3D Master Toothguide Is Adequate to Subjective Shade Selection?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Only 40% presented a natural tooth colour belonging to the 3D Master Toothguide’s physical shade tabs;
- The colour coordinates of the 49 intermediate shades are not mathematically equally distributed in CIELAB colour space;
- The 89.5% of the colour differences between 49 intermediate shades of the 3D Master System were a clinically unacceptable colour difference (ΔEab* > 5.5 units).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gómez-Polo, C.; Gómez-Polo, M.; Martínez Vázquez de Parga, J.A.; Celemín Viñuela, A. Study of the most frequent natural tooth colours in the Spanish population using spectrophotometry. J. Adv. Prosthodont. 2015, 7, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Bayindir, F.; Kuo, S.; Johnston, W.; Wee, A. Coverage error of three conceptually different shade guide systems to vital unrestored dentition. J. Prosthet. Dent. 2007, 98, 175–185. [Google Scholar] [CrossRef]
- Öngül, D.; Şermet, B.; Balkaya, M.C. Visual and instrumental evaluation of colour match ability of 2 shade guides on a ceramic system. J. Prosthet. Dent. 2012, 108, 9–14. [Google Scholar] [CrossRef]
- Liberato, W.F.; Barreto, I.C.; Costa, P.P.; de Almeida, C.C.; Pimentel, W.; Tiossi, R. A comparison between visual, intraoral scanner, and spectrophotometer shade matching: A clinical study. J. Prosthet. Dent. 2019, 121, 271–275. [Google Scholar] [CrossRef]
- Gómez-Polo, C.; Gómez-Polo, M.; De Parga, J.A.M.V.; Celemín-Viñuela, A. Clinical Study of the 3D-Master Color System among the Spanish Population. J. Prosthodont. 2017, 27, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Corcodel, N.; Rammelsberg, P.; Jakstat, H.; Moldovan, O.; Schwarz, S.; Hassel, A.J. The linear shade guide design of Vita 3D-master performs as well as the original design of the Vita 3D-master. J. Oral Rehabil. 2010, 37, 860–865. [Google Scholar] [CrossRef]
- Gómez-Polo, C.; Gómez-Polo, M.; Martínez Vazquez De Parga, J.A.; Celemin-Viñuela, A. Study of natural teeth color according to toothguide 3D master through cluster analysis. Color Res. Appl. 2015, 41, 101–107. [Google Scholar] [CrossRef]
- Baltzer, A.; Kaufmann-Jinoian, V. Shading of ceramic crowns using digital tooth shade matching devices. Int. J. Comput. Dent. 2005, 8, 129–152. [Google Scholar]
- Available online: https://www.vita-zahnfabrik.com/es/Guias-de-colores-31236,98477.html (accessed on 15 January 2022).
- Gómez-Polo, C.; Gómez-Polo, M.; Celemin-Viñuela, A.; De Parga, J.A.M.V. Differences between the human eye and the spectrophotometer in the shade matching of tooth colour. J. Dent. 2014, 42, 742–745. [Google Scholar] [CrossRef]
- Millán, D.F.; Torreira, M.G.; de la Peña, V.A. Using a repositioning splint to determine reproducibility in the color registers of a dental spectrophotometer. J. Esthet. Restor. Dent. 2019, 32, 19–25. [Google Scholar] [CrossRef]
