hypertension. Mol. Neurobiol. 2017, 55, 5282–5298. [Google Scholar] [CrossRef] [PubMed]
- Rana, I.; Suphapimol, V.; Jerome, J.R.; Talia, D.M.; Deliyanti, D.; Wilkinson-Berka, J.L. Angiotensin II and aldosterone activate retinal microglia. Exp. Eye Res. 2020, 191, 107902. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Xu, P.; Li, G.; Qiao, Y.; Han, W.; Geng, C.; Liao, D.; Yang, M.; Chen, D.; Jiang, P. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system. Redox Biol. 2019, 26, 101295. [Google Scholar] [CrossRef]
- Labandeira-Garcia, J.L.; Rodríguez-Perez, A.I.; Garrido-Gil, P.; Rodriguez-Pallares, J.; Lanciego, J.L.; Guerra, M.J. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front. Aging Neurosci. 2017, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Perez, A.I.; Borrajo, A.; Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L. Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia 2015, 63, 466–482. [Google Scholar] [CrossRef]
- Borrajo, A.; Rodriguez-Perez, A.I.; Diaz-Ruiz, C.; Guerra, M.J.; Labandeira-Garcia, J.L. Microglial TNF-α mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia 2014, 62, 145–157. [Google Scholar] [CrossRef]
- Garrido-Gil, P.; Rodriguez-Pallares, J.; Meijide, A.D.; Guerra, M.J.; Labandeira-Garcia, J.L. Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells. Exp. Neurol. 2013, 250, 384–396. [Google Scholar] [CrossRef]
- Bhat, S.A.; Sood, A.; Shukla, R.; Hanif, K. AT2R Activation Prevents Microglia Pro-inflammatory Activation in a NOX-Dependent Manner: Inhibition of PKC Activation and p47phox Phosphorylation by PP2A. Mol. Neurobiol. 2019, 56, 3005–3023. [Google Scholar] [CrossRef]
- Kumar, D.; Jahan, S.; Khan, A.; Siddiqui, A.J.; Redhu, N.S.; Wahajuddin; Khan, J.; Banwas, S.; Alshehri, B.; Alaidarous, M. Neurological Manifestation of SARS-CoV-2 Induced Inflammation and Possible Therapeutic Strategies Against COVID-19. Mol. Neurobiol. 2021, 1–18. [Google Scholar] [CrossRef]
- Mishra, R.; Banerjea, A.C. SARS-CoV-2 Spike Targets USP33-IRF9 Axis via Exosomal miR-148a to Activate Human Microglia. Front. Immunol. 2021, 12, 656700. [Google Scholar] [CrossRef]
- Hosp, J.A.; Dressing, A.; Blazhenets, G.; Bormann, T.; Rau, A.; Schwabenland, M.; Thurow, J.; Wagner, D.; Waller, C.; Niesen, W.D.; et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain J. Neurol. 2021, 144, 1263–1276. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Ha, E.-M.; Oh, C.-T.; Bae, Y.S.; Lee, W.-J. A Direct Role for Dual Oxidase inDrosophilaGut Immunity. Science 2005, 310, 847–850. [Google Scholar] [CrossRef]
- Altenhöfer, S.; Radermacher, K.A.; Kleikers, P.W.M.; Wingler, K.; Schmidt, H.H.H.W. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid. Redox Signal. 2015, 23, 406–427. [Google Scholar] [CrossRef]
- Segal, A.W.; García, R.; Goldstone, H.; Cross, A.R.; Jones, O.T. Cytochrome b-245 of neutrophils is also present in human monocytes, macrophages and eosinophils. Biochem. J. 1981, 196, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Elsen, S.; Doussiere, J.; Villiers, C.L.; Faure, M.; Berthier, R.; Papaioannou, A.; Grandvaux, N.; Marche, P.N.; Vignais, P.V. Cryptic O2—Generating NADPH oxidase in dendritic cells. J. Cell Sci. 2004, 117, 2215–2226. [Google Scholar] [CrossRef] [Green Version]
- Jesaitis, A.J.; Buescher, E.S.; Harrison, D.; Quinn, M.T.; Parkos, C.A.; Livesey, S.; Linner, J. Ultrastructural localization of cytochrome b in the membranes of resting and phagocytosing human granulocytes. J. Clin. Investig. 1990, 85, 821–835. [Google Scholar] [CrossRef] [Green Version]
- Chanock, S.J.; Faust, L.R.; Barrett, D.; Bizal, C.; Maly, F.E.; Newburger, P.E.; Ruedi, J.M.; Smith, R.M.; Babior, B.M. O2—Production by B lymphocytes lacking the respiratory burst oxidase subunit p47phox after transfection with an expression vector containing a p47phox cDNA. Proc. Natl. Acad. Sci. USA 1992, 89, 10174–10177. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Hitt, N.D.; Kleinberg, M.E. Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry 1995, 34, 16753–16757. [Google Scholar] [CrossRef]
- Weiss, S.J.; Klein, R.; Slivka, A.; Wei, M. Chlorination of Taurine by Human Neutrophils. J. Clin. Investig. 1982, 70, 598–607. [Google Scholar] [CrossRef]
