Plasma Concentrations of New Biochemical Markers of Atherosclerosis in Patients with Dyslipidemia—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specific Inclusion Criteria for Atherosclerotic Plaque at High Risk
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ference, B.A.; Kastelein, J.J.P.; Ray, K.K.; Ginsberg, H.N.; Chapman, M.J.; Packard, C.J.; Laufs, U.; Olivier-Williams, C.; Woos, A.M.; Butterworth, A.S.; et al. Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants with Risk of Coronary Heart Disease. JAMA 2019, 321, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Task Force Members; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [Green Version]
- Erqou, S.; Thompson, A.; Di Angelantonio, E.; Saleheen, D.; Kaptoge, S.; Marcovina, S.; Danesh, J. Apolipoprotein(a) Isoforms and the Risk of Vascular Disease: Systematic Review of 40 Studies Involving 58,000 Participants. J. Am. Coll. Cardiol. 2010, 55, 2160–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopewell, J.C.; Seedorf, U.; Farrall, M.; Parish, S.; Kyriakou, T.; Goel, A.; Hamsten, A.; Collins, R.; Watkins, H.; Clarke, R.; et al. Impact of Lipoprotein(a) Levels and Apolipoprotein(a) Isoform Size on Risk of Coronary Heart Disease. J. Intern. Med. 2014, 276, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. Cell Biology of Atherosclerosis. Ann. Rev. Physiol. 1995, 57, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Shalhoub, J.; Owen, D.R.; Gauthier, T.; Monaco, C.; Leen, E.L.; Davies, A.H. The Use of Contrast Enhanced Ultrasound in Carotid Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2010, 39, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Naghavi, M.; Libby, P.; Falk, E.; Casscells, S.W.; Litovsky, S.; Rumberger, J.; Badimon, J.J.; Stefanadis, C.; Moreno, P.; Pasterkamp, G.; et al. From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I. Circulation 2003, 108, 1664–1672. [Google Scholar] [CrossRef]
- Pende, A.; Dallegri, F. Is the Carotid Plaque Rupture a Pivotal Event in Stroke Pathogenesis? Update on the Role of the Intraplaque Inflammatory Processes. Curr. Vasc. Pharmacol. 2015, 13, 173–181. [Google Scholar] [CrossRef]
- Stelmaszyńska, T.; Kukovetz, E.; Egger, G.; Schaur, R.J. Possible Involvement of Myeloperoxidase in Lipid Peroxidation. Int. J. Biochem. 1992, 24, 121–128. [Google Scholar] [CrossRef]
- Daugherty, A.; Dunn, J.L.; Rateri, D.L.; Heinecke, J.W. Myeloperoxidase, a Catalyst for Lipoprotein Oxidation, Is Expressed in Human Atherosclerotic Lesions. J. Clin. Investig. 1994, 94, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Lessner, S.M.; Galis, Z.S. Matrix Metalloproteinases and Vascular Endothelium-Mononuclear Cell Close Encounters. Trends Cardiovasc. Med. 2004, 14, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Higgins, C.L.; Chen, I.Y.; Reardon, M.; Lawrie, G.; Vick, G.W., 3rd; Karmonik, C.; Via, D.P.; Morrisett, J.D. Quantitation and Localization of Matrix Metalloproteinases and Their Inhibitors in Human Carotid Endarterectomy Tissues. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2351–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouridakis, E.; Avanzas, P.; Arroyo-Espliguero, R.; Fredericks, S.; Kaski, J.C. Markers of Inflammation and Rapid Coronary Artery Disease Progression in Patients with Stable Angina Pectoris. Circulation 2004, 110, 1747–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tousoulis, D.; Siasos, G.; Maniatis, K.; Oikonomou, E.; Kioufis, S.; Zaromitidou, M.; Paraskevopoulos, T.; Michalea, S.; Kollia, C.; Miliou, A.; et al. Serum Osteoprotegerin and Osteopontin Levels Are Associated with Arterial Stiffness and the Presence and Severity of Coronary Artery Disease. Int. J. Cardiol. 