Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review
Abstract
:1. Introduction
2. Surgical Techniques
2.1. Soft Surgery
2.2. Cochleostomy vs. Round Window Insertion
2.3. Robot-Assisted Insertion System
3. Pharmacological Support
3.1. Corticosteroids
3.2. Brain-Derived Neurotrophic Factor (Neurotrophin)
3.3. Glial-Cell-Line-Derived Neurotrophic Factor (Neurotrophin)
3.4. Neurotrophin-3 (Neurotrophin)
3.5. Insulin-like Growth Factor
3.6. MAPK/JNK Pathway Inhibitor (Antiapoptotic)
3.7. Pioglitazone (Antioxidant)
3.8. N-Acetyl Cysteine (Antioxidant)
3.9. Taurodeoxycholic Acid (TDCA)
4. Drug-Eluting Electrodes
5. Nanoparticles
6. Stem Cells
7. Gene Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eshraghi, A.A.; Nazarian, R.; Telischi, F.F.; Rajguru, S.M.; Truy, E.; Gupta, C. The Cochlear Implant: Historical Aspects and Future Prospects. Anat. Rec. 2012, 295, 1967–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehnhardt, E. Intracochlear Placement of Cochlear Implant Electrodes in Soft Surgery Technique. HNO 1993, 41, 356–359. [Google Scholar] [PubMed]
- Friedland, D.R.; Runge-Samuelson, C. Soft Cochlear Implantation: Rationale for the Surgical Approach. Trends Amplif. 2009, 13, 124–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Anwar, M.W.; Elaassar, A.S.; Foad, Y.A. Non-Mastoidectomy Cochlear Implant Approaches: A Literature Review. Int. Arch. Otorhinolaryngol. 2016, 20, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Pau, H.W.; Just, T.; Bornitz, M.; Lasurashvilli, N.; Zahnert, T. Noise Exposure of the Inner Ear during Drilling a Cochleostomy for Cochlear Implantation. Laryngoscope 2007, 117, 535–540. [Google Scholar] [CrossRef]
- Sutinen, P.; Zou, J.; Hunter, L.; Toppila, K.; Pyykkö, I. Vibration-Induced Hearing Loss: Mechanical and Physiological Aspects. Otol. Neurotol. 2007, 28, 171–177. [Google Scholar] [CrossRef]
- Ikeda, R.; Nakaya, K.; Oshima, H.; Oshima, T.; Kawase, T.; Kobayashi, T. Effect of Aspiration of Perilymph during Stapes Surgery on the Endocochlear Potential of Guinea Pig. Otolaryng. Head Neck Surg. 2011, 145, 801–805. [Google Scholar] [CrossRef]
- Cohen, N.L. Cochlear Implant Soft Surgery: Fact or Fantasy? Otolaryngol. Head Neck Surg. 1997, 117, 214–216. [Google Scholar] [CrossRef]
- Donnelly, M.J.; Cohen, L.T.; Clark, G.M. Initial investigation of the efficacy and biosafety of sodium hyaluronate (Healon) as an aid to electrode array insertion. Ann. Otol. Rhinol. Laryngol. Suppl. 1995, 166, 45–48. [Google Scholar]
- Roland, J.T.; Magardino, T.M.; Go, J.T.; Hillman, D.E. Effects of Glycerin, Hyaluronic Acid, and Hydroxypropyl Methylcellulose on the Spiral Ganglion of the Guinea Pig Cochlea. Ann. Otol. Rhinol. Laryngol. Suppl. 1995, 166 (Suppl. S9 II), 64–68. [Google Scholar]
- Faramarzi, M.; Roosta, S.; Faramarzi, A.; Asadi, M.A. Comparison of Hearing Outcomes in Stapedotomy with Fat and Hyaluronic Acid Gel as a Sealing Material: A Prospective Double-Blind Randomized Clinical Trial. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 4279–4287. [Google Scholar] [CrossRef] [PubMed]
- Miroir, M.; Nguyen, Y.; Kazmitcheff, G.; Ferrary, E.; Sterkers, O.; Grayeli, A.B. Friction Force Measurement during Cochlear Implant Insertion: Application to a Force-Controlled Insertion Tool Design. Otol. Neurotol. 2012, 33, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Feghali, J.G.; Dinces, E.; McElveen, J.; Van De Water, T.R. Evaluation of Esterified Hyaluronic Acid as Middle Ear–Packing Material. Arch. Otolaryngol. Neck Surg. 2001, 127, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laszig, R.; Ridder, G.J.; Fradis, M. Intracochlear Insertion of Electrodes Using Hyaluronic Acid in Cochlear Implant Surgery. J. Laryngol. Otol. 2002, 116, 371–372. [Google Scholar] [CrossRef]
- Snels, C.; Inthout, J.; Mylanus, E.; Huinck, W.; Dhooge, I. Hearing Preservation in Cochlear Implant Surgery: A Meta-Analysis. Otol. Neurotol. 2019, 40, 145–153. [Google Scholar] [CrossRef]
- Lenarz, T.; Timm, M.E.; Salcher, R.; Büchner, A. Individual Hearing Preservation Cochlear Implantation Using the Concept of Partial Insertion. Otol. Neurotol. 2019, 40, E326–E335. [Google Scholar] [CrossRef]
- Balkany, T.J.; Eshraghi, A.A.; Jiao, H.; Polak, M.; Mou, C.; Dietrich, D.W.; Van De Water, T.R. Mild Hypothermia Protects Auditory Function during Cochlear Implant Surgery. Laryngoscope 2005, 115, 1543–1547. [Google Scholar] [CrossRef]