- Clark, R.A.; Volpp, B.D.; Leidal, K.G.; Nauseef, W.M. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J. Clin. Investig. 1990, 85, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Bäumer, A.T.; Freyhaus, H.T.; Sauer, H.; Wartenberg, M.; Kappert, K.; Schnabel, P.; Konkol, C.; Hescheler, J.; Vantler, M.; Rosenkranz, S. Phosphatidylinositol 3-Kinase-dependent Membrane Recruitment of Rac-1 and p47phox Is Critical for α-Platelet-derived Growth Factor Receptor-induced Production of Reactive Oxygen Species. J. Biol. Chem. 2008, 283, 7864–7876. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Lambeth, J.D. NOXO1, Regulation of Lipid Binding, Localization, and Activation of Nox1 by the Phox Homology (PX) Domain. J. Biol. Chem. 2004, 279, 4737–4742. [Google Scholar] [CrossRef] [Green Version]
- Koga, H.; Terasawa, H.; Nunoi, H.; Takeshige, K.; Inagaki, F.; Sumimoto, H. Tetratricopeptide Repeat (TPR) Motifs of p67 Participate in Interaction with the Small GTPase Rac and Activation of the Phagocyte NADPH Oxidase. J. Biol. Chem. 1999, 274, 25051–25060. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, M.C.; Malech, H.L.; Holland, S.M.; Leto, T.L. Genetic requirement of p47 phox for superoxide production by murine microglia. FASEB J. 2000, 15, 285–287. [Google Scholar] [CrossRef] [Green Version]
- Lapouge, K.; Smith, S.J.M.; Groemping, Y.; Rittinger, K. Architecture of the p40-p47-p67 Complex in the Resting State of the NADPH Oxidase. J. Biol. Chem. 2002, 277, 10121–10128. [Google Scholar] [CrossRef] [Green Version]
- Massenet, C.; Chenavas, S.; Cohen-Addad, C.; Dagher, M.-C.; Brandolin, G.; Pebay-Peyroula, E.; Fieschi, F. Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains. J. Biol. Chem. 2005, 280, 13752–13761. [Google Scholar] [CrossRef] [Green Version]
- Singel, K.L.; Segal, B.H. NOX2-dependent regulation of inflammation. Clin. Sci. 2016, 130, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, A.; Pula, G. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 2018, 19, 3824. [Google Scholar] [CrossRef] [Green Version]
- Diebold, B.A.; Smith, S.M.; Li, Y.; Lambeth, J.D. NOX2 as a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid. Redox Signal. 2015, 23, 375–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, K.; Morris, H.R. Parkinson’s disease: Chameleons and mimics. Pr. Neurol. 2014, 15, 14–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, D.; Gao, Y.; Yang, R.; Guan, T.; Hong, J.-S.; Gao, H.-M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflamm. 2019, 16, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.-L.; Chen, Y.; Zhang, C.-H.; Wang, Y.-X.; Fernandez-Funez, P. Genetics of Parkinson’s disease and related disorders. J. Med Genet. 2017, 55, 73–80. [Google Scholar] [CrossRef]
- Hayes, M.T. Parkinson’s Disease and Parkinsonism. Am. J. Med. 2019, 132, 802–807. [Google Scholar] [CrossRef]
- Cannon, J.R.; Greenamyre, J.T. Gene–Environment interactions in Parkinson’s disease: Specific evidence in humans and mammalian models. Neurobiol. Dis. 2013, 57, 38–46. [Google Scholar] [CrossRef]
- Hou, L.; Bao, X.; Zang, C.; Yang, H.; Sun, F.; Che, Y.; Wu, X.; Li, S.; Zhang, D.; Wang, Q. Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a Rho-dependent pathway. Redox Biol. 2018, 14, 600–608. [Google Scholar] [CrossRef]
- Zhang, C.; Hou, L.; Yang, J.; Che, Y.; Sun, F.; Li, H.; Wang, Q. 2,5-Hexanedione induces dopaminergic neurodegeneration through integrin αMβ2/NADPH oxidase axis-mediated microglial activation. Cell Death Dis. 2018, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Wang, K.; Zhang, C.; Sun, F.; Che, Y.; Zhao, X.; Zhang, D.; Li, H.; Wang, Q. Complement receptor 3 mediates NADPH oxidase activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway. Redox Biol. 2018, 14, 250–260. [Google Scholar] [CrossRef]
