The Sex Difference in 6-h Ultra-Marathon Running—The Worldwide Trends from 1982 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Data
2.3. Statistical Analysis
3. Results
3.1. Participation by Year and Country
3.2. The Age of Peak Performance
3.3. Performance by Country for Women
3.4. Performance by Country for Men
4. Discussion
4.1. Increase in Female and Male Participation across Years
4.2. Most Participants Originated from Germany
4.3. A Higher Age in Male Compared to Female Runners
4.4. The Fastest Women Were from Russia and the Fastest Men from Tunisia
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheer, V.; Basset, P.; Giovanelli, N.; Vernillo, G.; Millet, G.P.; Costa, R.J.S. Defining Off-road Running: A Position Statement from the Ultra Sports Science Foundation. Int. J. Sports Med. 2020, 41, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Scheer, V. Participation trends of ultra endurance events. Sports Med. Arthrosc. Rev. 2019, 27, 3–7. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, E.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Different predictor variables for women and men in ultra-marathon running—the wellington urban ultramarathon 2018. Int. J. Environ. Res. Public Health 2019, 16, 1844. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Rosemann, T.; Knechtle, P.; Lepers, R. Predictor variables for a 100-km race time in male ultra-marathoners. Percept. Mot. Ski. 2010, 111, 681–693. [Google Scholar] [CrossRef]
- Rust, C.A.; Knechtle, B.; Knechtle, P.; Barandun, U.; Lepers, R.; Rosemann, T. Predictor variables for a half marathon race time in recreational male runners. Open Access J. Sports Med. 2011, 2, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Romer, T.; Rüst, C.; Zingg, M.; Rosemann, T.; Knechtle, B. Age and ultra-marathon performance-50 to 1000 km distances from 1969–2012. Springerplus 2014, 3, 693. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, M.D.; Krishnan, E. Exercise behavior of ultramarathon runners: Baseline findings from the ultra study. J. Strength Cond. Res. 2013, 27, 2939–2945. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Fogard, K. Demographic characteristics of 161-km ultramarathon runners. Res. Sport Med. 2012, 20, 59–69. [Google Scholar] [CrossRef]
- Zingg, M.A.; Knechtle, B.; Rüst, C.A.; Rosemann, T.; Lepers, R. Analysis of participation and performance in athletes by age group in ultramarathons of more than 200 km in length. Int. J. Gen. Med. 2013, 6, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Cejka, N.; Rüst, C.A.; Lepers, R.; Onywera, V.; Rosemann, T.; Knechtle, B. Participation and performance trends in 100-km ultra-marathons worldwide. J. Sports Sci. 2014, 32, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, P.T.; Onywera, V.O.; Knechtle, B. Running performance, nationality, sex, and age in the 10-km, half-marathon marathon, and the 100-km ultramarathon IAAF 1999–2015. J. Strength Cond. Res. 2017, 31, 2189–2207. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, A.; Nikolaidi, P.T.; Villiger, E.; Sousa, C.V.; Scheer, V.; Hill, L.; Knechtle, B. An analysis of participation and performance of 2067 100-km ultra-marathons worldwide. Int. J. Environ. Res. Public Health 2021, 18, 362. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D.; Ong, J.C.; Wang, G. Historical analysis of participation in 161 km ultramarathons in North America. Int. J. Hist. Sport 2010, 27, 1877–1891. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D. Performance trends in 161-km ultramarathons. Int. J. Sports Med. 2010, 31, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Krouse, R.Z.; Ransdell, L.B.; Lucas, S.M.; Pritchard, M.E. Motivation, goal orientation, coaching, and training habits of women ultrarunners. J. Strength Cond. Res. 2011, 25, 2835–2842. [Google Scholar] [CrossRef]
- Knechtle, B.; Scheer, V.; Nikolaidis, P.T.; Sousa, C.V. Participation and performance trends in the oldest 100-km ultramarathon in the world. Int. J. Environ. Res. Public Health 2020, 17, 1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: www.ultra-marathon.org/ (accessed on 14 January 2022).