- Tamames, I.; King, C.; Bas, E.; Dietrich, W.D.; Telischi, F.; Rajguru, S.M. A Cool Approach to Reducing Electrode-Induced Trauma: Localized Therapeutic Hypothermia Conserves Residual Hearing in Cochlear Implantation. Hear. Res. 2016, 339, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Tamames, I.; King, C.; Huang, C.Y.; Telischi, F.F.; Hoffer, M.E.; Rajguru, S.M. Theoretical Evaluation and Experimental Validation of Localized Therapeutic Hypothermia Application to Preserve Residual Hearing following Cochlear Implantation. Ear Hear. 2018, 39, 712–719. [Google Scholar] [CrossRef]
- Perez, E.; Viziano, A.; Al-Zaghal, Z.; Telischi, F.F.; Sangaletti, R.; Jiang, W.; Dietrich, W.D.; King, C.; Hoffer, M.E.; Rajguru, S.M. Anatomical Correlates and Surgical Considerations for Localized Therapeutic Hypothermia Application in Cochlear Implantation Surgery. Otol. Neurotol. 2019, 40, 1167–1177. [Google Scholar] [CrossRef] [Green Version]
- Bader, W.; Gottfried, T.; Degenhart, G.; Johnson Chacko, L.; Sieber, D.; Riechelmann, H.; Fischer, N.; Hoermann, R.; Glueckert, R.; Schrott-Fischer, A.; et al. Measurement of the Intracochlear Hypothermia Distribution Utilizing Tympanic Cavity Hypothermic Rinsing Technique in a Cochlea Hypothermia Model. Front. Neurol. 2020, 11, 620691. [Google Scholar] [CrossRef] [PubMed]
- Adunka, O.; Unkelbach, M.H.; Mack, M.; Hambek, M.; Gstoettner, W.; Kiefer, J.; Cochlear, K.J. Cochlear Implantation Via the Round Window Membrane Minimizes Trauma to Cochlear Structures: A Histologically Controlled Insertion Study. Acta Otolaryngol. 2004, 124, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Khater, A.; El-Anwar, M.W. Methods of Hearing Preservation during Cochlear Implantation. Int. Arch. Otorhinolaryngol. 2017, 21, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havenith, S.; Lammers, M.J.W.; Tange, R.A.; Trabalzini, F.; Della Volpe, A.; Van Der Heijden, G.J.M.G.; Grolman, W. Hearing Preservation Surgery: Cochleostomy or Round Window Approach? A Systematic Review. Otol. Neurotol. 2013, 34, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Santa Maria, P.L.; Gluth, M.B.; Yuan, Y.; Atlas, M.D.; Blevins, N.H. Hearing Preservation Surgery for Cochlear Implantation: A Meta-Analysis. Otol. Neurotol. 2014, 35, e256–e269. [Google Scholar] [CrossRef]
- Jwair, S.; Boerboom, R.A.; Versnel, H.; Stokroos, R.J.; Thomeer, H.G.X.M. Evaluating Cochlear Insertion Trauma and Hearing Preservation after Cochlear Implantation (CIPRES): A Study Protocol for a Randomized Single-Blind Controlled Trial. Trials 2021, 22, 895. [Google Scholar] [CrossRef]
- Panara, K.; Shahal, D.; Mittal, R.; Eshraghi, A.A. Robotics for Cochlear Implantation Surgery: Challenges and Opportunities. Otol. Neurotol. 2021, 42, e825–e835. [Google Scholar] [CrossRef]
- Kontorinis, G.; Lenarz, T.; Stöver, T.; Paasche, G. Impact of the Insertion Speed of Cochlear Implant Electrodes on the Insertion Forces. Otol. Neurotol. 2011, 32, 565–570. [Google Scholar] [CrossRef]
- Torres, R.; Jia, H.; Drouillard, M.; Bensimon, J.L.; Sterkers, O.; Ferrary, E.; Nguyen, Y. An Optimized Robot-Based Technique for Cochlear Implantation to Reduce Array Insertion Trauma. Otolaryngol. Head Neck Surg. 2018, 159, 900–907. [Google Scholar] [CrossRef]
- Kaufmann, C.R.; Henslee, A.M.; Claussen, A.; Hansen, M.R. Evaluation of Insertion Forces and Cochlea Trauma following Robotics-Assisted Cochlear Implant Electrode Array Insertion. Otol. Neurotol. 2020, 41, 631–638. [Google Scholar] [CrossRef]
- Roland, P.S.; Wright, C.G. Cochlear and Brainstem Implants. Adv. Otorhinolaryngol. 2006, 64, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Barriat, S.; Peigneux, N.; Duran, U.; Camby, S.; Lefebvre, P.P. The Use of a Robot to Insert an Electrode Array of Cochlear Implants in the Cochlea: A Feasibility Study and Preliminary Results. Audiol. Neurootol. 2021, 26, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Pan, J.; Gu, W.; Tan, H.; Chen, Y.; Zhang, Z.; Jiang, M.; Li, Y.; Sterkers, O.; Wu, H. Robot-Assisted Electrode Array Insertion Becomes Available in Pediatric Cochlear Implant Recipients: First Report and an Intra-Individual Study. Front. Surg. 2021, 8, 695728. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, H.; Lahlou, G.; Torres, R.; Sterkers, O.; Lefeuvre, V.; Ferrary, E.; Mosnier, I.; Nguyen, Y. Robot-Assisted Cochlear Implant Electrode Array Insertion in Adults: A Comparative Study with Manual Insertion. Otol. Neurotol. 2021, 42, e438–e444. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Daoudi, H.; Lahlou, G.; Sterkers, O.; Ferrary, E.; Mosnier, I.; Nguyen, Y. Restoration of High Frequency Auditory Perception after Robot-Assisted or Manual Cochlear Implantation in Profoundly Deaf Adults Improves Speech Recognition. Front. Surg. 2021, 8, 729736. [Google Scholar] [CrossRef]