- Che, Y.; Hou, L.; Sun, F.; Zhang, C.; Liu, X.; Piao, F.; Zhang, D.; Li, H.; Wang, Q. Taurine protects dopaminergic neurons in a mouse Parkinson’s disease model through inhibition of microglial M1 polarization. Cell Death Dis. 2018, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chu, C.-H.; Guo, M.; Jiang, L.; Nie, H.; Zhang, W.; Wilson, B.; Yang, L.; Stewart, T.; Hong, J.-S.; et al. Identification of a specific α-synuclein peptide (α-Syn 29-40) capable of eliciting microglial superoxide production to damage dopaminergic neurons. J. Neuroinflamm. 2016, 13, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Gao, J.-H.; Yan, Z.-F.; Huang, X.-Y.; Guo, P.; Sun, L.; Liu, Z.; Hu, Y.; Zuo, L.-J.; Yu, S.-Y.; et al. Minimally Toxic Dose of Lipopolysaccharide and α-Synuclein Oligomer Elicit Synergistic Dopaminergic Neurodegeneration: Role and Mechanism of Microglial NOX2 Activation. Mol. Neurobiol. 2016, 55, 619–632. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, X.; Wang, S.; Chen, S.-H.; Zhou, H.; Wilson, B.; Jin, C.; Lu, R.-B.; Xie, K.; Wang, Q.; et al. Clozapine metabolites protect dopaminergic neurons through inhibition of microglial NADPH oxidase. J. Neuroinflamm. 2016, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Liu, Y.; Hong, J.-S.; Crews, F.T. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 2013, 61, 855–868. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Tu, D.; Yang, R.; Chu, C.-H.; Hong, J.-S.; Gao, H.-M. Through Reducing ROS Production, IL-10 Suppresses Caspase-1-Dependent IL-1β Maturation, thereby Preventing Chronic Neuroinflammation and Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 465. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Chen, L.; Wei, X.; Wang, Y.; Ren, Z.; Zeng, S.; Zhang, X.; Wen, H.; Gao, C.; Liu, H. NOD2 promotes dopaminergic degeneration regulated by NADPH oxidase 2 in 6-hydroxydopamine model of Parkinson’s disease. J. Neuroinflamm. 2018, 15, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hernandes, M.S.; Santos, G.D.R.; Café-Mendes, C.C.; Lima, L.S.; Scavone, C.; Munhoz, C.; Britto, L.R.G. Microglial Cells Are Involved in the Susceptibility of NADPH Oxidase Knockout Mice to 6-Hydroxy-Dopamine-Induced Neurodegeneration. PLoS ONE 2013, 8, e75532. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, Z.-F.; Gao, J.-H.; Sun, L.; Huang, X.-Y.; Liu, Z.; Yu, S.-Y.; Cao, C.-J.; Zuo, L.-J.; Chen, Z.-J.; et al. Role and Mechanism of Microglial Activation in Iron-Induced Selective and Progressive Dopaminergic Neurodegeneration. Mol. Neurobiol. 2014, 49, 1153–1165. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Chu, C.-H.; Qian, L.; Chen, S.-H.; Wilson, B.; Oyarzabal, E.; Jiang, L.; Ali, S.; Robinson, B.; Kim, H.-C.; et al. Substance P Exacerbates Dopaminergic Neurodegeneration through Neurokinin-1 Receptor-Independent Activation of Microglial NADPH Oxidase. J. Neurosci. 2014, 34, 12490–12503. [Google Scholar] [CrossRef] [Green Version]
- Gandy, S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J. Clin. Investig. 2005, 115, 1121–1129. [Google Scholar] [CrossRef]
- Ecanobbio, I.; Abubaker, A.A.; Evisconte, C.; Etorti, M.; Epula, G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer’s disease. Front. Cell. Neurosci. 2015, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Bloom, G.S. Amyloid-β and Tau. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Von Bernhardi, R.; Eugenín-von Bernhardi, L.; Eugenín, J. Microglial cell dysregulation in brain aging and neurodegeneration. Front. Aging Neurosci. 2015, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Luo, D.; Streit, W.J.; Harrison, J.K. TGF-β1 upregulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia. J. Neuroimmunol. 2002, 133, 46–55. [Google Scholar] [CrossRef]
- Herrera-Molina, R.; Flores, B.; Orellana, J.; Von Bernhardi, R. Modulation of interferon-γ-induced glial cell activation by transforming growth factor β1: A role for STAT1 and MAPK pathways. J. Neurochem. 2012, 123, 113–123. [Google Scholar] [CrossRef]
- Weiss, A.; Attisano, L. The TGFbeta Superfamily Signaling Pathway. Wiley Interdiscip. Rev. Dev. Boil. 2013, 2, 47–63. [Google Scholar] [CrossRef]
- Nakanishi, H.; Wu, Z. Microglia-aging: Roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav. Brain Res. 2009, 201, 1–7. [Google Scholar] [CrossRef]
- Siniachenko, O.V.; Diadyk, A.I.; Bagriĭ, E.A. Neurological aspects of microcrystalline arthropathies. Sov. Meditsina 1991, 4, 31–33. [Google Scholar]
- Blau, C.W.; Cowley, T.R.; O’Sullivan, J.; Grehan, B.; Browne, T.C.; Kelly, L.; Birch, A.; Murphy, N.; Kelly, A.M.; Kerskens, C.M.; et al. The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability. Neurobiol. Aging 2012, 33, 1005.e23–1005.e35. [Google Scholar] [CrossRef]