2013, 167, 1924–1928. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, L.C.; Shui, C.; Riggs, B.L.; Dunstan, C.R.; Spelsberg, T.C.; O’Brien, T.; Khosla, S. Effects of Immunosuppressants on Receptor Activator of NF-kappaB Ligand and Osteoprotegerin Production by Human Osteoblastic and Coronary Artery Smooth Muscle Cells. Biochem. Biophys. Res. Commun. 2001, 280, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Mathiesen, E.B.; Bonaa, K.H.; Joakimsen, O. Echolucent Plaques Are Associated with High Risk of Ischemic Cerebrovascular Events in Carotid Stenosis: The Tromso Study. Circulation 2001, 103, 2171–2175. [Google Scholar] [CrossRef] [Green Version]
- Prabhakaran, S.; Rundek, T.; Ramas, R.; Elkind, M.S.; Paik, M.C.; Boden-Albala, B.; Sacco, R.L. Carotid Plaque Surface Irregularity Predicts Ischemic Stroke: The Northern Manhattan Study. Stroke 2006, 37, 2696–2701. [Google Scholar] [CrossRef] [Green Version]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee., 2021. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Sandberg, W.J.; Yndestad, A.; Øie, E.; Smith, C.; Ueland, T.; Ovchinnikova, O.; Robertson, A.K.; Müller, F.; Semb, A.G.; Scholz, H.; et al. Enhanced T-Cell Expression of RANK Ligand in Acute Coronary Syndrome: Possible Role in Plaque Destabilization. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Kadoglou, N.P.; Gerasimidis, T.; Golemati, S.; Kapelouzou, A.; Karayannacos, P.E.; Liapis, C.D. The Relationship between Serum Levels of Vascular Calcification Inhibitors and Carotid Plaque Vulnerability. J. Vasc. Surg. 2008, 47, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Song, T.J.; Yang, S.H.; Lee, O.H.; Nam, H.S.; Kim, Y.D.; Kim, E.H.; Lee, H.S.; Nam, C.M.; Heo, J.H. Plasma Osteoprotegerin Levels Increase with the Severity of Cerebral Artery Atherosclerosis. Clin. Biochem. 2013, 46, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, M.; Demulder, A.; Damry, N.; Mélot, C.; Wittersheim, E.; Willems, D.; Dratwa, M.; Bergmann, P. Plasma Osteoprotegerin Is an Independent Risk Factor for Mortality and an Early Biomarker of Coronary Vascular Calcification in Chronic Kidney Disease. Clin. Chem. Lab. Med. 2009, 47, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Mogelvang, R.; Pedersen, S.H.; Flyvbjerg, A.; Bjerre, M.; Iversen, A.Z.; Galatius, S.; Frystyk, J.; Jensen, J.S. Comparison of Osteoprotegerin to Traditional Atherosclerotic Risk Factors and High-Sensitivity C-Reactive Protein for Diagnosis of Atherosclerosis. Am. J. Cardiol. 2012, 109, 515–520. [Google Scholar] [CrossRef]
- Biscetti, F.; Tinelli, G.; Rando, M.M.; Nardella, E.; Cecchini, A.L.; Angelini, F.; Straface, G.; Filipponi, M.; Arena, V.; Pitocco, D. Correction To: Association between Carotid Plaque Vulnerability and High Mobility Group Box-1 Serum Levels in a Diabetic Population. Cardiovasc. Diabetol. 2021, 20, 184. [Google Scholar] [CrossRef]
- Shanahan, C.M.; Cary, N.R.; Metcalfe, J.C.; Weissberg, P.L. High Expression of Genes for Calcification-Regulating Proteins in Human Atherosclerotic Plaques. J. Clin. Investig. 1994, 93, 2393–2402. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.Y.; Zhang, B.; Yan, Y.H.; Gao, S.S.; Liu, J.J.; Xu, L.; Hui, P.J. Specific Matrix Metalloproteinases and Calcification Factors Are Associated with the Vulnerability of Human Carotid Plaque. Exp. Ther. Med. 2018, 16, 2071–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriakidis, K.; Antoniadis, P.; Choksy, S.; Papi, R.M. Comparative Study of Protein Expression Levels of Five Plaque Biomarkers and Relation with Carotid Plaque Type Classification in Patients after Carotid Endarterectomy. Int. J. Vasc. Med. 2018, 2018, 4305781. [Google Scholar] [CrossRef]