- Blum, S.L.; Horn, M.; Olms, C. A comparison of intraoral spectrophotometers—Are there user-specific differences? J. Esthet. Restor. Dent. 2018, 30, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Lazar, R.; Culic, B.; Gasparik, C.; Lazar, C.; Dudea, D. The accuracy of dental shade matching using cross-polarization photography. Int. J. Comput. Dent. 2019, 22, 343–351. [Google Scholar] [PubMed]
- Ntovas, P.; Masouras, K.; Lagouvardos, P. Efficacy of non-hydrogen peroxide mouthrinses on tooth whitening: An in vitro study. J. Esthet. Restor. Dent. 2021, 33, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- CIE (Commission Internationale de l’Éclairage). Annuaire, Roster, Register, Annexeau Bulletin CIE; Bureau Central de la CIE: Paris, France, 1976. [Google Scholar]
- Pérez, M.M.; Ghinea, R.; Herrera, L.J.; Carrillo, F.; Ionescu, A.M.; Paravina, R.D. Color difference thresholds for computer-simulated human Gingiva. J. Esthet. Restor. Dent. 2018, 30, E24–E30. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Della Bona, A.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Perez, M.D.M. Color Difference Thresholds in Dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2018, 31, 103–112. [Google Scholar] [CrossRef]
- Khashayar, G.; Bain, P.A.; Salari, S.; Dozic, A.; Kleverlaan, C.J.; Feilzer, A.J. Perceptibility and acceptability thresholds for colour differences in dentistry. J. Dent. 2014, 42, 637–644. [Google Scholar] [CrossRef]
- Douglas, R.D.; Steinhauer, T.J.; Wee, A. Intraoral determination of the tolerance of dentists for perceptibility and acceptability of shade mismatch. J. Prosthet. Dent. 2007, 97, 200–208. [Google Scholar] [CrossRef]
- Lee, Y.K.; Yu, B.; Lim, H.N. Lightness, chroma, and hue distributions of a shade guide as measured by a spectroradiometer. J. Prosthet. Dent. 2010, 104, 173–181. [Google Scholar] [CrossRef]
- Gómez-Polo, C.; Gómez-Polo, M.; De Parga, J.A.M.V.; Celemín-Viñuela, A. Study of the shade tabs of the toothguide 3D master through cluster analysis. Color Res. Appl. 2015, 40, 194–200. [Google Scholar] [CrossRef]
- Gómez-Polo, C.; Gómez-Polo, M.; Viñuela, A.C.; de Parga, J.A.M.V. A clinical study relating CIELCH coordinates to the colour dimensions of the 3D-Master System in a Spanish population. J. Prosthet. Dent. 2015, 113, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Lei, Y.; Liao, N. Colour measurements of 1944 anterior teeth of people in southwest of China description. Zhonghua Kou Qiang Yixue Zazhi 2001, 36, 285–288. [Google Scholar]
- Yuan, J.C.; Brewer, J.D.; Monaco, E.A., Jr.; Davis, E.L. Defining a natural tooth colour space based on a 3-dimensional shade system. J. Prosthet. Dent. 2007, 98, 110–119. [Google Scholar] [CrossRef]
- Hasegawa, A.; Motonomi, A. Colour of natural tooth crown in Japanese people. Colour Res. Appl. 2000, 25, 43–44. [Google Scholar] [CrossRef]
- Eiffler, C.; Cevirgen, E.; Helling, S.; Zornek, J.; Pritsch, M.; Hassel, A.J. Differences in lightness, chroma, and hue in the anterior teeth of quinquagenarians and septuagenarians. Clin. Oral Investig. 2009, 14, 587–591. [Google Scholar] [CrossRef]