- Ii, M.; Sunamoto, M.; Ohnishi, K.; Ichimori, Y. β-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res. 1996, 720, 93–100. [Google Scholar] [CrossRef]
- Qin, L.; Liu, Y.; Cooper, C.; Liu, B.; Wilson, B.; Hong, J.-S. Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J. Neurochem. 2002, 83, 973–983. [Google Scholar] [CrossRef]
- Combs, C.K.; Johnson, D.E.; Karlo, J.C.; Cannady, S.B.; Landreth, G.E. Inflammatory mechanisms in Alzheimer’s disease: Inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 558–567. [Google Scholar] [CrossRef]
- Griffin, W.; Sheng, J.; Royston, M.; Gentleman, S.; McKenzie, J.; Graham, D.; Roberts, G.; Mrak, R. Glial-Neuronal Interactions in Alzheimer’s Disease: The Potential Role of a ‘Cytokine Cycle’ in Disease Progression. Brain Pathol. 2006, 8, 65–72. [Google Scholar] [CrossRef]
- Reed-Geaghan, E.G.; Savage, J.C.; Hise, A.G.; Landreth, G.E. CD14 and Toll-Like Receptors 2 and 4 Are Required for Fibrillar A -Stimulated Microglial Activation. J. Neurosci. 2009, 29, 11982–11992. [Google Scholar] [CrossRef]
- Wilkinson, B.L.; Landreth, G.E. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J. Neuroinflamm. 2006, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Fragoso-Morales, L.; Correa-Basurto, J.; Rosales-Hernández, M. Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer’s Disease Murine Models. Antioxidants 2021, 10, 218. [Google Scholar] [CrossRef]
- Miyano, K.; Ueno, N.; Takeya, R.; Sumimoto, H. Direct Involvement of the Small GTPase Rac in Activation of the Superoxide-producing NADPH Oxidase Nox1. J. Biol. Chem. 2006, 281, 21857–21868. [Google Scholar] [CrossRef] [Green Version]
- Alokam, R.; Singhal, S.; Srivathsav, G.S.; Garigipati, S.; Puppala, S.; Sriram, D.; Perumal, Y. Design of dual inhibitors of ROCK-I and NOX2 as potential leads for the treatment of neuroinflammation associated with various neurological diseases including autism spectrum disorder. Mol. BioSyst. 2014, 11, 607–617. [Google Scholar] [CrossRef]
- Wilkinson, B.L.; Cramer, P.E.; Varvel, N.; Reed-Geaghan, E.; Jiang, Q.; Szabo, A.; Herrup, K.; Lamb, B.T.; Landreth, G.E. Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer’s disease. Neurobiol. Aging 2012, 33, 197.e21–197.e32. [Google Scholar] [CrossRef] [Green Version]
- Carrano, A.; Hoozemans, J.J.; Van Der Vies, S.M.; Rozemuller, A.J.; Van Horssen, J.; De Vries, H.E. Amyloid Beta Induces Oxidative Stress-Mediated Blood–Brain Barrier Changes in Capillary Amyloid Angiopathy. Antioxid. Redox Signal. 2011, 15, 1167–1178. [Google Scholar] [CrossRef]
- Shang, Y.; Tian, L.; Chen, T.; Liu, X.; Zhang, J.; Liu, D.; Wei, J.; Fang, W.; Chen, Y.; Shang, D. CXCL1 promotes the proliferation of neural stem cells by stimulating the generation of reactive oxygen species in APP/PS1 mice. Biochem. Biophys. Res. Commun. 2019, 515, 201–206. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; Berg, L.H.V.D. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 2017, 3, 17071. [Google Scholar] [CrossRef]
- Yamanaka, K.; Komine, O. The multi-dimensional roles of astrocytes in ALS. Neurosci. Res. 2018, 126, 31–38. [Google Scholar] [CrossRef]
- Apolloni, S.; Parisi, C.; Pesaresi, M.G.; Rossi, S.; Carrì, M.T.; Cozzolino, M.; Volonté, C.; D’Ambrosi, N. The NADPH Oxidase Pathway Is Dysregulated by the P 2 × 7 Receptor in the SOD1-G93A Microglia Model of Amyotrophic Lateral Sclerosis. J. Immunol. 2013, 190, 5187–5195. [Google Scholar] [CrossRef] [Green Version]
- Bonafede, R.; Mariotti, R. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles. Front. Cell. Neurosci. 2017, 11, 80. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Liang, W.; Yang, Y.; Cong, C.; Wang, Y.; Wang, S.; Wang, X.; Wang, D.; Huo, D.; et al. Diphenyl diselenide protects motor neurons through inhibition of microglia-mediated inflammatory injury in amyotrophic lateral sclerosis. Pharmacol. Res. 2021, 165, 105457. [Google Scholar] [CrossRef]
- Boucherie, C.; Schäfer, S.; Lavand’Homme, P.; Maloteaux, J.-M.; Hermans, E. Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 2009, 87, 2034–2046. [Google Scholar] [CrossRef]
