Scientific Research Directions on the Histopathology and Immunohistochemistry of the Cutaneous Squamous Cell Carcinoma: A Scientometric Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Cluster Classifications
5. Density of the Research Tendency Based on Used Keywords in the Selected Articles
6. Keyword Dynamics
7. Density of Citations in the WoS of the Selected Articles
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elder, D.E.; Massi, D.; Scolyer, R.A.; Willemze, R.; Cancer, L.; Al, E. WHO Classification of Skin Tumours; International Agency for Research on Cancer: Lyon, France, 2018; ISBN 9789283224402. [Google Scholar]
- Caruntu, A.; Moraru, L.; Lupu, M.; Ciubotaru, D.A.; Dumitrescu, M.; Eftimie, L.; Hertzog, R.; Zurac, S.; Caruntu, C.; Voinea, O.C. Assessment of Histological Features in Squamous Cell Carcinoma Involving Head and Neck Skin and Mucosa. J. Clin. Med. 2021, 10, 2343. [Google Scholar] [CrossRef] [PubMed]
- Bucătaru, C.; Săvescu, D.; Repanovici, A.; Blaga, L.; Coman, E.; Cocuz, M.-E. The Implications and Effects of Medical Waste on Development of Sustainable Society—A Brief Review of the Literature. Sustainability 2021, 13, 3300. [Google Scholar] [CrossRef]
- Pantea, I.; Repanovici, A.; Cocuz, M.E. Analysis of Research Directions on the Rehabilitation of Patients with Stroke and Diabetes Using Scientometric Methods. Healthcare 2022, 10, 773. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Masnadjam, M.; Azizi, A.; Zavattaro, E.; Khazaei, S.; Sadeghi, M. Evaluation of C-Kit (CD117) Expression in Patients with Squamous Cell Carcinoma (SCC) and Basal Cell Carcinoma (BCC) of the Skin. Aims Mol. Sci. 2021, 8, 51–59. [Google Scholar] [CrossRef]
- Vuletic, M.; Jancic, S.; Milenkovic, S.; Paunovic, M.; Milicic, B.; Jancic, N.; Perunicic, B.; Slovic, Z. Clinical -Pathological Significance of Leptin Receptor (LEPR) Expression in Squamous Cell Carcinoma of the Skin. Pathol. Res. Pract. 2020, 216, 153111. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.C.; Nóbrega, V.C.; Marques, M.E.A. Lymphoepithelioma-like Carcinoma of the Skin. An. Bras. Dermatol. 2018, 93, 256–258. [Google Scholar] [CrossRef] [Green Version]
- Ling, B.; Yao, M.; Li, G.; Liu, J.; Liu, B.; Wang, W.; Jiang, B. Clinical Significance of Ring Finger Protein 2 High Expression in Skin Squamous Cell Carcinoma. Oncol. Lett. 2020, 20, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.L.; Suarez-Bonnet, A.; Mitchell, J.A.; Ramirez, G.A.; Stidworthy, M.F.; Priestnall, S.L. Avian Papilloma and Squamous Cell Carcinoma: A Histopathological, Immunohistochemical and Virological Study. J. Comp. Pathol. 2020, 175, 13–23. [Google Scholar] [CrossRef]
- Qi, J.; Hu, Z.; Xiao, H.; Liu, R.; Guo, W.; Yang, Z.; Ma, K.; Su, S.; Tang, P.; Zhou, X.; et al. SOX10-A Novel Marker for the Differential Diagnosis of Breast Metaplastic Squamous Cell Carcinoma. Cancer Manag. Res. 2020, 12, 4039–4044. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, P.; Wang, X.; Shi, L.; Fan, Z.; Zhang, G.; Yang, D.; Bahavar, C.F.; Zhou, F.; Chen, W.R.; et al. Antitumor Effects of DC Vaccine with ALA-PDT-Induced Immunogenic Apoptotic Cells for Skin Squamous Cell Carcinoma Mice. Technol. Cancer Res. Treat. 2018, 17. [Google Scholar] [CrossRef] [PubMed]