- Cocking, C.; Cevirgen, E.; Helling, S.; Oswald, M.; Corcodel, N.; Rammelsberg, P.; Reinelt, G.; Hassel, A.J. Colour compatibility between teeth and dental shade guides in Quinquagenarians and Septuagenarians. J. Oral Rehabil. 2009, 36, 848–855. [Google Scholar] [CrossRef]
- Rubino, M.; Garcia, J.A.; Del Barco, L.J.; Romero, J. Colour measurement of human teeth and evaluation of a colourguide. Color Res. Appl. 1994, 19, 19–22. [Google Scholar]
- Odaira, C.; Iskibashi, K.; Nagai, S. Comparison of color gradation for natural dental incisors and corresponding shade tabs. J. Dent. Res. 2003, 82, B-249. [Google Scholar]
- Gozalo-Diaz, D.; Johnston, W.M.; Wee, A.G. Estimating the color of maxillary central incisors based on age and gender. J. Prosthet. Dent. 2008, 100, 93–98. [Google Scholar] [CrossRef]
- O´Brien, W.J.; Hemmendinger, H.; Boenke, K.M. Color distribution of three regions of extracted human teeth. Dent. Mater. 1997, 13, 179–185. [Google Scholar] [CrossRef]
- Schwabacher, W.B.; Goodkind, R.J. Three-dimensional color coordinates of natural teeth compared with three shade guides. J. Prosthet. Dent. 1990, 64, 425–431. [Google Scholar] [CrossRef]
- Gómez Polo, C.; Gómez-Polo, M.; De Parga, J.A.M.V.; Celemín-Viñuela, A. 3D Master Toothguide according to L*, C*, and h* coordinates. Color Res. Appl. 2014, 40, 518–524. [Google Scholar] [CrossRef]
Intermediate Shades of 3D Master System (Mean ±SD) | ||||||
---|---|---|---|---|---|---|
Shades | n | L* | C* | h* | a* | b* |
0M1.5 | 1 | 100.0 | 7.7 | 112.2 | −1.4 | 7.1 |
0.5M2 | 1 | 92.3 | 13.7 | 95.9 | −1.4 | 13.6 |
1M1.5 | 94 | 85.4 ± 2.0 | 16.2 ± 1.1 | 94.8 ± 1.8 | −1.3 ± 0.5 | 16.2 ± 1.1 |
1.5M1 | 14 | 85.7 ± 3.3 | 11.6 ± 2.55 | 98.6 ± 2.7 | −1.9 ± 0.6 | 11.5 ± 2.6 |
1.5M1.5 | 52 | 83.8 ± 2.8 | 16.2 ± 1.89 | 94.4 ± 2.6 | −1.1 ± 0.9 | 16.2 ± 1.9 |
1.5M2 | 21 | 85.8 ± 1.2 | 20.1 ± 1.19 | 92.7 ± 2.5 | −0.81 ± 0.6 | 20.1 ± 1.2 |
1.5M2.5 | 13 | 86.1 ± 3.6 | 24.3 ± 2.52 | 90.1 ± 3.6 | 0.08 ± 1.7 | 24.3 ± 2.4 |
2L2 | 22 | 82.6 ± 1.8 | 20.3 ± 0.95 | 93.3 ± 2.0 | −1.1 ± 0.5 | 20.3 ± 1.0 |
2M1.5 | 1 | 79.8 | 11.9 | 98.5 | −1.8 | 11.7 |
2M2.5 | 1 | 81.8 | 24.7 | 92.3 | −1.0 | 24.7 |
2R2 | 20 | 80.0 ± 1.2 | 20.4 ± 0.8 | 89.3 ± 1.4 | 0.23 ± 0.5 | 20.4 ± 0.8 |
2.5L1 | 7 | 78.3 ± 1.0 | 21.0 ± 1.9 | 89.5 ± 1.8 | 0.96 ± 0.5 | 21.3 ± 2.0 |
2.5L1.5 | 68 | 77.7 ± 2.6 | 17.9 ± 2.5 | 92.6 ± 2.0 | −0.78 ± 0.5 | 17.9 ± 2.5 |
2.5L2 | 38 | 77.4 ± 2.6 | 21.1 ± 1.6 | 91.9 ± 1.6 | −0.51 ± 0.7 | 21.1 ± 1.6 |
2.5L2.5 | 5 | 78.4 ± 1.6 | 24.0 ± 3.2 | 90.8 ± 0.8 | −0.30 ± 0.3 | 23.9 ± 3.2 |
2.5M1 | 33 | 78.0 ± 2.2 | 14.3 ± 3.0 | 94.5 ± 4.1 | −0.93 ± 0.8 | 14.2 ± 3.0 |
2.5M1.5 | 14 | 79.0 ± 1.7 | 15.8 ± 2.1 | 93.2 ± 3.8 | −0.50 ± 1.1 | 15.8 ± 2.1 |
2.5M2 | 6 | 77.4 ± 2.6 | 21.1 ± 1.6 | 91.9 ± 1.6 | −0.51 ± 0.7 | 21.1 ± 1.6 |
2.5M2.5 | 8 | 78.6 ± 2.3 | 27.0 ± 1.1 | 88.1 ± 0.8 | 0.90 ± 0.3 | 26.9 ± 1.1 |
2.5M3 | 5 | 78.5 ± 1.4 | 30.0 ± 1.5 | 88.2 ± 1.2 | 0.94 ± 0.6 | 30.0 ± 1.5 |
2.5R1.5 | 5 | 77.2 ± 2.3 | 18.5 ± 1.7 | 86.7 ± 2.8 | 1.10 ± 1.0 | 18.4 ± 1.6 |
2.5R2 | 7 | 78.4 ± 1.7 | 21.3 ± 2.1 | 87.5 ± 1.8 | 0.96 ± 0.7 | 21.3 ± 2.0 |