- Liao, B.; Zhao, W.; Beers, D.R.; Henkel, J.S.; Appel, S.H. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol. 2012, 237, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Beers, D.R.; Liao, B.; Henkel, J.S.; Appel, S.H. Regulatory T lymphocytes from ALS mice suppress microglia and effector T lymphocytes through different cytokine-mediated mechanisms. Neurobiol. Dis. 2012, 48, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beers, D.R.; Zhao, W.; Liao, B.; Kano, O.; Wang, J.; Huang, A.; Appel, S.H.; Henkel, J.S. Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav. Immun. 2011, 25, 1025–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beers, D.R.; Henkel, J.S.; Zhao, W.; Wang, J.; Appel, S.H. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc. Natl. Acad. Sci. USA 2008, 105, 15558–15563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Spencer, N.Y.; Pantazis, N.J.; Engelhardt, J.F. Alsin and SOD1G93A Proteins Regulate Endosomal Reactive Oxygen Species Production by Glial Cells and Proinflammatory Pathways Responsible for Neurotoxicity. J. Biol. Chem. 2011, 286, 40151–40162. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Beers, D.R.; Bell, S.; Wang, J.; Wen, S.; Baloh, R.H.; Appel, S.H. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp. Neurol. 2015, 273, 24–35. [Google Scholar] [CrossRef]
- Seredenina, T.; Nayernia, Z.; Sorce, S.; Maghzal, G.J.; Filippova, A.; Ling, S.-C.; Basset, O.; Plastre, O.; Daali, Y.; Rushing, E.J.; et al. Evaluation of NADPH oxidases as drug targets in a mouse model of familial amyotrophic lateral sclerosis. Free. Radic. Biol. Med. 2016, 97, 95–108. [Google Scholar] [CrossRef]
Models | Treatments | Results | Ref |
---|---|---|---|
In Vitro and Vivo Experimental Models | |||
Primary microglial cells obtained from whole brains of wild type (WT) or CD11b−/− mice; microglia BV2 cell line | α-Syn (50, 100, and 200) nM; pre-treatment with anti-CD11b antibody (2.5 μg/mL) for 30 min. | The translocation of p47PHOX into the membrane and consequently, ROS production in microglia α-Syn-induced. BV2 microglia α-Syn-induced were pre-treated with anti-CD11b antibody to block CD11b activation for demonstrating its implication in NOX2 activation. | [67] |
Adult male SD rats (9 weeks old); Primary mesencephalic neuron-glia, microglia-depleted, and mixed-glia cultures; BV2 microglial cell line; | Intraperitoneal injection of HD (400 mg/kg/die) five times in 1 week for consecutive 5 weeks in rats; HD (1, 4, 8, and 16) mM. | Increased levels of both ROS and p47PHOX levels were observed in HD-treated BV2 microglia, demonstrating NOX2 activation. Instead, microglia cells were pre-treated with apocynin (NOX2 inhibitor), further suggesting that NOX2 was responsible for inducing ROS production. Furthermore, integrin αMβ2 (also known as CD11b) has been shown to be involved in NOX2 activation. Indeed, its inhibition would reduce ROS and p47PHOX translocation. | [68] |
BV2 microglial cells | Combination of paraquat and maneb (10 + 0.6) μM. | The co-treatment induced an increase in ROS levels and p47PHOX translocation, evidencing NOX2 activation. Furthermore, the inactivation of the C3 receptor (integrins) decreased the production of superoxide and translocation of p47PHOX, supporting the involvement of integrins in the activation of NOX2. The inactivation of integrins impacted the Src-ERK pathway. | [69] |
Male C57BL/6J (NOX2+/+ and NOX2−/−) mice | Intraperitoneal injection of paraquat + maneb (10 + 30) mg/kg 2 times in one week for 6 weeks in mice; Pre-treatment with Taurine (150 mg/kg) | Exposure to paraquat + maneb induced both an increase in NOX2 subunits (p47PHOX and gp91PHOX), as well as α-Syn expression levels which demonstrate neurodegeneration. Moreover, NOX2 could induce microglial polarization. Instead, pretreatment with taurine counteracted neurodegeneration and reduced translocation of NOX2 subunits. | [70] |
Male C57BL/6J (NOX2+/+ and NOX2−/−) mice; neuron-glia culture cells obtained from mouse or rat embryos; HAPI cells | Injection of A29-V40 (α-Syn) peptide (5 mg/kg) for 24 h in mice; Treatment with PMA (100 Nm) or LPS (150 EU/mL); Pre-treatment with apocynin (0.25 mM) | PMA and A29-V40 treatment-induced translocation of p47PHOX and p67PHOX and could bind gp91PHOX subunit in mice. The co-treatment with apocynin restored the viability of dopaminergic neurons and their ability to DA uptake. Instead, microglia culture pre-treated with H2O2 in gp91PHOX −/− microglia promoted the phosphorylation of p47PHOX and Erk1/2 demonstrating that several factors could affect NOX2 activation. | [71] |