- Knechtle, B.; Valeri, F.; Zingg, M.A.; Rosemann, T.; Rüst, C.A. What is the age for the fastest ultra-marathon performance in time-limited races from 6 h to 10 days? Age 2014, 36, 9715. [Google Scholar] [CrossRef] [Green Version]
- Rüst, C.A.; Zingg, M.A.; Rosemann, T.; Knechtle, B. Will the age of peak ultra-marathon performance increase with increasing race duration? BMC Sports Sci. Med. Rehabil. 2014, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Scheer, V.; Di Gangi, S.; Villiger, E.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Participation and performance analysis in children and adolescents competing in time-limited ultra- endurance running events. Int. J. Environ. Res. Public Health 2020, 17, 1628. [Google Scholar] [CrossRef] [Green Version]
- Knechtle, B.; Nikolaidis, P.T.; Valeri, F. Russians are the fastest 100-km ultra-marathoners in the world. PLoS ONE 2018, 13, e0199701. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, P.T.; Knechtle, B. Russians are the fastest and the youngest in the ’Comrades Marathon’. J. Sports Sci. 2019, 37, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Knechtle, B.; Gomes, M.; Scheer, V.; Gajda, R.; Nikolaidis, P.T.; Hill, L.; Rosemann, T.; Sousa, C.V. From athens to sparta—37 years of spartathlon. Int. J. Environ. Res. Public Health 2021, 18, 4914. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://statistik.d-u-v.org/geteventlist.php (accessed on 14 January 2022).
- Perez, A.J.; Marques, A.; Gomes, K.B. Performance analysis of both sex marathon runners ranked by IAAF. Rev. Bras. Cineantropom. Desempenho Hum. 2018, 20, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Thuany, M.; Gomes, T.N.; Rosemann, T.; Knechtle, B.; de-Souza, R.F. No trends in the age of peak performance among the best Half-marathoners and marathoners in the world between 1997–2020. Medicina 2021, 57, 409. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, K.A. Peak Performance and Age: An Examination of Peak Performance in Sports; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: Global Edition, 7th ed.; Pearson: Pretice Hall, NJ, USA, 2009. [Google Scholar]
- Pauline, G. Women’s participation in endurance events: An example of how far we have come. J. Phys. Educ. Recreat. Danc. 2013, 85, 4–6. [Google Scholar] [CrossRef]
- Scheer, V.; Valero, D.; Villiger, E.; Rosemann, T.; Knechtle, B. The impact of the COVID-19 pandemic on endurance and ultra-endurance running. Medicina 2021, 57, 52. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Wegelin, J.A. The western states 100-mile endurance run: Participation and performance trends. Med. Sci. Sport Exerc. 2009, 41, 2191–2198. [Google Scholar] [CrossRef] [Green Version]
- Scheer, V.; Hoffman, M. Too much too early? An analysis of worldwide childhood ultramarathon participation and attrition in adulthood. J. Sports Med. Phys. Fit. 2019, 59, 1363–1368. [Google Scholar] [CrossRef]
- Scheer, V.; Hoffman, M. Should children be running ultramarathons? Curr. Sports Med. Rep. 2018, 17, 282–283. [Google Scholar] [CrossRef]
- da Fonseca-Engelhardt, K.; Knechtle, B.; Rüst, C.A.; Knechtle, P.; Lepers, R.; Rosemann, T. Participation and performance trends in ultra-endurance running races under extreme conditions-’Spartathlon’ versus ’Badwater’. Extrem. Physiol. Med. 2013, 2, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoth, C.; Knechtle, B.; Rüst, C.A.; Rosemann, T.; Lepers, R. Participation and performance trends in multistage ultramarathons-the ‘Marathon des Sables’ 2003-2012. Extrem. Physiol. Med. 2012, 1, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentin, S.; Pham, L.A.; Macrae, E. Enablers and barriers in ultra-running: A comparison of male and female ultra-runners. Sport Soc. 2021. [Google Scholar] [CrossRef]
- Available online: https://runrepeat.com/state-of-ultra-running (accessed on 14 January 2022).