- Lin, C.C.; Chiu, T.; Chiou, H.P.; Chang, C.M.; Hsu, C.J.; Wu, H.P. Residual Hearing Preservation for Cochlear Implantation Surgery. Tzu-Chi Med. J. 2021, 33, 359–364. [Google Scholar] [CrossRef]
- Niedermeyer, H.P.; Zahneisen, G.; Luppa, P.; Busch, R.; Arnold, W. Cortisol Levels in the Human Perilymph after Intravenous Administration of Prednisolone. Audiol. Neurootol. 2003, 8, 316–321. [Google Scholar] [CrossRef]
- Kuthubutheen, J.; Coates, H.; Rowsell, C.; Nedzelski, J.; Chen, J.M.; Lin, V. The Role of Extended Preoperative Steroids in Hearing Preservation Cochlear Implantation. Hear. Res. 2015, 327, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Eastwood, H.; Sly, D.; James, D.; Richardson, R.; O’Leary, S. Factors Influencing the Efficacy of Round Window Dexamethasone Protection of Residual Hearing Post-Cochlear Implant Surgery. Hear. Res. 2009, 255, 67–72. [Google Scholar] [CrossRef]
- Lyu, A.R.; Kim, D.H.; Lee, S.H.; Shin, D.S.; Shin, S.A.; Park, Y.H. Effects of Dexamethasone on Intracochlear Inflammation and Residual Hearing after Cochleostomy: A Comparison of Administration Routes. PLoS ONE 2018, 13, e0195230. [Google Scholar] [CrossRef]
- Skarzynska, M.B.; Kolodziejak, A.; Gos, E.; Skarzynski, P.H. The Clinical Effects of Steroids Therapy in the Preserving Residual Hearing after Cochlear Implantation with the OTICON Neuro Zti EVO. J. Clin. Med. 2021, 10, 2868. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.C.; Sampaio, A.L.L.; Lopes, R.A.F.; Ramos Venosa, A.; Oliveira, C.A.C.P.D. Hearing Preservation in Cochlear Implant Surgery. Int. J. Otolaryngol. 2014, 2014, 468515. [Google Scholar] [CrossRef] [PubMed]
- Plontke, S.K.; Götze, G.; Rahne, T.; Liebau, A. Intracochlear Drug Delivery in Combination with Cochlear Implants: Current Aspects. HNO 2017, 65 (Suppl. S1), 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hargunani, C.A.; Kempton, J.B.; DeGagne, J.M.; Trune, D.R. Intratympanic Injection of Dexamethasone: Time Course of Inner Ear Distribution and Conversion to Its Active Form. Otol. Neurotol. 2006, 27, 564–569. [Google Scholar] [CrossRef]
- Leake, P.A.; Stakhovskaya, O.; Hetherington, A.; Rebscher, S.J.; Bonham, B. Effects of Brain-Derived Neurotrophic Factor (BDNF) and Electrical Stimulation on Survival and Function of Cochlear Spiral Ganglion Neurons in Deafened, Developing Cats. JARO J. Assoc. Res. Otolaryngol. 2013, 14, 187–211. [Google Scholar] [CrossRef] [Green Version]
- Rejali, D.; Lee, V.A.; Abrashkin, K.A.; Humayun, N.; Swiderski, D.L.; Raphael, Y. Cochlear Implants and Ex Vivo BDNF Gene Therapy Protect Spiral Ganglion Neurons. Hear. Res. 2007, 228, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Warnecke, A.; Sasse, S.; Wenzel, G.I.; Hoffmann, A.; Gross, G.; Paasche, G.; Scheper, V.; Reich, U.; Esser, K.H.; Lenarz, T.; et al. Stable Release of BDNF from the Fibroblast Cell Line NIH3T3 Grown on Silicone Elastomers Enhances Survival of Spiral Ganglion Cells in Vitro and in Vivo. Hear. Res. 2012, 289, 86–97. [Google Scholar] [CrossRef]
- Li, H.; Edin, F.; Hayashi, H.; Gudjonsson, O.; Danckwardt-Lillieström, N.; Engqvist, H.; Rask-Andersen, H.; Xia, W. Guided Growth of Auditory Neurons: Bioactive Particles towards Gapless Neural—Electrode Interface. Biomaterials 2017, 122, 1–9. [Google Scholar] [CrossRef]
- Pfingst, B.E.; Colesa, D.J.; Swiderski, D.L.; Hughes, A.P.; Strahl, S.B.; Sinan, M.; Raphael, Y. Neurotrophin Gene Therapy in Deafened Ears with Cochlear Implants: Long-Term Effects on Nerve Survival and Functional Measures. JARO J. Assoc. Res. Otolaryngol. 2017, 18, 731–750. [Google Scholar] [CrossRef]
- Hayashi, Y.; Yamamoto, N.; Nakagawa, T.; Ito, J. Insulin-like Growth Factor 1 Inhibits Hair Cell Apoptosis and Promotes the Cell Cycle of Supporting Cells by Activating Different Downstream Cascades after Pharmacological Hair Cell Injury in Neonatal Mice. Mol. Cell. Neurosci. 2013, 56, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Yamahara, K.; Yamamoto, N.; Nakagawa, T.; Ito, J. Insulin-like Growth Factor 1: A Novel Treatment for the Protection or Regeneration of Cochlear Hair Cells. Hear. Res. 2015, 330 Pt A, 2–9. [Google Scholar] [CrossRef]