- Tugrul, B.; Soylev, S.; Temiz, P.; Gencoglan, G. Investigation of Effect of Vitamin D Receptor, Calcium-Sensing Receptor and Beta-Catenin on Cutaneous Squamous Cell Carcinoma. Turk. J. Biochem. Turk Biyokim. Derg. 2020, 45, 91–98. [Google Scholar] [CrossRef]
- Matsushita, M.; Iwasaki, T.; Wardhani, L.O.; Kuwamoto, S.; Nonaka, D.; Nagata, K.; Kato, M.; Kitamura, Y.; Hayashi, K. Decreased H3K27me3 Expression Is Associated with Merkel Cell Polyomavirus-Negative Merkel Cell Carcinoma, Especially Combined with Cutaneous Squamous Cell Carcinoma. Anticancer Res. 2019, 39, 5573–5579. [Google Scholar] [CrossRef] [PubMed]
- Kakabadze, M.; Paresishvili, T.; Mardaleishvili, K.; Vadachkoria, Z.; Kipshidze, N.; Jangavadze, M.; Karalashvili, L.; Ghambashidze, K.; Chakhunashvili, D.; Kakabadze, Z. Local Drug Delivery System for the Treatment of Tongue Squamous Cell Carcinoma in Rats. Oncol. Lett. 2022, 23, 13. [Google Scholar] [CrossRef] [PubMed]
- Roper, E.; Lum, T.; Palme, C.E.; Ashford, B.; Ch’ng, S.; Ranson, M.; Boyer, M.; Clark, J.; Gupta, R. PD-L1 Expression Predicts Longer Disease Free Survival in High Risk Head and Neck Cutaneous Squamous Cell Carcinoma. Pathology 2017, 49, 499–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tervo, S.; Seppala, M.; Rautiainen, M.; Huhtala, H.; Salo, T.; Al-Samadi, A.; Kuopio, T.; Ahtiainen, M.; Tommola, S.; Paavonen, T.; et al. The Expression and Prognostic Relevance of Programmed Cell Death Protein 1 in Tongue Squamous Cell Carcinoma. Apmis 2020, 128, 626–636. [Google Scholar] [CrossRef]
- Farshchian, M.; Nissinen, L.; Siljamaki, E.; Riihila, P.; Piipponen, M.; Kivisaari, A.; Kallajoki, M.; Grenman, R.; Peltonen, J.; Peltonen, S.; et al. Tumor Cell-Specific AIM2 Regulates Growth and Invasion of Cutaneous Squamous Cell Carcinoma. Oncotarget 2017, 8, 45825–45836. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Bae, J.Y.; Zheng, Z.; Park, H.S.; Chung, K.Y.; Roh, M.R.; Jin, Z. Overexpression and Implications of Melanoma-Associated Antigen A12 in Pathogenesis of Human Cutaneous Squamous Cell Carcinoma. Anticancer Res. 2019, 39, 1849–1857. [Google Scholar] [CrossRef]
- Peng, P.; Xiao, Y.; Zhao, Z.; Sun, C.; Wu, D.; Chen, Y.; Zhang, L. Treatment beyond Progression with Chemo-Immunotherapy in an Advanced Esophageal Squamous Cell Carcinoma Patient: A Case Report. Transl. Cancer Res. 2021, 10, 4973–4978. [Google Scholar] [CrossRef]
- Wang, X.; Tao, C.; Yuan, C.; Ren, J.; Yang, M.; Ying, H. AQP3 Small Interfering RNA and PLD2 Small Interfering RNA Inhibit the Proliferation and Promote the Apoptosis of Squamous Cell Carcinoma. Mol. Med. Rep. 2017, 16, 1964–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakislova, N.; Alemany, L.; Clavero, O.; del Pino, M.; Saco, A.; Quiros, B.; Lloveras, B.; Alejo, M.; Halec, G.; Quint, W.; et al. Differentiated Vulvar Intraepithelial Neoplasia-like and Lichen Sclerosus-like Lesions in HPV-Associated Squamous Cell Carcinomas of the Vulva. Am. J. Surg. Pathol. 2018, 42, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Vanickova, L.; Guran, R.; Kollar, S.; Emri, G.; Krizkova, S.; Do, T.; Heger, Z.; Zitka, O.; Adam, V. Mass Spectrometric Imaging of Cysteine Rich Proteins in Human Skin. Int. J. Biol. Macromol. 