- Gerosa, D.; Alexander Rüst, C.; Rosemann, T.; Knechtle, B. Participation and performance trends in 161km ultra-marathons in terms of nationality—A retrospective data analysis of worldwide participation from 1998–2011. JHSE 2014, 9, 592–615. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Sex differences in the age of peak marathon race time. Chin. J. Physiol. 2018, 61, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, H. Age and Achievement; Princeton University Press: Princeton, NJ, USA, 1953. [Google Scholar]
- Reaburn, P.; Dascombe, B. Endurance performance in masters athletes. Eur. Rev. Aging Phys. Act. 2008, 5, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Willy, R.W.; Paquette, M.R. The physiology and biomechanics of the master runner. Sports Med. Arthrosc. Rev. 2019, 27, 15–21. [Google Scholar] [CrossRef]
- Lee, E.J.; Snyder, E.M.; Lundstrom, C.J. Predictors of long-distance race performance in master runners. J. Hum. Sport Exerc. 2020, 15, 355–366. [Google Scholar] [CrossRef]
- Baker, A.B.; Tang, Y.Q.; Turner, M.J. Percentage decline in masters superathlete track and field performance with aging. Exp. Aging Res. 2003, 29, 47–65. [Google Scholar] [CrossRef]
- Tanaka, H.; Seals, D.R. Invited Review: Dynamic exercise performance in Masters athletes: Insight into the effects of primary human aging on physiological functional capacity. J. Appl. Physiol. 2003, 95, 2152–2162. [Google Scholar] [CrossRef]
- Pimentel, A.E.; Gentile, C.L.; Tanaka, H.; Seals, D.R.; Gates, P.E. Greater rate of decline in maximal aerobic capacity with age in endurance-trained than in sedentary men. J. Appl. Physiol. 2003, 94, 2406–2413. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Seals, D.R. Endurance exercise performance in Masters athletes: Age-associated changes and underlying physiological mechanisms. J. Physiol. 2008, 586, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Spina, R.J.; Martin Iii, W.H.; Kohrt, W.M.; Schechtman, K.B.; Holloszy, J.O.; Ehsani, A.A. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 1992, 86, 494–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, A.M.; Pels Iii, A.E.; Sady, S.P.; Sady, M.A.; Cullinane, E.M.; Thompson, P.D. Physiological factors associated with the lower maximal oxygen consumption of master runners. J. Appl. Physiol. 1989, 66, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F. Integration of the physiological factors determining endurance performance ability. Sport Sci. Rev. 1995, 23, 25–63. [Google Scholar] [CrossRef]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sport Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Nicholson, R.M.; Sleivert, G.G. Indices of lactate threshold and their relationship with 10-km running velocity. Med. Sci. Sport Exerc. 2001, 33, 339–342. [Google Scholar] [CrossRef]
- Iwaoka, K.; Fuchi, T.; Higuchi, M.; Kobayashi, S. Blood lactate accumulation during exercise in older endurance runners. Int. J. Sports Med. 1988, 9, 253–256. [Google Scholar] [CrossRef]