Primary midbrain neuron-glia cultures obtained from brains of SD rats; primary glia cultures obtained from NOX2+/+ and NOX2−/− mice; Male C57BL/6J (NOX2+/+ and NOX2−/−) mice; | Cultures were treated with LPS (0.5 ng/mL) and/or Syn (20 nmol/L) for 8 days LPS (0.2 ug/uL) + syn (0.0125 ug/uL) treatment was administered in mice. Pre-treatment with DPI (0.01 and 0.1) μM | ROS levels, p47PHOX, and gp91PHOX were increased after LPS + syn treatment. Interestingly, a decrease in both dopaminergic levels and DA uptake was found in NOX2+/+ mice. Conversely, both the number of microglia and the ROS levels increased. The same results were found in rat primary midbrain neuron-glia cultures obtained from NOX2+/+ and NOX2−/− mice. Instead, DPI improved the viability of dopaminergic neurons and reduced ROS. | [72] |
neuron-glia mixed culture cells of Time-pregnant Fisher F344 rats Wild-type C57BL/6J (gp91phox+/+) and NOX2-deficient (gp91phox−/−) mice | LPS (15 ng/mL) or MPP+ (0.25 μM) treatment MPTP injections (20 mg/kg, s.c.) for 6 days. One day prior to MPTP injection, clozapine or CNO (1 mg/kg, s.c.) was administered twice daily for 21 consecutive days and pre-treatment with DPI (3 mg/kg, i.p) | LPS-treatment in NOX2+/+ mice promoted both mRNA NOX2 expression and release of ROS in a time-dependent manner. Co-treatment with CNO or NDC showed how NOX2 activation influenced DA uptake and release of pro-inflammatory compounds. DPI-Pre-treatment reduced both ROS and inflammatory cytokines such as TNFα, MCP-1, and LPS-induced IL-1β | [73] |
B6.129S6-Cybbtm1Din (NOX2−/−) and C57BL/6J 000,664 (NOX2+/+) mice | Intraperitoneal injection of LPS (5 mg/kg). | LPS-treatment in C57BL/6J mice promoted both mRNA NOX2 expression and release of ROS in a time-dependent manner. Instead, pre-treatment with DPI reduced both ROS and inflammatory cytokines such as TNFα, MCP-1and IL-1β demonstrating that NOX2 promoting microglia activation, subsequently the release of inflammatory cytokines. | [74] |
Mixed-glia cultures of B10.129P2(B6)-IL-10tm1Cgn/J (IL-10 knockout or IL-10−/−) mice and their WT or IL-10+/+ control mice (C57BL/10J), as well as B6N.129S2-Casp1tm1Flv/J (caspase-1 knockout or CASP-1−/−) mice and their WT (CASP-1+/+) control mice. | Intranigral injection of LPS (3 μg) | NOX2 activation and the consequent increase in ROS were responsible for the activation of NLPR3 inflammasome. The increased levels of IL-10 were able to suppress ROS-NOX2 induced and to block the NLPR3 activation, preventing neuroinflammation. | [75] |
Microglial cultures of male C57BL/6J and NOD2 knockout (NOD2−/−) mice. BV2 microglial cells SH-SY5Y cells | Injection of 6-OHDA (2 μL) Injection of MDP (4 μg/μL) in the right striatum | Treatment with MDP or 6-OHDA induced a reduction in DA and an increase in both apoptotic proteins and inflammatory cytokines. Instead, increased NOX2, NOD2, and iNOS promoting neuroinflammation was observed in 6-OHDA-induced microglia. | [76] |
Ten week-old male C57BL/6 (gp91PHOX−/−) and WT mice Microglial cultures C57BL/6) and gp91PHOX−/− mice | 6-OHDA (10 µg/µL) was unilaterally injected into the right striatum Minocycline (40 mg/kg) was injected(i.p) 7 days before PD induction | Treatment with 6-OHDA in the striatum of gp91PHOX−/− mice reduced the dopaminergic neurons, explaining NOX2-mediated neurotoxicity. Furthermore, co-treatment with minocycline promoted the neurodegeneration and release of TNFα in gp91PHOX+/+ mice, supporting NOX2 activation. | [77] |
Microglial cultures of C57 BL/6J (NOX2+/+ and NOX2−/−) mice. | Fe2+-treatment (5, 25, and 100) μM | Treatment with Fe2+ significantly increases both p47PHOX and gp91PHOX expression, suggesting Fe2+-induced NOX2 activation. Moreover, an increase in mRNA expression and protein levels of p38, ERK 1/2, and JNK was observed, therefore Fe2+ exposure could promote neuroinflammation. | [78] |