2.5R2.5 | 7 | 77.2±1.3 | 22.0±1.8 | 88.5±1.2 | 0.61±0.5 | 22.0±1.8 |
3L2 | 11 | 75.2 ± 2.7 | 23.5 ± 0.9 | 90.4 ± 1.1 | −0.14 ± 0.4 | 23.5 ± 0.9 |
3M1.5 | 4 | 75.4 ± 2.3 | 20.0 ± 1.7 | 88.2 ± 0.1 | 0.63 ± 0.1 | 20.2 ± 2.1 |
3M2.5 | 10 | 74.6 ± 1.8 | 26.6 ± 1.1 | 88.2 ± 0.4 | 0.80 ± 0.2 | 26.6 ± 1.1 |
3R2 | 7 | 75.6 ± 1.2 | 22.8 ± 0.6 | 83.5 ± 2.9 | 2.59 ± 1.2 | 22.6 ± 0.5 |
3.5L1.5 | 35 | 71.2 ± 2.2 | 20.1 ± 1.8 | 90.1 ± 1.9 | −0.01 ± 0.6 | 20.1 ± 1.8 |
3.5L2 | 18 | 72.6 ± 1.7 | 24.1 ± 2.1 | 89.9 ± 1.0 | 0.07 ± 0.4 | 24.1 ± 2.1 |
3.5R2.5 | 5 | 71.4 ± 2.0 | 28.7 ± 0.9 | 88.4 ± 0.9 | 0.84 ± 0.4 | 28.7 ± 0.9 |
3.5M1 | 50 | 70.6 ± 2.6 | 15.5 ± 2.1 | 91.1 ± 3.1 | −0.21 ± 0.8 | 15.5 ± 2.1 |
3.5M1.5 | 11 | 72.8 ± 1.3 | 20.4 ± 1.7 | 87.9 ± 0.9 | 0.77 ± 0.3 | 20.4 ± 1.7 |
3.5M2 | 4 | 73.0 ± 0.7 | 23.8 ± 0.9 | 87.2 ± 0.2 | 1.20 ± 0.1 | 23.8 ± 0.9 |
3.5M2.5 | 20 | 72.6 ± 1.4 | 27.7 ± 3.0 | 86.7 ± 0.8 | 1.61 ± 0.5 | 27.6 ± 3.0 |
3.5M3 | 9 | 73.8 ± 5.6 | 35.5 ± 3.1 | 83.0 ± 2.6 | 4.28 ± 1.7 | 35.1 ± 3.1 |
3.5R1.5 | 8 | 71.3 ± 2.6 | 19.8 ± 0.9 | 85.1 ± 1.4 | 1.70 ± 0.6 | 19.8 ± 0.8 |
3.5R2.5 | 15 | 70.0 ± 2.3 | 24.4 ± 1.3 | 85.0 ± 1.5 | 2.15 ± 0.7 | 24.3 ± 1.3 |
3.5R2.5 | 16 | 70.8 ± 1.6 | 28.3 ± 2.2 | 84.7 ± 2.7 | 2.71 ± 1.5 | 28.2 ± 2.1 |
4L2 | 6 | 68.4 ± 1.4 | 26.6 ± 1.3 | 88.6 ± 1.1 | 0.63 ± 0.5 | 26.6 ± 1.3 |
4M1.5 | 8 | 68.9 ± 0.8 | 21.9 ± 1.1 | 86.4 ± 0.6 | 1.39 ± 0.2 | 21.8 ± 1.1 |
4M2.5 | 4 | 67.9 ± 0.9 | 30.1 ± 1.0 | 86.1 ± 0.7 | 2.08 ± 0.4 | 30.0 ± 0.5 |
4R2 | 4 | 68.4 ± 0.5 | 26.2 ± 1.3 | 82.5 ± 0.9 | 3.40 ± 0.3 | 26.0 ± 1.3 |
4.5M1 | 20 | 62.5 ± 2.5 | 17.7 ± 2.9 | 85.8 ± 5.3 | 1.36 ± 1.5 | 17.6 ± 2.9 |
4.5M1.5 | 43 | 64.9 ± 1.3 | 22.7 ± 2.4 | 86.5 ± 2.5 | 1.45 ± 1.0 | 22.6 ± 2.4 |
4.5M2 | 13 | 64.3 ± 2.1 | 26.8 ± 1.6 | 84.7 ± 2.6 | 2.50 ± 1.3 | 26.6 ± 1.6 |
4.5M2.5 | 24 | 65.2 ± 1.5 | 31.8 ± 2.6 | 82.7 ± 1.8 | 4.05 ± 1.2 | 31.5 ± 2.5 |
4.5M3 | 10 | 67.2 ± 2.2 | 41.0 ± 2.7 | 80.5 ± 1.7 | 6.68 ± 1.2 | 40.4 ± 2.7 |
5M1.5 | 9 | 59.0 ± 2.5 | 26.4 ± 1.4 | 83.8 ± 3.0 | 2.84 ± 1.3 | 26.2 ± 1.4 |
5M2.5 | 9 | 56.8 ± 3.4 | 35.8 ± 1.5 | 78.5 ± 2.0 | 7.16 ± 1.3 | 35.1 ± 1.5 |
n | Percentage | ||
---|---|---|---|
Perceptibility colour difference | ΔEab* < 2.6 units | 30 | 2.6% |
Perceptible but clinically acceptable colour difference | 2.6 < ΔEab* < 5.5 units | 177 | 15.0% |
Clinically unacceptable colour difference | ΔEab* > 5.5 units | 969 | 82.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Polo, C.; Gómez-Polo, M.; Quispe López, N.; Portillo Muñoz, M.; Montero, J. 3D Master Toothguide Is Adequate to Subjective Shade Selection? Medicina 2022, 58, 457. https://doi.org/10.3390/medicina58030457
Gómez-Polo C, Gómez-Polo M, Quispe López N, Portillo Muñoz M, Montero J. 3D Master Toothguide Is Adequate to Subjective Shade Selection? Medicina. 2022; 58(3):457. https://doi.org/10.3390/medicina58030457
Chicago/Turabian StyleGómez-Polo, Cristina, Miguel Gómez-Polo, Norberto Quispe López, Maria Portillo Muñoz, and Javier Montero. 2022. "3D Master Toothguide Is Adequate to Subjective Shade Selection?" Medicina 58, no. 3: 457. https://doi.org/10.3390/medicina58030457