2019, 125, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Maly, C.J.; Cumsky, H.J.L.; Costello, C.M.; Schmidt, J.E.; Butterfield, R.J.; Zhang, N.; DiCaudo, D.J.; Nelson, S.A.; Smith, M.L.; Ochoa, S.A.; et al. Prognostic Value of Inositol Polyphosphate-5-Phosphatase Expression in Recurrent and Metastatic Cutaneous Squamous Cell Carcinoma. J. Am. Acad. Dermatol. 2020, 82, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Sun, J.; Liu, Y.; Liu, D.; Du, L.; Wang, B.; Liu, W. Expression of RAD51 and Its Clinical Impact in Oral Squamous Cell Carcinoma. Anal. Cell. Pathol. 2020, 2020, 1827676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koletsa, T.; Petrakis, G.; Karayannopoulou, G.; Euvrard, S.; Kanitakis, J. MTOR Signalling Pathway-Protein Expression in Post-Transplant Cutaneous Squamous-Cell Carcinomas before and after Conversion to MTOR-Inhibitors. Anticancer Res. 2018, 38, 3319–3322. [Google Scholar] [CrossRef] [PubMed]
- Fortugno, P.; Condorelli, A.G.; Dellambra, E.; Guerra, L.; Cianfarani, F.; Tinaburri, L.; Proto, V.; Luca, D.; Passarelli, F.; Ricci, F.; et al. Multiple Skin Squamous Cell Carcinomas in Junctional Epidermolysis Bullosa due to Altered Laminin-332 Function. Int. J. Mol. Sci. 2020, 21, 1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.; Coltart, G.; Shapanis, A.; Healy, C.; Alabdulkareem, A.; Selvendran, S.; Theaker, J.; Sommerlad, M.; Rose-Zerilli, M.; Al-Shamkhani, A.; et al. CD8+CD103+Tissue-Resident Memory T Cells Convey Reduced Protective Immunity in Cutaneous Squamous Cell Carcinoma. J. Immunother. Cancer 2021, 9, e001807. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.F.; Weiss, V.L.; Jr, L.; Schmitz, J.E.; Ely, K.A. Determination of High-Risk HPV Status of Head and Neck Squamous Cell Carcinoma Using the Roche Cobas HPV Test on Cytologic Specimens and Acellular Supernatant Fluid. Cancer Cytopathol. 2020, 128, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Haase, C.; Lethaus, B.; Knuechel-Clarke, R.; Hoelzle, F.; Cassataro, A.; Braunschweig, T. Development of a Rapid Analysis Method for Bone Resection Margins for Oral Squamous Cell Carcinoma by Immunoblotting. Head Neck Pathol. 2018, 12, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Satgunaseelan, L.; Chia, N.; Suh, H.; Virk, S.; Ashford, B.; Lum, T.; Ranson, M.; Clark, J.; Gupta, R. P16 Expression in Cutaneous Squamous Cell Carcinoma of the Head and Neck Is Not Associated with Integration of High Risk HPV DNA or Prognosis. Pathology 2017, 49, 494–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Li, G.; Wang, D.; Sun, X.; Li, X. Cytokeratin Expression in Epidermal Stem Cells in Skin Adnexal Tumors. Oncol. Lett. 2019, 17, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, L.; Siljamaki, E.; Riihila, P.; Piipponen, M.; Farshchian, M.; Kivisaari, A.; Kallajoki, M.; Raiko, L.; Peltonen, J.; Peltonen, S.; et al. Expression of Claudin-11 by Tumor Cells in Cutaneous Squamous Cell Carcinoma Is Dependent on the Activity of P38 Delta. Exp. Dermatol. 2017, 26, 771–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Z.; Wu, K.; Qin, X.; Yuan, J.; Yan, M.; Zhang, J.; Wang, L.; Ji, T.; Cao, W.; Chen, W. A Novel Tumor Suppressor SPINK5 Serves as an Independent Prognostic Predictor for Patients with Head and Neck Squamous Cell Carcinoma. Cancer Manag. Res. 2020, 12, 4855–4869. [Google Scholar] [CrossRef] [PubMed]