- De la Rosa, L.R.; Lassaletta, L.; Calvino, M.; Murillo-Cuesta, S.; Varela-Nieto, I. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss. Front. Aging Neurosci. 2017, 9, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Kita, T.; Katsuno, T.; Yamamoto, N.; Omori, K.; Nakagawa, T. Insulin-Like Growth Factor 1 on the Maintenance of Ribbon Synapses in Mouse Cochlear Explant Cultures. Front. Cell. Neurosci. 2020, 14, 571155. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Sakamoto, T.; Hiraumi, H.; Kikkawa, Y.S.; Yamamoto, N.; Hamaguchi, K.; Ono, K.; Yamamoto, M.; Tabata, Y.; Teramukai, S.; et al. Topical Insulin-like Growth Factor 1 Treatment Using Gelatin Hydrogels for Glucocorticoid-Resistant Sudden Sensorineural Hearing Loss: A Prospective Clinical Trial. BMC Med. 2010, 8, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dave, V.J.; Joshi, A.A.; Bradoo, R.; Prajapati, M.; Shah, K. Effects of Insulin-Like Growth Factor (IGF-1) in Patients with Sensorineural Hearing Loss. J. Int. Adv. Otol. 2021, 17, 207–214. [Google Scholar] [CrossRef]
- Kikkawa, Y.S.; Nakagawa, T.; Ying, L.; Tabata, Y.; Tsubouchi, H.; Ido, A.; Ito, J. Growth Factor-Eluting Cochlear Implant Electrode: Impact on Residual Auditory Function, Insertional Trauma, and Fibrosis. J. Transl. Med. 2014, 12, 280. [Google Scholar] [CrossRef]
- Gur, H.; Alimoglu, Y.; Duzenli, U.; Korkmaz, S.; Inan, S.; Olgun, L. The Effect of Local Application of Insulin-like Growth Factor for Prevention of Inner-Ear Damage Caused by Electrode Trauma. J. Laryngol. Otol. 2017, 131, 245–252. [Google Scholar] [CrossRef]
- Bennett, B.L. C-Jun N-Terminal Kinase-Dependent Mechanisms in Respiratory Disease. Eur. Respir. J. 2006, 28, 651–661. [Google Scholar] [CrossRef]
- Eshraghi, A.A.; Van De Water, T.R. Cochlear Implantation Trauma and Noise-Induced Hearing Loss: Apoptosis and Therapeutic Strategies. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 2006, 288A, 473–481. [Google Scholar] [CrossRef]
- Wang, J.; Van De Water, T.R.; Bonny, C.; De Ribaupierre, F.; Puel, J.L.; Zine, A. A Peptide Inhibitor of C-Jun N-Terminal Kinase Protects against Both Aminoglycoside and Acoustic Trauma-Induced Auditory Hair Cell Death and Hearing Loss. J. Neurosci. 2003, 23, 8596. [Google Scholar] [CrossRef] [Green Version]
- Staecker, H.; Jokovic, G.; Karpishchenko, S.; Kienle-Gogolok, A.; Krzyzaniak, A.; Lin, C.D.; Navratil, P.; Tzvetkov, V.; Wright, N.; Meyer, T. Efficacy and Safety of AM-111 in the Treatment of Acute Unilateral Sudden Deafness—A Double-Blind, Randomized, Placebo-Controlled Phase 3 Study. Otol. Neurotol. 2019, 40, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; He, J.; Mou, C.H.; Polak, M.; Zine, A.; Bonny, C.; Balkany, T.J.; Van De Water, T.R. D-JNKI-1 Treatment Prevents the Progression of Hearing Loss in a Model of Cochlear Implantation Trauma. Otol. Neurotol. 2006, 27, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; Wang, J.; Adil, E.; He, J.; Zine, A.; Bublik, M.; Bonny, C.; Puel, J.L.; Balkany, T.J.; Van De Water, T.R. Blocking C-Jun-N-Terminal Kinase Signaling Can Prevent Hearing Loss Induced by Both Electrode Insertion Trauma and Neomycin Ototoxicity. Hear. Res. 2007, 226, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; Hoosien, G.; Ramsay, S.; Dinh, C.T.; Bas, E.; Balkany, T.J.; Van De Water, T.R. Inhibition of the JNK Signal Cascade Conserves Hearing against Electrode Insertion Trauma-Induced Loss. Cochlear Implant. Int. 2010, 11 (Suppl. S1), 104–109. [Google Scholar] [CrossRef]
- Eshraghi, A.A.; Gupta, C.; Van De Water, T.R.; Bohorquez, J.E.; Garnham, C.; Bas, E.; Talamo, V.M. Molecular Mechanisms Involved in Cochlear Implantation Trauma and the Protection of Hearing and Auditory Sensory Cells by Inhibition of C-Jun-N-Terminal Kinase Signaling. Laryngoscope 2013, 123 (Suppl. S1), S1–S14. [Google Scholar] [CrossRef]
- Sekulic-Jablanovic, M.; Petkovic, V.; Wright, M.B.; Kucharava, K.; Huerzeler, N.; Levano, S.; Brand, Y.; Leitmeyer, K.; Glutz, A.; Bausch, A.; et al. Effects of Peroxisome Proliferator Activated Receptors (PPAR)-γ and -α Agonists on Cochlear Protection from Oxidative Stress. PLoS ONE 2017, 12, e0188596. [Google Scholar] [CrossRef]
- Sekulic-Jablanovic, M.; Wright, M.B.; Petkovic, V.; Bodmer, D. Pioglitazone Ameliorates Gentamicin Ototoxicity by Affecting the TLR and STAT Pathways in the Early Postnatal Organ of Corti. Front. Cell. Neurosci. 2020, 14, 566148. [Google Scholar] [CrossRef]