- Oh, E.S.; Rhee, E.J.; Oh, K.W.; Lee, W.Y.; Baek, K.H.; Yoon, K.H.; Kang, M.I.; Yun, E.J.; Park, C.Y.; Choi, M.G.; et al. Circulating Osteoprotegerin Levels Are Associated with Age, Waist-To-Hip Ratio, Serum Total Cholesterol, and Low-Density Lipoprotein Cholesterol Levels in Healthy Korean Women. Metabolism 2005, 54, 49–54. [Google Scholar] [CrossRef]
- Luomala, M.; Päivä, H.; Thelen, K.; Laaksonen, R.; Saarela, M.; Mattila, K.; Lütjohann, D.; Lehtimaki, T. Osteopontin Levels Are Associated with Cholesterol Synthesis Markers in Mildly Hypercholes-Terolaemic Patients. Acta Cardiol. 2007, 62, 177–181. [Google Scholar] [CrossRef]
- Yazawa, H.; Zimmermann, B.; Asami, Y.; Bernimoulin, J.P. Simvastatin Promotes Cell Metabolism, Proliferation, and Osteoblastic Differentiation in HU-Man Periodontal Ligament Cells. J. Periodontol. 2005, 76, 295–302. [Google Scholar] [CrossRef]
- Nagase, H.; Visse, R.; Murphy, G. Structure and Function of Matrix Metalloproteinases and Timps. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenti, M.; Falcinelli, E.; Pompili, M.; de Rango, P.; Conti, V.; Guglielmini, G.; Momi, S.; Corazzi, T.; Giordano, G.; Gresele, P. Matrix Metalloproteinase-2 of Human Carotid Atherosclerotic Plaques Promotes Platelet Acti-Vation. Correlation with Ischaemic Events. Thromb. Haemost. 2014, 111, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, O.S.; Khan, S.Q.; Narayan, H.K.; Ng, K.H.; Mohammed, N.; Quinn, P.A.; Squire, I.B.; Davies, J.E.; Ng, L.L. Matrix Metalloproteinase-2 Predicts Mortality in Patients with Acute Coronary Syndrome. Clin. Sci. 2010, 118, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kai, H.; Ikeda, H.; Yasukawa, H.; Kai, M.; Seki, Y.; Kuwahara, F.; Ueno, T.; Sugi, K.; Imaizumi, T. Peripheral Blood Levels of Matrix Metalloproteases-2 and -9 Are Elevated in Patients with Acute Coronary Syndromes. J. Am. Coll. Cardiol. 1998, 32, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Blankenberg, S.; Rupprecht, H.J.; Poirier, O.; Bickel, C.; Smieja, M.; Hafner, G.; Meyer, J.; Cambien, F.; Tiret, L.; AtheroGene Investigators. Plasma Concentrations and Genetic Variation of Matrix Metalloproteinase 9 and Prognosis of Patients with Cardiovascular Disease. Circulation 2003, 107, 1579–1585. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tan, G.J.; Han, L.N.; Bai, Y.Y.; He, M.; Liu, H.B. Novel Biomarkers for Cardiovascular Risk Prediction. J. Geriatr. Cardiol. 2017, 14, 135–150. [Google Scholar] [CrossRef]
- Wang, Y.; Rosen, H.; Madtes, D.K.; Shao, B.; Martin, T.R.; Heinecke, J.W.; Fu, X. Myeloperoxidase Inactivates TIMP-1 by Oxidizing Its N-Terminal Cysteine Residue: An Oxidative Mechanism for Regulating Proteolysis during Inflammation. J. Biol. Chem. 2007, 282, 31826–31834. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.L.; Anderson, M.M.; Shih, D.M.; Qu, X.D.; Wang, X.; Mehta, A.C.; Lim, L.L.; Shi, W.; Hazen, S.L.; Jacob, J.S. Increased Atherosclerosis in Myeloperoxidase-Deficient Mice. J. Clin. Investig. 2001, 107, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Ndrepepa, G.; Braun, S.; Mehilli, J.; von Beckerath, N.; Schömig, A.; Kastrati, A. Myeloperoxidase Level in Patients with Stable Coronary Artery Disease and Acute Coronary Syndromes. Eur. J. Clin. Investig. 2008, 38, 90–96. [Google Scholar] [CrossRef]