- Wysong, A.; Newman, J.G.; Covington, K.R.; Kurley, S.J.; Ibrahim, S.F.; Farberg, A.S.; Bar, A.; Cleaver, N.J.; Somani, A.-K.; Panther, D.; et al. Validation of a 40-Gene Expression Profile Test to Predict Metastatic Risk in Localized High-Risk Cutaneous Squamous Cell Carcinoma. J. Am. Acad. Dermatol. 2021, 84, 361–369. [Google Scholar] [CrossRef]
- Ackermann, K.; Wallner, S.; Brochhausen, C.; Schreml, S. Expression Profiles of ASIC1/2 and TRPV1/4 in Common Skin Tumors. Int. J. Mol. Sci. 2021, 22, 6024. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, Y.; Huang, Y.; Xue, H.; Bai, S.; Zhu, J.; Xia, X.; Shen, B.; Fang, W. Effects of Insulin-like Growth Factor Binding Protein 3 on Apoptosis of Cutaneous Squamous Cell Carcinoma Cells. Oncotargets Ther. 2018, 11, 6569–6576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Cao, Y.; Wang, G.; Luo, Z. Expression of FOXC2, PinX1, Ki-67 and Cyclin D1 in Cutaneous Cell Carcinoma. Oncol. Lett. 2017, 14, 635–638. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, K.; Chen, Y.; Zhou, J.; Liang, Y.; Yang, X.; Li, X.; Cao, Y.; Wang, D.; Luo, L.; et al. Mutational Landscape of Penile Squamous Cell Carcinoma in a Chinese Population. Int. J. Cancer 2019, 145, 1280–1289. [Google Scholar] [CrossRef]
- Hu, M.; Tang, Y.; Long, G.; Zhang, D.; Kresak, J.L.; Lai, J. Primary Extracranial Meningioma of Mastoid in a Patient with History of Skin Squamous Cell Carcinoma, Lung Adenocarcinoma and Prostatic Carcinoma. Anticancer Res. 2019, 39, 3197–3201. [Google Scholar] [CrossRef] [PubMed]
- Huisman, B.W.; Cankat, M.; Bosse, T.; Vahrmeijer, A.L.; Rissmann, R.; Burggraaf, J.; Sier, C.F.M.; Poelgeest, M.I.E.V. Poelgeest Integrin Alpha v Beta 6 as a Target for Tumor-Specific Imaging of Vulvar Squamous Cell Carcinoma and Adjacent Premalignant Lesions. Cancers 2021, 13, 6006. [Google Scholar] [CrossRef]
- Alameda, J.P.; Garcia-Garcia, V.A.; Lopez, S.; Hernando, A.; Page, A.; Navarro, M.; Moreno-Maldonado, R.; Paramio, J.M.; Ramirez, A.; Garcia-Fernandez, R.A.; et al. CYLD Inhibits the Development of Skin Squamous Cell Tumors in Immunocompetent Mice. Int. J. Mol. Sci. 2021, 22, 6736. [Google Scholar] [CrossRef]
- Riihila, P.; Viiklepp, K.; Nissinen, L.; Farshchian, M.; Kallajoki, M.; Kivisaari, A.; Meri, S.; Peltonen, J.; Peltonen, S.; Kähäri, V.-M. Tumour-Cell-Derived Complement Components C1r and C1s Promote Growth of Cutaneous Squamous Cell Carcinoma. Br. J. Dermatol. 2020, 182, 658–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miola, A.C.; Castilho, M.A.; Schmitt, J.V.; Esther, M. Helio Amante Contribution to Characterization of Skin Field Cancerization Activity: Morphometric, Chromatin Texture, Proliferation, and Apoptosis Aspects. An. Bras. Dermatol. 2019, 94, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, Y.; Li, C.; Xu, S.; Li, M.; Liu, W.; Ma, Y.; Wang, H. The Expression and Prognostic Value of FGF2, FGFR3, and FGFBP1 in Esophageal Squamous Cell Carcinoma. Anal. Cell. Pathol. 2020, 2020, 2872479. [Google Scholar] [CrossRef] [PubMed]