- Paciello, F.; Fetoni, A.R.; Rolesi, R.; Wright, M.B.; Grassi, C.; Troiani, D.; Paludetti, G. Pioglitazone Represents an Effective Therapeutic Target in Preventing Oxidative/Inflammatory Cochlear Damage Induced by Noise Exposure. Front. Pharmacol. 2018, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Paciello, F.; Pisani, A.; Rolesi, R.; Escarrat, V.; Galli, J.; Paludetti, G.; Grassi, C.; Troiani, D.; Fetoni, A.R. Noise-Induced Cochlear Damage Involves PPAR Down-Regulation through the Interplay between Oxidative Stress and Inflammation. Antioxidants 2021, 10, 1188. [Google Scholar] [CrossRef] [PubMed]
- Safety and Efficacy of STR001-IT and STR001-ER in Patients With SSHL. ClinicalTrials.gov Identifier NCT03331627. Updated 25 March 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT03331627 (accessed on 17 March 2022).
- Park, C.; Ji, H.M.; Kim, S.J.; Kil, S.H.; Lee, J.N.; Kwak, S.; Choe, S.K.; Park, R. Fenofibrate Exerts Protective Effects against Gentamicin-Induced Toxicity in Cochlear Hair Cells by Activating Antioxidant Enzymes. Int. J. Mol. Med. 2017, 39, 960–968. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Zhang, T.; Zhan, T.; Cheng, G.; Zhang, W.; Jia, H.; Yang, H. Metformin Alleviates Cisplatin-Induced Ototoxicity by Autophagy Induction Possibly via the AMPK/FOXO3a Pathway. J. Neurophysiol. 2021, 125, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Gedik, Ö.; Doğan, R.; Babademez, M.A.; Karataş, E.; Aydın, M.Ş.; Koçyiğit, A.; Eşrefoğlu, M.; Özturan, O. Therapeutic Effects of Metformin for Noise Induced Hearing Loss. Am. J. Otolaryngol. 2020, 41, 102328. [Google Scholar] [CrossRef] [PubMed]
- Glutz, A.; Leitmeyer, K.; Setz, C.; Brand, Y.; Bodmer, D. Metformin Protects Auditory Hair Cells from Gentamicin-Induced Toxicity in Vitro. Audiol. Neurotol. 2015, 20, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Kopke, R.D.; Jackson, R.L.; Coleman, J.K.M.; Liu, J.; Bielefeld, E.C.; Balough, B.J. NAC for Noise: From the Bench Top to the Clinic. Hear. Res. 2007, 226, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; Roell, J.; Shaikh, N.; Telischi, F.F.; Bauer, B.; Guardiola, M.; Bas, E.; Van De Water, T.; Rivera, I.; Mittal, J. A Novel Combination of Drug Therapy to Protect Residual Hearing Post Cochlear Implant Surgery. Acta Oto-Laryngol. 2016, 136, 420–424. [Google Scholar] [CrossRef]
- Tillinger, J.A.; Gupta, C.; Ila, K.; Ahmed, J.; Mittal, J.; Van De Water, T.R.; Eshraghi, A.A. L-N-Acetylcysteine Protects Outer Hair Cells against TNFα Initiated Ototoxicity in Vitro. Acta Otolaryngol. 2018, 138, 676–684. [Google Scholar] [CrossRef]
- Eshraghi, A.A.; Shahal, D.; Davies, C.; Mittal, J.; Shah, V.; Bulut, E.; Garnham, C.; Sinha, P.; Mishra, D.; Marwede, H.; et al. Evaluating the Efficacy of L-N-Acetylcysteine and Dexamethasone in Combination to Provide Otoprotection for Electrode Insertion Trauma. J. Clin. Med. 2020, 9, 716. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, H.; Pinder, D.; James, D.; Chang, A.; Galloway, S.; Richardson, R.; O’Leary, S. Permanent and Transient Effects of Locally Delivered N-Acetyl Cysteine in a Guinea Pig Model of Cochlear Implantation. Hear. Res. 2010, 259, 24–30. [Google Scholar] [CrossRef]
- Jaudoin, C.; Carré, F.; Gehrke, M.; Sogaldi, A.; Steinmetz, V.; Hue, N.; Cailleau, C.; Tourrel, G.; Nguyen, Y.; Ferrary, E.; et al. Transtympanic Injection of a Liposomal Gel Loaded with N-Acetyl-L-Cysteine: A Relevant Strategy to Prevent Damage Induced by Cochlear Implantation in Guinea Pigs? Int. J. Pharm. 2021, 604, 120757. [Google Scholar] [CrossRef]
- Bas, E.; Dinh, C.T.; Garnham, C.; Polak, M.; Van de Water, T.R. Conservation of Hearing and Protection of Hair Cells in Cochlear Implant Patients’ with Residual Hearing. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1909–1927. [Google Scholar] [CrossRef]
- Bai, X.; Wang, M.; Niu, X.; Yu, H.; Yue, J.; Sun, Y. Effect of N-Acetyl-Cysteine Treatment on Sensorineural Hearing Loss: A Meta-Analysis. World J. Otorhinolaryngol. Head Neck Surg. 2021, in press. [Google Scholar] [CrossRef]
- Shah, V.; Mittal, R.; Shahal, D.; Sinha, P.; Bulut, E.; Mittal, J.; Eshraghi, A.A. Evaluating the Efficacy of Taurodeoxycholic Acid in Providing Otoprotection Using an in Vitro Model of Electrode Insertion Trauma. Front. Mol. Neurosci. 2020, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Krenzlin, S.; Vincent, C.; Munzke, L.; Gnansia, D.; Siepmann, J.; Siepmann, F. Predictability of Drug Release from Cochlear Implants. J. Control. Release 2012, 159, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, N.; Gausterer, J.C.; Honeder, C.; Mötz, M.; Schöpper, H.; Zhu, C.; Saidov, N.; Gabor, F.; Arnoldner, C. Long-Term Effects and Potential Limits of Intratympanic Dexamethasone-Loaded Hydrogels Combined with Dexamethasone-Eluting Cochlear Electrodes in a Low-Insertion Trauma Guinea Pig Model. Hear. Res. 2019, 384, 107825. [Google Scholar] [CrossRef] [PubMed]