Mesencephalic neuron-glia, microglia-depleted, and microglia-enriched cultures of C57BL/6J, SP-deficient (TAC1−/−), and SP receptor-deficient (NK1R−/−)mice | Treatment with LPS (15 × 106 EU/kg) or MPTP (15 mg/kg) for 6 days | Significant loss of dopaminergic neurons was observed in WT mice treated with SP + LPS or SP + MPP + compared to gp91PHOX−/− culture, thus it was inferred that NOX2 may play a role in promoting neurotoxicity. Moreover, it was observed an increase in the translocation of p47PHOX and p67PHOX as well as of several inflammatory factors such as TNFα, iNOS, and MCP-1, suggesting activation of NOX2. Furthermore, MAPK and NF-Κb pathways were activated by NOX2 in microglia after toxicity-induced. | [79] |
Mesencephalic neuron-glia cultures from the ventral mesencephalon of embryonic Fischer 334 rats and also on A53T mutant α-synuclein transgenic mice. | The intranigral and intraperitoneal injection of LPS (5 mg/kg) and subcutaneous injection MPTP (15 mg/kg) | Increased levels in both gp91PHOX and G6PD were observed after LPS or MPTP treatment in mice. Neuron-glia culture treated with LPS demonstrated an increase of NADPH levels and G6PD activity, so it could be the promoter of NOX2 activation that induces neuroinflammation. Moreover, an increase of both G6PD and NOX2 in microglia are responsible to implement oxidative stress, the NF-Kb translocation, and subsequent neurodegeneration. | [63] |
Models | Treatments | Results | Ref. |
---|---|---|---|
In Vitro and Vivo Experimental Models | |||
BV-2 mouse microglial cells, mesencephalic samples of WT C57BL/6 mice, NOX2-KO mice, and post-mortem mesencephalic human samples | Aβ1–42 (0.1–10 µM), apocynin (20 μM) or NOX2tat (10 μM) | In vitro, treatment with apocynin or NOX2tat has significantly reduced ROS production. While a reduction of ROS and IL-1β and inhibition of ERK1/2 signaling was observed in NOX2-KO mice compared to both mesencephalic samples of mice in elderly WT mice and mesencephalic samples of elderly humans. | [7] |
Human neuroblast oma cells | Fasudil (1 µM) approximately | Compound 3 reduced inflammation as demonstrated by the reduction of pro-inflammatory mediators including IL-6, IL-1β, and TNFα. | [99] |
R1.40 transgenic mice, human THP-1 monocytes | animal food ibuprofen enriched in a final dosage (62.5 mg/kg), Aβ25–35 (60 μM) | The treatment reduced Aβ aggregation. Moreover, in primary murine microglia, the pretreatment with ibuprofen reduced the superoxide production Aβ-induced. In the same way, in ibuprofen-treated human THP-1 monocytes, by blocking Vav phosphorylation Aβ-induced, inhibited NOX2 and ROS production. | [100] |
hCMEC/D3 cells | Aβ1–42 (1 μM), DPI (10 nM and 100 nM), allopurinol (10 nM and 100 nM) | The pretreatment with allopurinol and DPI before inducing hCMEC/D3 with Aβ led to the reduction of ROS levels and restored the levels of occludin and claudin. Moreover, the blocking of RAGE and NOX2 by anti-RAGE blocking antibody prevented the cytotoxicity induced by Aβ and thus its transport through the BBB in the brain | [101] |
RAW264.7 mouse macrophage cell line and the BV2 mouse microglial cells | LPS or ATP (1 mM or 5 mM) and apocynin (30 nmol). | Treatment with CXCL1 led to an increase in both ROS and NOX2. Moreover, apocynin pre-treatment inhibited both NOX2 and CXCL1, involved in promoting the proliferation of neural cells in the presence of ROS. | [102] |
Models | Treatments | Results | Ref |
---|---|---|---|
In Vitro and Vivo Experimental Models | |||
hSOD1-G93A rats and primary microglia | diphenyl diselenide (50 μmol/kg) via intraperitoneal diphenyl diselenide (400 nM) | In vivo, diphenyl diselenide reduced the progression of the disease and favored motor neuron survival. While the same treatment in microglia has reduced the expression of the gp91PHOX subunit of NOX2 and also the production of ROS. Moreover, diphenyl diselenide blocked the activation of the inflammasome and reduced the levels of caspase-1 and IL-1β. | [107] |
hSOD1-G93A rats | a single injection of mesenchymal cells 2 × 106 labeled via intrathecal in the CSF | The infiltration and differentiation of mesenchymal cells in the injury site reduced the neurodegeneration of motor neurons in the spinal cord. Moreover, the transplantation of mesenchymal cells reduced inflammation and microglial activation as well as NOX2 and COX2 levels. | [108] |