- Gaitskell, K.; Nassar, S.; Ibrahim, H. Merkel Cell Carcinoma with Divergent Differentiation. Clin. Exp. Dermatol. 2020, 45, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Javor, S.; Gasparini, G.; Biatta, C.M.; Cozzani, E.; Cabiddu, F.; Ravetti, J.L.; Vellone, V.G.; Parodi, A. P53 Staining Index and Zonal Staining Patterns in Actinic Keratoses. Arch. Dermatol. Res. 2021, 313, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Takashima, Y.; Murakami, T.; Inoue, T.; Hagiyama, M.; Yoneshige, A.; Nishimura, S.; Akagi, M.; Ito, A. Manifestation of Osteoblastic Phenotypes in the Sarcomatous Component of Epithelial Carcinoma and Sarcomatoid Carcinoma. Tumor Biol. 2017, 39. [Google Scholar] [CrossRef] [Green Version]
- Tamura, R.; Yoshihara, K.; Nakaoka, H.; Yachida, N.; Yamaguchi, M.; Suda, K.; Ishiguro, T.; Nishino, K.; Ichikawa, H.; Homma, K.; et al. XCL1 Expression Correlates with CD8-Positive T Cells Infiltration and PD-L1 Expression in Squamous Cell Carcinoma Arising from Mature Cystic Teratoma of the Ovary. Oncogene 2020, 39, 3541–3554. [Google Scholar] [CrossRef] [Green Version]
- Caley, M.P.; Martins, V.L.; Moore, K.; Lashari, M.; Nissinen, L.; Kahari, V.-M.; Alexander, S.; Jones, E.; Harwood, C.A.; Jones, J.; et al. Loss of the Laminin Subunit Alpha-3 Induces Cell Invasion and Macrophage Infiltration in Cutaneous Squamous Cell Carcinoma. Br. J. Dermatol. 2021, 184, 923–934. [Google Scholar] [CrossRef]
- Yu, L.; Liu, J.; Zhang, T.-D.; Zheng, X.-F.; Luo, D.-L.; Zhu, W.-L.; Qiu, X.-W.; Guo, L.-L. Decreased TMEM40 Expression Is Associated with Malignant Behavior of Cutaneous Squamous Cell Carcinoma and Inhibits Tumor Progression. Oncol. Lett. 2021, 22, 606. [Google Scholar] [CrossRef]
- Guerrero-Aspizua, S.; Gonzalez-Masa, A.; Conti, C.J.; Garcia, M.; Chacon-Solano, E.; Larcher, F. Rio Humanization of Tumor Stroma by Tissue Engineering as a Tool to Improve Squamous Cell Carcinoma Xenograft. Int. J. Mol. Sci. 2020, 21, 1951. [Google Scholar] [CrossRef]
- Harms, P.W.; Verhaegen, M.E.; Hu, K.; Hrycaj, S.M.; Chan, M.P.; Liu, C.-J.; Grachtchouk, M.; Patel, R.M.; Udager, A.M.; Dlugosz, A.A. Genomic Evidence Suggests That Cutaneous Neuroendocrine Carcinomas Can Arise from Squamous Dysplastic Precursors. Mod. Pathol. 2022, 35, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ruiz, E.; Toll, A.; Garcia-Diez, I.; Andrades, E.; Ferrandiz-Pulido, C.; Masferrer, E.; Yebenes, M.; Jaka, A.; Gimeno, J.; Gimeno, R.; et al. The Polycomb Proteins RING1B and EZH2 Repress the Tumoral Pro-Inflammatory Function in Metastasizing Primary Cutaneous Squamous Cell Carcinoma. Carcinogenesis 2018, 39, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kim, J.-H.; Han, J.H.; Cho, N.H.; Kim, S.J.; Kim, S.I.; Choo, S.H.; Kim, J.S.; Park, B.; Kwon, J.E. TERT Promoter Mutations in Penile Squamous Cell Carcinoma: High Frequency in Non-HPV-Related Type and Association with Favorable Clinicopathologic Features. J. Cancer Res. Clin. Oncol. 2021, 147, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Ballah, T.; Nottage, M.; Hay, K.; Chua, B.; Kenny, L.; Thomas, P.; Teng, M.; Keller, J.; Le, T.; et al. A Prospective Study Investigating the Efficacy and Toxicity of Definitive ChemoRadiation and ImmunOtherapy (CRIO) in Locally And/or Regionally Advanced Unresectable Cutaneous Squamous Cell Carcinoma. Radiat. Oncol. 2021, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Guimera, N.; Alemany, L.; Halec, G.; Pawlita, M.; Wain, G.V.; Santos, J.; Azike, J.E.; Jenkins, D.; de Sanjose, S.; Quint, W.; et al. Human Papillomavirus 16 Is an Aetiological Factor of Scrotal Cancer. Br. J. Cancer 2017, 116, 1218–1222. [Google Scholar] [CrossRef]