- Tanaka, K.; Takeshima, N.; Kato, T.; Niihata, S.; Ueda, K. Critical determinants of endurance performance in middle-aged and elderly endurance runners with heterogeneous training habits. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 59, 443–449. [Google Scholar] [CrossRef]
- Evans, S.L.; Davy, K.P.; Stevenson, E.T.; Seals, D.R. Physiological determinants of 10-km performance in highly trained female runners of different ages. J. Appl. Physiol. 1995, 78, 1931–1941. [Google Scholar] [CrossRef]
- Wiswell, R.A.; Hawkins, S.A.; Jaque, V.; Hyslop, D.; Constantino, N.; Tarpenning, K.; Marcell, T.; Schroeder, T.E. Relationship between physiological loss, performance decrement, and age in master athletes. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2001, 56, M618–M626. [Google Scholar] [CrossRef] [Green Version]
- Allen, W.K.; Seals, D.R.; Hurley, B.F.; Ehsani, A.A.; Hagberg, J.M. Lactate threshold and distance-running performance in young and older endurance athletes. J. Appl. Physiol. 1985, 58, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Wiswell, R.A.; Jaque, S.V.; Marcell, T.J.; Hawkins, S.A.; Tarpenning, K.M.; Constantino, N.; Hyslop, D.M. Maximal aerobic power, lactate threshold, and running performance in master athletes. Med. Sci. Sport Exerc. 2000, 32, 1165–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzel, L.I.; Sorkin, J.D.; Fleg, J.L. A comparison of longitudinal changes in aerobic fitness in older endurance athletes and sedentary men. J. Am. Geriatr. Soc. 2001, 49, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Trappe, S.W.; Costill, D.L.; Vukovich, M.D.; Jones, J.; Melham, T. Aging among elite distance runners: A 22-yr longitudinal study. J. Appl. Physiol. 1996, 80, 285–290. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; Macdonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef]
- Knechtle, B.; Rosemann, T.; Nikolaidis, P.T. The role of nationality in ultra-endurance sports: The paradigm of cross-country skiing and long-distance running. Int. J. Environ. Res. Public Health 2020, 17, 2543. [Google Scholar] [CrossRef] [Green Version]
- Zingg, M.A.; Rüst, C.A.; Rosemann, T.; Lepers, R.; Knechtle, B. Analysis of swimming performance in FINA World Cup long-distance open water races. Extrem. Physiol. Med. 2014, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, P.T.; Di Gangi, S.; Chtourou, H.; Rüst, C.A.; Rosemann, T.; Knechtle, B. The role of environmental conditions on marathon running performance in men competing in boston marathon from 1897 to 2018. J. Environ. Res. Public Health 2019, 16, 614. [Google Scholar] [CrossRef] [Green Version]
- Daoud, A. La Révolution Tunisienne de Janvier 2011: Une Lecture par Les Déséquilibres du Territoire. EchoGéo 2011. Available online: http://journals.openedition.org/echogeo/12612 (accessed on 14 January 2022). [CrossRef] [Green Version]