- Liebau, A.; Schilp, S.; Mugridge, K.; Schön, I.; Kather, M.; Kammerer, B.; Tillein, J.; Braun, S.; Plontke, S.K. Long-Term in Vivo Release Profile of Dexamethasone-Loaded Silicone Rods Implanted Into the Cochlea of Guinea Pigs. Front. Neurol. 2020, 10, 1377. [Google Scholar] [CrossRef] [PubMed]
- Qnouch, A.; Solarczyk, V.; Verin, J.; Tourrel, G.; Stahl, P.; Danede, F.; Willart, J.F.; Lemesre, P.E.; Vincent, C.; Siepmann, J.; et al. Dexamethasone-Loaded Cochlear Implants: How to Provide a Desired “Burst Release”. Int. J. Pharm. X 2021, 3, 100088. [Google Scholar] [CrossRef]
- Eshraghi, A.A.; Wolfovitz, A.; Yilmazer, R.; Garnham, C.; Yilmazer, A.B.; Bas, E.; Ashman, P.; Roell, J.; Bohorquez, J.; Mittal, R.; et al. Otoprotection to Implanted Cochlea Exposed to Noise Trauma with Dexamethasone Eluting Electrode. Front. Cell. Neurosci. 2019, 13, 492. [Google Scholar] [CrossRef] [Green Version]
- Bas, E.; Bohorquez, J.; Goncalves, S.; Perez, E.; Dinh, C.T.; Garnham, C.; Hessler, R.; Eshraghi, A.A.; Van de Water, T.R. Electrode Array-Eluted Dexamethasone Protects against Electrode Insertion Trauma Induced Hearing and Hair Cell Losses, Damage to Neural Elements, Increases in Impedance and Fibrosis: A Dose Response Study. Hear. Res. 2016, 337, 12–24. [Google Scholar] [CrossRef]
- Douchement, D.; Terranti, A.; Lamblin, J.; Salleron, J.; Siepmann, F.; Siepmann, J.; Vincent, C. Dexamethasone Eluting Electrodes for Cochlear Implantation: Effect on Residual Hearing. Cochlear Implant. Int. 2015, 16, 195–200. [Google Scholar] [CrossRef]
- Chen, D.; Luo, Y.; Pan, J.; Chen, A.; Ma, D.; Xu, M.; Tang, J.; Zhang, H. Long-Term Release of Dexamethasone with a Polycaprolactone-Coated Electrode Alleviates Fibrosis in Cochlear Implantation. Front. Cell Dev. Biol. 2021, 9, 740576. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, H.; Liang, M.; Hou, S.; Chen, J.; Zhang, F.; Sun, X.; Jia, H.; Yang, J. Hearing Protection Outcomes of Analog Electrode Arrays Coated with Different Drug-Eluting Polymer Films Implanted into Guinea Pig Cochleae. Drug Des. Devel. Ther. 2021, 15, 3443. [Google Scholar] [CrossRef] [PubMed]
- Dindelegan, M.G.; Blebea, C.; Perde-Schrepler, M.; Buzoianu, A.D.; Maniu, A.A. Recent Advances and Future Research Directions for Hearing Loss Treatment Based on Nanoparticles. J. Nanomater. 2022, 2022, 7794384. [Google Scholar] [CrossRef]
- Kim, D.K. Nanomedicine for Inner Ear Diseases: A Review of Recent in Vivo Studies. BioMed Res. Int. 2017, 2017, 3098230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wise, A.K.; Tan, J.; Maina, J.W.; Shepherd, R.K.; Caruso, F. Mesoporous Silica Supraparticles for Sustained Inner-Ear Drug Delivery. Small 2014, 10, 4244–4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, A.K.; Tan, J.; Wang, Y.; Caruso, F.; Shepherd, R.K. Improved Auditory Nerve Survival with Nanoengineered Supraparticles for Neurotrophin Delivery into the Deafened Cochlea. PLoS ONE 2016, 11, e0164867. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Y.; Yip, X.; Glynn, F.; Shepherd, R.K.; Caruso, F. Nanoporous Peptide Particles for Encapsulating and Releasing Neurotrophic Factors in an Animal Model of Neurodegeneration. Adv. Mater. 2012, 24, 3362. [Google Scholar] [CrossRef] [Green Version]
- Meyer, H.; Stöver, T.; Fouchet, F.; Bastiat, G.; Saulnier, P.; Bäumer, W.; Lenarz, T.; Scheper, V. Lipidic Nanocapsule Drug Delivery: Neuronal Protection for Cochlear Implant Optimization. Int. J. Nanomed. 2012, 7, 2449–2464. [Google Scholar] [CrossRef] [Green Version]
- Kanzaki, S.; Toyoda, M.; Umezawa, A.; Ogawa, K. Application of Mesenchymal Stem Cell Therapy and Inner Ear Regeneration for Hearing Loss: A Review. Int. J. Mol. Sci. 2020, 21, 5764. [Google Scholar] [CrossRef]
- Scheper, V.; Hoffmann, A.; Gepp, M.M.; Schulz, A.; Hamm, A.; Pannier, C.; Hubka, P.; Lenarz, T.; Schwieger, J. Stem Cell Based Drug Delivery for Protection of Auditory Neurons in a Guinea Pig Model of Cochlear Implantation. Front. Cell. Neurosci. 2019, 13, 177. [Google Scholar] [CrossRef]