- Chang, C.-T.; Soo, W.-N.; Chen, Y.-H.; Shyur, L.-F. Essential Oil of Mentha Aquatica Var. Kenting Water Mint Suppresses Two-Stage Skin Carcinogenesis Accelerated by BRAF Inhibitor Vemurafenib. Molecules 2019, 24, 2344. [Google Scholar] [CrossRef] [Green Version]
- Kok, M.K.; Chambers, J.K.; Ong, S.M.; Nakayama, H.; Uchida, K. Hierarchical Cluster Analysis of Cytokeratins and Stem Cell Expression Profiles of Canine Cutaneous Epithelial Tumors. Vet. Pathol. 2018, 55, 821–837. [Google Scholar] [CrossRef]
- Ghiciuc, C.M.; Strat, A.L.; Ochiuz, L.; Lupusoru, C.E.; Ignat, M.; Vasile, A.; Grigorovici, A.; Stoleriu, I.; Solcan, C.I. Inhibition of Bcl-2 and Cox-2 Protein Expression after Local Application of a New Carmustine-Loaded Clinoptilolite-Based Delivery System in a Chemically Induced Skin Cancer Model in Mice. Molecules 2017, 22, 2014. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.A.; Ryu, Y.W.; Kwon, J.I.; Choe, M.S.; Jung, J.W.; Cho, J.W. Differential Expression of Cyclin D1, Ki-67, PRb, and P53 in Psoriatic Skin Lesions and Normal Skin. Mol. Med. Rep. 2018, 17, 735–742. [Google Scholar] [CrossRef] [Green Version]
- Rita, T.; Tizuko, C.; Cardili, L.; Ribeiro, D.A.; Silva, M.S.; Korinfsky, J.P.; Plapler, H. The Role of Dimethoate and UV-B on Skin of Wistar Rats. Anticancer Res. 2019, 39, 5179–5184. [Google Scholar] [CrossRef]
- Peng, W.; Bruijn, H.S.D.; Hagen, T.L.M.T.; Dam, G.M.V.; Roodenburg, J.L.N.; Berg, K.; Witjes, M.J.H.; Robinson, D.J. Targeted Photodynamic Therapy of Human Head and Neck Squamous Cell Carcinoma with Anti-Epidermal Growth Factor Receptor Antibody Cetuximab and Photosensitizer IR700DX in the Mouse Skin-Fold Window Chamber Model. Photochem. Photobiol. 2020, 96, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Brenn, T. Soft Tissue Special Issue: Cutaneous Pleomorphic Spindle Cell Tumors. Head Neck Pathol. 2020, 14, 109–120. [Google Scholar] [CrossRef]
- Menz, A.; Bauer, R.; Kluth, M.; Marie, C.; Gorbokon, N.; Viehweger, F.; Lennartz, M.; Volkl, C.; Fraune, C.; Uhlig, R.; et al. Diagnostic and Prognostic Impact of Cytokeratin 19 Expression Analysis in Human Tumors: A Tissue Microarray Study of 13,172 Tumors. Hum. Pathol. 2021, 115, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, K.H.; Lee, G.K.; Lee, S.-H.; Lim, K.Y.; Joo, J.; Go, Y.J.; Lee, J.S.; Han, J.-Y. Randomized Phase II Study of Afatinib plus Simvastatin versus Afatinib Alone in Previously Treated Patients with Advanced Nonadenocarcinomatous Non-Small Cell Lung Cancer. Cancer Res. Treat. 2017, 49, 1001–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, D.; Bai, Y.; Yao, Q.; Hou, W.; Zhou, L.; Huang, X.; Zhao, C. Expression and Significance of AQP3 in Cutaneous Lesions. Anal. Cell. Pathol. 2021, 2021, 7866471. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari, M.A.; Karimi, A.; Kalantari, E.; Korourian, A.; Ghanadan, A.; Kamyab, K.; Esmaili, N.; Razavi, A.N.E.; Madjd, Z. A Comparative Study of Long Interspersed Element-1 Protein Immunoreactivity in Cutaneous Malignancies. BMC Cancer 2020, 20, 567. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-F.; Shen, D.-F.; Zhao, S.; Ren, T.-R.; Gao, Y.; Shi, S.; Wu, J.-C.; Sun, H.-Z.; Zheng, H.