- Goldmann, B.U.; Rudolph, V.; Rudolph, T.K.; Holle, A.K.; Hillebrandt, M.; Meinertz, T.; Baldus, S. Neutrophil Activation Precedes Myocardial Injury in Patients with Acute Myocardial Infarction. Free Radic. Biol. Med. 2009, 47, 79–83. [Google Scholar] [CrossRef]
- Rebeiz, A.G.; Tamim, H.M.; Sleiman, R.M.; Abchee, A.G.; Ibrahim, Z.; Khoury, M.Y.; Youhanna, S.; Skouri, H.N.; Alam, S.E. Plasma Myeloperoxidase Concentration Predicts the Presence and Severity of Coronary Disease in Patients with Chest Pain and Negative Troponin-T. Coron. Artery. Dis. 2011, 22, 553–558. [Google Scholar] [CrossRef] [PubMed]
Control Group | Study Group | |
---|---|---|
Number of patients | 9 | 14 |
Age, years | 43 ± 5 | 45 ± 6 |
BMI | 27.8 ± 2.4 | 27.4 ± 2.3 |
Smokers, % | 33.3 | 35.7 |
Systolic blood pressure, mmHg | 131 ± 7 | 132 ± 6 |
Diastolic blood pressure, mmHg | 81 ± 3 | 82 ± 4 |
Fasting glucose, mg/dL | 91 ± 4 | 92 ± 5 |
Study Group | Control Group | p Value | |||||
---|---|---|---|---|---|---|---|
Total cholesterol (mg/dL) | 264.24 ± 38.55 | 163.44 ± 17.65 | <0.001 | ||||
Low-density lipoprotein cholesterol (mg/dL) | 182.22 ± 32.02 | 93.51 ± 15.87 | <0.001 | ||||
High-density lipoprotein cholesterol (mg/dL) | 43.09 ± 12.26 | 46.31 ± 5.09 | 0.47 | ||||
Non-high-density lipoprotein cholesterol (mg/dL) | 221.15 ± 37.07 | 117.13 ± 20.62 | <0.001 | ||||
Triglycerides (mg/dL) | 192.01 ± 44.78 | 118.18 ± 27.5 | <0.001 | ||||
Myeloperoxidase (ng/mL) | 353.19 ± 175.92 | 470.52 ± 74.6 | 0.073 | ||||
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
Osteopontin (ng/mL) | 5.27 | 3.81 | 8.08 | 8.9 | 8.88 | 9.36 | <0.05 |
Osteoprotegerin (pmol/mL) | 16.62 | 15.74 | 31.86 | 11.99 | 10.02 | 14 | <0.05 |
Metalloproteinase 2 (ng/mL) | 201.64 | 189.9 | 211.1 | 132.2 | 128.1 | 132.2 | <0.001 |
Metalloproteinase 9 (ng/mL) | 232.88 | 201.9 | 256.5 | 187.1 | 156.8 | 189.9 | <0.001 |
Osteopontin Concentration | Osteoprotegerin Concentration | |
---|---|---|
Total cholesterol level | R = −0.63, p < 0.01 | R = 0.52, p < 0.05 |
Low-density lipoprotein cholesterol level | R = −0.62, p < 0.01 | R = 0.56, p < 0.05 |
High-density lipoprotein cholesterol level | R = 0.1, p > 0.05 | R = −0.02, p > 0.05 |
Non-high-density lipoprotein cholesterol level | R = −0.59, p < 0.01 | R = 0.52, p < 0.05 |
Triglycerides level | R = −0.45, p < 0.05 | R = 0.38, p > 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosowski, M.; Basiak, M.; Hachuła, M.; Okopień, B. Plasma Concentrations of New Biochemical Markers of Atherosclerosis in Patients with Dyslipidemia—A Pilot Study. Medicina 2022, 58, 717. https://doi.org/10.3390/medicina58060717
Kosowski M, Basiak M, Hachuła M, Okopień B. Plasma Concentrations of New Biochemical Markers of Atherosclerosis in Patients with Dyslipidemia—A Pilot Study. Medicina. 2022; 58(6):717. https://doi.org/10.3390/medicina58060717
Chicago/Turabian StyleKosowski, Michał, Marcin Basiak, Marcin Hachuła, and Bogusław Okopień. 2022. "Plasma Concentrations of New Biochemical Markers of Atherosclerosis in Patients with Dyslipidemia—A Pilot Study" Medicina 58, no. 6: 717. https://doi.org/10.3390/medicina58060717
APA StyleKosowski, M., Basiak, M., Hachuła, M., & Okopień, B. (2022). Plasma Concentrations of New Biochemical Markers of Atherosclerosis in Patients with Dyslipidemia—A Pilot Study. Medicina, 58(6), 717. https://doi.org/10.3390/medicina58060717