- Roemer, A.; Köhl, U.; Majdani, O.; Klöß, S.; Falk, C.; Haumann, S.; Lenarz, T.; Kral, A.; Warnecke, A. Biohybrid Cochlear Implants in Human Neurosensory Restoration. Stem Cell Res. Ther. 2016, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Shearer, A.E.; Hildebrand, M.S.; Smith, R.J. Hereditary Hearing Loss and Deafness Overview. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1434/ (accessed on 30 May 2022).
- Ren, Y.; Landegger, L.D.; Stankovic, K.M. Gene Therapy for Human Sensorineural Hearing Loss. Front. Cell. Neurosci. 2019, 13, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.; Shubina-Oleinik, O.; Holt, J.R. Emerging Gene Therapies for Genetic Hearing Loss. JARO J. Assoc. Res. Otolaryngol. 2017, 18, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Pinyon, J.L.; Tadros, S.F.; Froud, K.E.; Wong, A.C.Y.; Tompson, I.T.; Crawford, E.N.; Ko, M.; Morris, R.; Klugmann, M.; Housley, G.D. Close-Field Electroporation Gene Delivery Using the Cochlear Implant Electrode Array Enhances the Bionic Ear. Sci. Transl. Med. 2014, 6, 233ra54. [Google Scholar] [CrossRef]
- Atkinson, P.J.; Wise, A.K.; Flynn, B.O.; Nayagam, B.A.; Hume, C.R.; O’Leary, S.J.; Shepherd, R.K.; Richardson, R.T. Neurotrophin Gene Therapy for Sustained Neural Preservation after Deafness. PLoS ONE 2012, 7, 52338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukui, H.; Wong, H.T.; Beyer, L.A.; Case, B.G.; Swiderski, D.L.; Di Polo, A.; Ryan, A.F.; Raphael, Y. BDNF Gene Therapy Induces Auditory Nerve Survival and Fiber Sprouting in Deaf Pou4f3 Mutant Mice. Sci. Rep. 2012, 2, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Investigated Principle | Type of Study | Summarized Results | Conclusions |
---|---|---|---|
“Soft surgery” | Animal and human studies [2,3,4,5,6,7,8] | Limit drilling due to high SPL and vibration; avoid bone dust and blood entering the inner ear; limit suctioning to avoid perylimph aspiration. | Literature is clear on core surgical principles, which are already used in clinical practice; little evidence on cochlear blood contamination causing SNHL is available. |
Substances for facilitating electrode insertion | Animal and human studies [3,9,10,11,12,13,14] | HA is favored to reduce friction and facilitate electrode insertion; other lubricants, such as oxycellulose and glycerine, are not recommended. | Although extensively researched, some data suggest that HA does not offer any benefit with respect to hearing preservation; due to the safety profile, HA can be used for electrode insertion; oxycellulose and glycerine are contraindicated as an electrode lubricant due to foreign body reaction and low impedance. |
Partial electrode insertion | Human study [16] | Candidates for electro-acoustic stimulation can benefit from partial electrode insertion. | If hearing further deteriorates, the electrode can be inserted further; insufficient research data are available; the benefit would be the protection of lower frequencies. |
Electrode insertion route | Human and animal study [15,23,24,25,27] | The round window approach adheres more to the “soft surgery” principles, but functional outcomes can be similar if cochleostomy is chosen for selected cases. | The round window approach offers no clear benefit in preserving residual hearing. The ongoing multicentric CIPRES study aims to clarify the details. |
Electrode type | Human studies [35,36] | Straight and curved electrodes were evaluated, with no clear benefit favoring one electode type over the other. | Electrodes have to be precisely fitted for each individual patient. Electrode design and improvement is a continuously evolving field. |
Robot-assisted systems | Human studies [28,31,32,33,34] | Robotic CI limits tremors and damage to the cochlea during electrode insertion (histologic and audiologic data). | Robotic CI results in fewer translocated electrodes but is not correlated with speech perception after implantation. There is a need to determine particular use cases and the cost effectiveness of the approach. |
ECochG | Human study [17] | The use of ECochG can ease atraumatic electrode insertion by objective feedback on amplitude and phase response. | ECochG could facilitate the preservation of residual hearing by limiting mechanical trauma during insertion. |
Local hypothermia | Animal and human studies [18,19,20,21,22] | Local application of controlled hypothermia has a protective effect. | Only preclinical studies are available, but wider use is being investigated; as it is a non invasive method, it may become an early adition to current principles. |
Investigated Substance | Study Type | Summarized Results | Conclusions |
---|---|---|---|