- Chtourou, H.; Université de Sfax, Sfax, Tunisia. Personal Communication, 2021.
- Available online: https://raceraves.com/races/sfax-international-marathon-of-olive-trees (accessed on 14 January 2022).
- Available online: https://marathons.ahotu.com/calendar/tunisia (accessed on 14 January 2022).
- Available online: www.ultramirage.com (accessed on 14 January 2022).
- Available online: www.zitoway.com (accessed on 14 January 2022).
- Gajda, R.; Klisiewicz, A.; Matsibora, V.; Piotrowska-Kownacka, D.; Biernacka, E.K. Heart of the world’s top ultramarathon runner—not necessarily much different from normal. Diagnostics 2020, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Gajda, R.; Samełko, A.; Czuba, M.; Piotrowska-Nowak, A.; Tońska, K.; Żekanowski, C.; Klisiewicz, A.; Drygas, W.; Gębska-Kuczerowska, A.; Gajda, J.; et al. To be a champion of the 24-h ultramarathon race. If not the heart … mosaic theory? Int. J. Environ. Res. Public Health 2021, 18, 2371. [Google Scholar] [CrossRef] [PubMed]
- Gajda, R.; Walasek, P.; Jarmuszewski, M. Right knee—the weakest point of the best ultramarathon runners of the world? A case study. Int. J. Environ. Res. Public Health 2020, 17, 5955. [Google Scholar] [CrossRef] [PubMed]
β | p-Value | Frequency (%) | Age (Years) | Distance (km) | Running Speed (km/h) | |
---|---|---|---|---|---|---|
Mean (Std) | Mean (Std) | Mean (Std) | ||||
Russia | Reference | Reference | 452 (1.95%) | 38.89 (6.19) | 60.06 (7.71) | 10.01 (1.28) |
Cyprus | −0.05736 | 0.93958 | 2 (0.01%) | 34 (2.83) | 57.11 (6.13) | 9.93 (0.68) |
Ukraine | −0.39729 | 0.02272 * | 42 (0.18%) | 40.32 (11.16) | 56.71 (7.66) | 9.86 (2.14) |
Island | −0.32848 | 0.31361 | 11 (0.05%) | 33.18 (5.53) | 58.35 (3.86) | 9.72 (0.64) |
Belgium | −0.1956 | 0.01131 * | 339 (1.46%) | 44.58 (7.5) | 58.2 (7.45) | 9.7 (1.24) |
Monaco | −0.05927 | 0.95578 | 1 (0%) | 41 | 58.15 | 9.69 |
Albania | −0.09429 | 0.81674 | 7 (0.03%) | 43.86 (1.07) | 57.78 (6.17) | 9.63 (1.03) |
Denmark | −0.1359 | 0.05213 | 615 (2.65%) | 43.11 (8.17) | 53.69 (6.31) | 9.58 (1.16) |
Poland | −0.16411 | 0.20192 | 98 (0.42%) | 38.15 (7.71) | 57.27 (8.43) | 9.55 (1.4) |
Croatia | −0.24846 | 0.16918 | 43 (0.19%) | 35.13 (7.78) | 50.11 (4.49) | 9.52 (1.02) |
Constant | 52.8911 | <0.001 * | - | - | - | - |
Age | 0.10452 | 0.71356 | - | - | - | - |
Year event | −0.02093 | 0.00071 * | - | - | - | - |
Year × Age | −0.00006 | 0.66075 | - | - | - | - |
β | p-Value | Frequency (%) | Age (Years) | Distance (km) | Running Speed (km/h) | |
---|---|---|---|---|---|---|
Mean (Std) | Mean (Std) | Mean (Std) | ||||
Tunisia | Reference | Reference | 17 (0.0%) | 44.82 (4.59) | 72.95 (8.02) | 12.16 (1.46) |
Sri Lanka | −0.023 | 0.986 | 1 (0.0%) | 36.00 | 71.42 (3.95) | 11.90 (11.90) |
Malta | 0.177 | 0.804 | 4 (0.0%) | 61.00 (0.82) | 69.19 (10.39) | 11.53 (0.75) |
Cape Verde | −0.708 | 0.181 | 9 (0.0%) | 35.22 (4.29) | 67.82 (7.71) | 11.30 (1.46) |