-C. Expression Pattern and Level of ING5 Protein in Normal and Cancer Tissues. Oncol. Lett. 2019, 17, 63–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabata, S.; Murata, M.; Takasawa, A.; Fukuda, A.; Ogasawara, J.; Koseki, T.; Nakano, K.; Segawa, K.; Morita, R.; Hasegawa, T.; et al. Cytological Findings of Langerhans Cell Sarcoma in a Case of Quintuple Cancer. Diagn. Cytopathol. 2017, 45, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Gou, W.-F.; Yang, X.-F.; Shen, D.-F.; Zhao, S.; Sun, H.-Z.; Luo, J.-S.; Zheng, H.-C. Immunohistochemical Profile of ING3 Protein in Normal and Cancerous Tissues. Oncol. Lett. 2017, 13, 1631–1636. [Google Scholar] [CrossRef] [Green Version]
- Singer, K.; Dettmer, K.; Unger, P.; Schoenhammer, G.; Renner, K.; Peter, K.; Siska, P.J.; Bemeburg, M.; Herr, W.; Oefner, P.J.; et al. Topical Diclofenac Reprograms Metabolism and Immune Cell Infiltration in Actinic Keratosis. Front. Oncol. 2019, 9, 605. [Google Scholar] [CrossRef]
- Li, X.-J.; Liu, P.; Tian, W.-W.; Li, Z.-F.; Liu, B.-G.; Sun, J.-F. Mechanisms of CXCR7 Induction in Malignant Melanoma Development. Oncol. Lett. 2017, 14, 4106–4114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Zheng, H.-C. MRNA and Protein of P33ING1 in Normal and Cancer Tissues. Transl. Cancer Res. 2020, 9, 3623–3633. [Google Scholar] [CrossRef]
- Baumgartner, E.; Ullman, D.; Jones, J.A.; Fasciano, D.; Atherton, D.S.; Pavlidakey, P.; Peker, D. Postradiation Histiocytic Sarcoma in the Setting of Muir-Torre Syndrome. Case Rep. Pathol. 2018, 2018, 5947870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, E.; Funahashi, S.; Taniguchi, K.; Kawai, S.; Nakano, K.; Kato, A.; Suzuki, M. Tissue-Specific Effects of an Anti-Desmoglein-3 ADCC Antibody due to Expression of the Target Antigen and Physiological Characteristics of the Mouse Vagina. J. Toxicol. Pathol. 2020, 33, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazi, N.; Saghravanian, N.; Ghazi, A.; Shakeri, M.T.; Khajehbahrami, H. CD44 Expression in Dysplastic and Non-Dysplastic Oral Lichen Planus. Int. J. Cancer Manag. 2020, 13, e98061. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, D.-L. Detection of P53 and Bcl-2 Expression in Cutaneous Hemangioma through the Quantum Dot Technique. Oncol. Lett. 2017, 13, 2937–2944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollmann, D.; Ignatova, D.; Jedamzik, J.; Chang, Y.-T.; Jomrich, G.; Baierl, A.; Kazakov, D.; Michal, M.; French, L.E.; Hoetzenecker, W.; et al. PD-L1 Expression Is an Independent Predictor of Favorable Outcome in Patients with Localized Esophageal Adenocarcinoma. Oncoimmunology 2018, 7, e1435226. [Google Scholar] [CrossRef] [PubMed]
- Langton, A.K.; Ayer, J.; Griffiths, T.W.; Rashdan, E.; Naidoo, K.; Caley, M.P.; Birch-Machin, M.A.; O’Toole, E.A.; Watson, R.E.B.; Griffiths, C.E.M. Distinctive Clinical and Histological Characteristics of Atrophic and Hypertrophic Facial Photoageing. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 762–768. [Google Scholar] [CrossRef]
- Apprich, V.; Licka, T.; Freiler, S.; Gabriel, C. Equine Hoof Canker: Bovine Papillomavirus Infection Is Not Associated with Impaired Keratinocyte Differentiation. Vet. Pathol. 2020, 57, 525–534. [Google Scholar] [CrossRef] [PubMed]
- VOSviewer—Visualizing Scientific Landscapes. Available online: https://www.vosviewer.com/ (accessed on 13 August 2022).