Corticosteroids | Animal and human studies [39,40,41,42,43,44,45] | The timing, dose, and administration route are not standardized; higher doses are required for effect; oral and i.v. regimes were studied, but residual hearing deterioration was still noted; topical administration does not yield higher cochlear concentration. | Although they are the most studied substance, there is no compeling evidence that corticosteroids would preserve residual hearing following CI. |
Brain-derived neurotrophic factor | Animal and human studies [46,47,48] | BDNF did not sustain the viability of the supporting cells of the SNG but still managed to induce better survival of the neurons than in the control gorups. | No functional data are available; the local use of BDNF needs to be further investigated, but current data may support its furure use. |
Glial-cell-line-derived neurotrophic factor | Animal study [49] | Electrodes coated with GDNF and BDNF favor SNG axon growth and contact with the implant electrode. | Only one study shows potential benefits, and no functional data are available; more data are needed in order to draw conclusions. |
Neurotrophin-3 | Animal study [50] | NT-3 maintained a higher number of SNGs compared to the control group, but results were inconsistent. | More studies are needed to sustain the use of NT-3, both including and exluding electric stimulation. |
Insulin-like growth factor | Animal and human studies [55,57,58] | Good results were achieved with SNHL; IGF-1-coated electrodes showed better ABR results when compared to controls. | Limited data are available with promising results; many articles support the neuroprotective effects of IGF-1, but available data need to be transposed to the preservation of residual hearing. |
MAPK/JNK pathway inhibitor | Animal and human studies [55,62,63,64,65] | Confirmed as a protective substance for electrode-induced cochlear trauma; ABR showed limited variation after electrode insertion trauma when associated with D-JNKI-1; clinical trials show promising results in profound sudden SNHL. | Insufficient data are available regarding the preservation of residual hearing; data are promising regarding other types of hearing loss; phase III clinical results for profound SNHL suggest MAPK/JNK pathway inhibitors are safe to use. |
Pioglitazone | Animal and human studies [67,69,70,71] | A protective effect was achieved in gentamicin-induced hearing loss; a protective effect was observed in noise-induced hearing loss; no studies are available on residual hearing loss. | Promising results were obtained in SNHL, which can be applied in CI. |
N-acetyl cysteine | Animal studies [80,81,82,83] | N-acetyl cysteine was protective against noise-induced cochlear damage and found to be safe to use; it was also found to be protective against electrode insertion trauma; in animal models, intracochlear N-ACC use resulted in signs of ossifiacation and hearing threshold increase, as well as hearing loss. | Inconclusive and negative findings may limit its use in N-ACC in CI and otology. |
Taurodeoxycholic acid | Animal study [84] | An EIT mimicking in vitro study showed TDCA protection against hair cell loss in a dose-dependant manner. | Only information from an in vitro study is available; more data are needed to sustain the use of TDCA. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blebea, C.M.; Ujvary, L.P.; Necula, V.; Dindelegan, M.G.; Perde-Schrepler, M.; Stamate, M.C.; Cosgarea, M.; Maniu, A.A. Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review. Medicina 2022, 58, 747. https://doi.org/10.3390/medicina58060747
Blebea CM, Ujvary LP, Necula V, Dindelegan MG, Perde-Schrepler M, Stamate MC, Cosgarea M, Maniu AA. Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review. Medicina. 2022; 58(6):747. https://doi.org/10.3390/medicina58060747
Chicago/Turabian StyleBlebea, Cristina Maria, Laszlo Peter Ujvary, Violeta Necula, Maximilian George Dindelegan, Maria Perde-Schrepler, Mirela Cristina Stamate, Marcel Cosgarea, and Alma Aurelia Maniu. 2022. "Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review" Medicina 58, no. 6: 747. https://doi.org/10.3390/medicina58060747
APA StyleBlebea, C. M., Ujvary, L. P., Necula, V., Dindelegan, M. G., Perde-Schrepler, M., Stamate, M. C., Cosgarea, M., & Maniu, A. A. (2022). Current Concepts and Future Trends in Increasing the Benefits of Cochlear Implantation: A Narrative Review. Medicina, 58(6), 747. https://doi.org/10.3390/medicina58060747