mSOD1 microglia | mSOD1 microglia (2000 cells/well) co-culturing with motoneurons | The study has demonstrated changes in mSOD1 microglia of the mouse from a neuroprotective to a neurotoxic phenotype, as well as increased in the expression of NOX2, ROS, and markers including Ym1, CD163, and BDNF. | [109] |
mSOD1-G93A mice | mSOD1 microglia (1 × 104 cells/well) co-cultured with Tregs (1 × 104 cells/well) or Teffs cells (1 × 104 cells/well) | The study has shown the interaction between microglial activation and T lymphocytes, through a mechanism that involved IL-4 in the modulation of cytotoxicity. Indeed, Tregs through IL-4 reduced NOX2 and iNOS levels in primary microglial cells. Similarly, IL-4 inhibition promoted the increase of NOX2 and iNOS. | [110] |
mSOD1-G93A mice | analysis of spinal cord sections | CD4 + infiltration in the lumbar spinal cord increased IL-4, BDNF, and GDNF levels, as well as promoted motor neuron survival. Similarly, it was shown in the cervical spinal cord both a reduction of the microglial activation and also a reduction in TNF-α, IL-1β, and NOX2. | [111] |
mSOD1-G93A mice | bone marrow (3 × 107 cells per mouse) via intraperitoneal | The bone marrow transplantation has led to the recruitment of CD4+ lymphocytes which have preserved motor neurons from the neurodegeneration. Consequently, it was demonstrated the reduction of NOX2 levels and also the increase of BDNF, GDNF, and glutamate transporters. | [112] |
MO59J glial cells and NSC-34 neuronal cells and SOD1-G93A mice | Glial MO59J cells (1.0 × 106) and NSC-34 (0.5 × 106) infected with adenoviruses (1000 particles per cell) | Both MO59J glial cells and NSC-34 neuronal cells SOD1G93A-expressing have demonstrated an increase in Rac1, NOX2, ROS, TNFα, and NF-κB levels. Similarly, alsin has shown a higher affinity for Rac1-GTP in MO59J cells, thus reducing Rac1 activation and therefore NOX2 activity. | [113] |
Microglial cells and primary motoneuron of spinal cords obtained from C57BL/6 mice | TDP-43 treatment (500 ng/mL) in microglia for 2 days; LPS (40 ng/mL) and PMBS (4 μg/mL) | TDP-43 induced an increase in NOX2 expression and TNF-α and IL-1β levels as well as activation of NLRP3 inflammasome. Similarly, TDP-43 treatment in microglia was able to promote the MAPK and NF-κB pathway. Instead, PMBS co-treatment confirmed that microglia activation depended on TDP-43 and showed no significant changes in NOX2 expression and inflammatory cytokines. | [114] |
SOD1-G93A transgenic mice | microglia SOD1-G93A treated with BzATP (10–100 μM) | BzATP improved the NOX2 activity and consequently ROS production through a mechanism mediated by translocation of p67PHOX. Moreover, the administration of apocyanine in microglia treated with BzATP has inhibited NOX2 and reduced ROS. Similarly, a relationship between NOX2 and ERK1/2 phosphorylation mediated by P2 × 7 receptors was demonstrated. | [105] |
SOD1-G93A mice and Ra2 microglia | Ra2 microglia (10,000 cells/well) LPS-treated (5 µg/mL), perphenazine (3 mg/kg) or thioridazine (10 mg/kg) intraperitoneal administration | In vivo, it was shown an increase in the expression levels of p22PHOX, p67PHOX, and p47PHOX (NOX2 subunits). Moreover, thioridazine reduced NOX2 and ROS levels, as well as the expression levels of microglial markers Iba1 and CD68. Besides, either treatment with perphenazine or thioridazine in SOD1 G93A mice did not increase motor neuron survival, while in microglia inhibited ROS production and NOX2 activity. | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sindona, C.; Schepici, G.; Contestabile, V.; Bramanti, P.; Mazzon, E. NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases. Medicina 2021, 57, 604. https://doi.org/10.3390/medicina57060604
Sindona C, Schepici G, Contestabile V, Bramanti P, Mazzon E. NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases. Medicina. 2021; 57(6):604. https://doi.org/10.3390/medicina57060604
Chicago/Turabian StyleSindona, Cinzia, Giovanni Schepici, Valentina Contestabile, Placido Bramanti, and Emanuela Mazzon. 2021. "NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases" Medicina 57, no. 6: 604. https://doi.org/10.3390/medicina57060604
APA StyleSindona, C., Schepici, G., Contestabile, V., Bramanti, P., & Mazzon, E. (2021). NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases. Medicina, 57(6), 604. https://doi.org/10.3390/medicina57060604