- Fania, L.; Didona, D.; Di Pietro, F.R.; Verkhovskaia, S.; Morese, R.; Paolino, G.; Donati, M.; Ricci, F.; Coco, V.; Ricci, F.; et al. Cutaneous Squamous Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021, 9, 171. [Google Scholar] [CrossRef]
Occurrences | Total Link Strength | ||
---|---|---|---|
Mean | 3.168831169 | Mean | 15.896104 |
Standard Error | 0.278779317 | Standard Error | 1.3938377 |
Median | 2 | Median | 14 |
Mode | 2 | Mode | 14 |
Standard Deviation | 2.446278578 | Standard Deviation | 12.230876 |
Sample Variance | 5.984278879 | Sample Variance | 149.59433 |
Kurtosis | 10.69472948 | Kurtosis | 8.201615 |
Skewness | 3.226291027 | Skewness | 2.6771373 |
Range | 12 | Range | 66 |
Minimum | 2 | Minimum | 3 |
Maximum | 14 | Maximum | 69 |
Sum | 244 | Sum | 1224 |
Count | 77 | Count | 77 |
Confidence Level (95.0%) | 0.55523713 | Confidence Level (95.0%) | 2.7760683 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocuz, I.G.; Cocuz, M.E.; Repanovici, A.; Sabău, A.-H.; Niculescu, R.; Tinca, A.-C.; Vunvulea, V.; Budin, C.E.; Szoke, A.R.; Popelea, M.C.; et al. Scientific Research Directions on the Histopathology and Immunohistochemistry of the Cutaneous Squamous Cell Carcinoma: A Scientometric Study. Medicina 2022, 58, 1449. https://doi.org/10.3390/medicina58101449
Cocuz IG, Cocuz ME, Repanovici A, Sabău A-H, Niculescu R, Tinca A-C, Vunvulea V, Budin CE, Szoke AR, Popelea MC, et al. Scientific Research Directions on the Histopathology and Immunohistochemistry of the Cutaneous Squamous Cell Carcinoma: A Scientometric Study. Medicina. 2022; 58(10):1449. https://doi.org/10.3390/medicina58101449
Chicago/Turabian StyleCocuz, Iuliu Gabriel, Maria Elena Cocuz, Angela Repanovici, Adrian-Horațiu Sabău, Raluca Niculescu, Andreea-Cătălina Tinca, Vlad Vunvulea, Corina Eugenia Budin, Andreea Raluca Szoke, Maria Cătălina Popelea, and et al. 2022. "Scientific Research Directions on the Histopathology and Immunohistochemistry of the Cutaneous Squamous Cell Carcinoma: A Scientometric Study" Medicina 58, no. 10: 1449. https://doi.org/10.3390/medicina58101449
APA StyleCocuz, I. G., Cocuz, M. E., Repanovici, A., Sabău, A. -H., Niculescu, R., Tinca, A. -C., Vunvulea, V., Budin, C. E., Szoke, A. R., Popelea, M. C., Moraru, R., Cotoi, T. C., & Cotoi, O. S. (2022). Scientific Research Directions on the Histopathology and Immunohistochemistry of the Cutaneous Squamous Cell Carcinoma: A Scientometric Study. Medicina, 58(10), 1449. https://doi.org/10.3390/medicina58101449