Montenegro | −1.127 | 0.240 | 2 (0.0%) | 40.50 (7.78) | 65.70 (8.31) | 10.95 (2.29) |
Madagascar | −1.452 | 0.006 * | 11 (0.0%) | 37.44 (7.00) | 65.01 (8.40) | 10.83 (1.64) |
Macau | −1.169 | 0.376 | 1 (0.0%) | - | 64.88 | 10.81 |
Belgium | −1.374 | <0.001 * | 2784 (3.2%) | 45.61 (9.59) | 64.13 (9.84) | 10.69 (1.64) |
France | −2.225 | <0.001 * | 10932 (12.5%) | 46.68 (9.64) | 57.79 (9.34) | 9.63 (1.32) |
Faroe Islands | −0.919 | 0.159 | 5 (0.0%) | 52.80 (2.59) | 63.63 (8.85) | 10.61 (1.37) |
Constant | 87.607 | <0.001 | - | - | - | - |
Event year | −0.037 | <0.001 * | - | - | - | - |
Age × year | −1.43 | <0.001 * | - | - | - | - |
β | p-Value | Age (Years) | Distance (km) | Running Speed (km/h) | |
---|---|---|---|---|---|
Mean (Std) | Mean (Std) | Mean (Std) | |||
Slovenia | Reference | Reference | 39.06 (6.06) | 68.28 (6.33) | 11.38 (1.06) |
Norway | 0.25 | <0.001 * | 41.23 (10.25) | 66.24 (6.17) | 11.04 (1.03) |
Poland | 0.54 | <0.001 * | 37.83 (7.25) | 65.55 (9.16) | 10.92 (1.53) |
Spain | −0.06 | 0.62 | 38.15 (8.08) | 64.90 (5.97) | 10.82 (0.99) |
Belgium | 0.57 | <0.001 * | 42.02 (5.99) | 64.55 (6.93) | 10.76 (1.16) |
Russia | 0.80 | <0.001 * | 36.57 (10.84) | 63.75 (8.41) | 10.62 (1.40) |
Sweden | 0.09 | 0.10 | 37.67 (8.57) | 63.63 (6.59) | 10.61 (1.10) |
Hungry | 0.21 | <0.001 * | 38.27 (6.41) | 63.52 (6.45) | 10.59 (1.08) |
Netherlands | 0.28 | <0.001 * | 45.36 (7.23) | 63.29 (6.39) | 10.55 (1.06) |
Austria | 0.19 | <0.001 * | 41.35 (8.69) | 62.74 (6.74) | 10.46 (1.12) |
Constant | 70.24 | <0.001 * | - | - | - |
Event year | −0.03 | <0.001 * | - | - | - |
Age × Year | 0.00 | <0.001 * | - | - | - |
β | p-Value | Age (Years) | Distance (km) | Running Speed (km/h) | |
---|---|---|---|---|---|
Mean (Std) | Mean (Std) | Mean (Std) | |||
Russia | Reference | Reference | 42.27 (8.56) | 53.82 (6.06) | 8.97 (1.01) |
Belgium | −0.034 | 0.644 | 42.30 (10.41) | 54.08 (6.59) | 9.01 (1.10) |
Iceland | −0.171 | 0.598 | 43.19 (8.77) | 56.04 (6.84) | 9.34 (1.14) |
Ukraine | −0.235 | 0.175 | 44.45 (7.45) | 58.52 (7.50) | 9.75 (1.25) |
Denmark | 0.026 | 0.694 | 41.37 (9.66) | 52.58 (5.46) | 8.76 (0.91) |
Poland | −0.003 | 0.984 | 39.03 (7.89) | 53.28 (5.41) | 8.88 (0.90) |
Netherland | −0.219 | 0.001 | 42.03 (9.51) | 53.58 (6.15) | 8.93 (1.02) |
Croatia | −0.089 | 0.620 | 38.59 (8.20) | 54.85 (6.30) | 9.14 (1.05) |
Romania | −0.237 | 0.116 | 34.25 (8.00) | 57.31 (6.62) | 9.55 (1.10) |
Norway | −0.197 | 0.005 * | 35.27 (8.82) | 53.68 (6.45) | 8.95 (1.07) |
Constant | 58.520 | <0.001 * | - | - | - |
Event year | −0.024 | <0.001 * | - | - | - |
Age × Year | −1.051 | <0.001 * | - | - | - |
β | p-Value | Age (Years) | Distance (km) | Running Speed (km/h) | |
---|---|---|---|---|---|
Mean (Std) | Mean (Std) | Mean (Std) | |||
Tunisia | Reference | Reference | 45.47 (3.34) | 75.52 (4.64) | 12.59 (0.77) |
Belgium | 1.97 | <0.001 * | 43.59 (8.10) | 73.50 (7.73) | 12.25 (1.29) |
Russia | 1.54 | <0.001 * | 40.10 (11.08) | 70.84 (9.06) | 15.54 (11.81) |
Norway | 1.67 | <0.001 * | 43.01 (9.88) | 70.11 (7.19) | 14.80 (11.69) |
Slovenia | 1.38 | <0.001 * | 39.05 (8.73) | 69.11 (7.17) | 11.52 (1.19) |
Lithuania | 1.51 | <0.001 * | 40.59 (7.25) | 68.71 (6.71) | 14.88 (11.45) |
Netherland | 1.10 | <0.001 * | 46.24 (8.40) | 62.35 (5.82) | 14.54 (11.19) |
Poland | 1.20 | <0.001 * | 37.98 (9.12) | 67.10 (10.09) | 15.37 (11.18) |
Spain | 1.13 | <0.001 * | 42.23 (8.94) | 66.80 (8.15) | 11.13 (1.36) |
Hungary | 0.97 | <0.001 * | 39.91 (7.83) | 66.26 (7.54) | 11.04 (1.26) |
Constant | 86.62 | <0.001 * | - | - | - |
Event year | −0.04 | <0.001 * | - | - | - |
Age × Year | 0.00 | <0.001 * | - | - | - |
β | p-Value | Age (Years) | Distance (km) | Running Speed (km/h) | |
---|---|---|---|---|---|
Mean (Std) | Mean (Std) | Mean (Std) | |||
Tunisia | Reference | Reference | 44.82 (4.59) | 72.95 (8.78) | 12.16 (1.46) |
Belgium | 0.62 | <0.001 * | 45.60 (9.53) | 64.78 (9.63) | 10.80 (1.60) |
France | −0.32 | <0.001 * | 46.68 (9.61) | 57.85 (7.94) | 9.64 (1.32) |
Lithuania | 0.67 | <0.001 * | 41.43 (7.68) | 62.76 (8.36) | 0.46 (1.39) |
Latvia | 0.43 | 0.03 * | 42.86 (8.96) | 61.99 (8.81) | 10.33 (1.47) |
Hungary | 0.02 | 0.81 | 41.27 (8.57) | 60.11 (8.19) | 10.02 (1.36) |
Iceland | −0.10 | 0.80 | 45.33 (7.81) | 59.93 (5.28) | 9.99 (0.88) |
Denmark | −0.02 | 0.85 | 42.86 (7.91) | 59.72 (7.33) | 9.95 (1.22) |
Bosnia | −0.15 | 0.52 | 40.19 (10.52) | 59.18 (9.76) | 9.86 (1.63) |
Austria | −0.15 | 0.08 | 43.67 (9.76) | 59.41 (8.25) | 9.90 (1.37) |
Constant | 83.26 | <0.001 * | - | - | - |
Event year | −0.04 | <0.001 * | - | - | - |
Age × year | 0.00 | <0.001 * | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knechtle, B.; Weiss, K.; Villiger, E.; Scheer, V.; Gomes, T.N.; Gajda, R.; Ouerghi, N.; Chtourou, H.; Nikolaidis, P.T.; Rosemann, T.; et al. The Sex Difference in 6-h Ultra-Marathon Running—The Worldwide Trends from 1982 to 2020. Medicina 2022, 58, 179. https://doi.org/10.3390/medicina58020179
Knechtle B, Weiss K, Villiger E, Scheer V, Gomes TN, Gajda R, Ouerghi N, Chtourou H, Nikolaidis PT, Rosemann T, et al. The Sex Difference in 6-h Ultra-Marathon Running—The Worldwide Trends from 1982 to 2020. Medicina. 2022; 58(2):179. https://doi.org/10.3390/medicina58020179
Chicago/Turabian StyleKnechtle, Beat, Katja Weiss, Elias Villiger, Volker Scheer, Thayse Natacha Gomes, Robert Gajda, Nejmeddine Ouerghi, Hamdi Chtourou, Pantelis T. Nikolaidis, Thomas Rosemann, and et al. 2022. "The Sex Difference in 6-h Ultra-Marathon Running—The Worldwide Trends from 1982 to 2020" Medicina 58, no. 2: 179. https://doi.org/10.3390/medicina58020179
APA StyleKnechtle, B., Weiss, K., Villiger, E., Scheer, V., Gomes, T. N., Gajda, R., Ouerghi, N., Chtourou, H., Nikolaidis, P. T., Rosemann, T., & Thuany, M. (2022). The Sex Difference in 6-h Ultra-Marathon Running—The Worldwide Trends from 1982 to 2020. Medicina, 58(2), 179. https://doi.org/10.3390/medicina58020179