The Clinical Impact of Platelets on Post-Injury Serum Creatinine Concentration in Multiple Trauma Patients: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptive Analysis
2.2. Correlation Analysis
3. Results
3.1. Descriptive Analysis
3.1.1. Description of the Study Population
3.1.2. Dynamics of Platelet Counts and Serum Creatinine Concentration
3.1.3. Subgroup Analysis of Dynamics of Platelet Counts and Creatinine Concentration
3.2. Correlation Analysis
4. Discussion
4.1. Descriptive Analysis
4.1.1. Dynamics of Platelet Count after Multiple Trauma
4.1.2. Dynamics of Serum Creatinine Concentration after Multiple Trauma
4.2. Correlation Analysis of Platelet Count and Serum Creatinine Concentration after Multiple Trauma
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 24 May 2022).
- Demetriades, D.; Kimbrell, B.; Salim, A.; Velmahos, G.; Rhee, P.; Preston, C.; Gruzinski, G.; Chan, L. Trauma Deaths in a Mature Urban Trauma System: Is “Trimodal” Distribution a Valid Concept? J. Am. Coll. Surg. 2005, 201, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Ciesla, D.J.; Moore, E.E.; Johnson, J.L.; Burch, J.M.; Cothren, C.C.; Sauaia, A. A 12-Year Prospective Study of Postinjury Multiple Organ Failure: Has anything changed? Arch. Surg. 2005, 140, 432–440. [Google Scholar] [CrossRef]
- Sauaia, A.; Moore, E.E.; Johnson, J.L.; Chin, T.L.; Banerjee, A.; Sperry, J.L.; Maier, R.V.; Burlew, C.C. Temporal trends of postinjury multiple-organ failure: Still resource intensive, morbid, and lethal. J. Trauma Acute Care Surg. 2014, 76, 582–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, F.A.; Moore, E.E. Evolving Concepts in the Pathogenesis of Postinjury Multiple Organ Failure. Surg. Clin. N. Am. 1995, 75, 257–277. [Google Scholar] [CrossRef]
- Zedler, S.; Faist, E. The impact of endogenous triggers on trauma-associated inflammation. Curr. Opin. Crit. Care 2006, 12, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.F.; Cuenca, A.G.; Efron, P.A.; Ang, D.; Bihorac, A.; McKinley, B.A.; Moldawer, L.L.; Moore, F.A. Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 2012, 72, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Sauaia, A.; Moore, F.A.; Moore, E.E. Postinjury Inflammation and Organ Dysfunction. Crit. Care Clin. 2017, 33, 167–191. [Google Scholar] [CrossRef] [Green Version]
- Nurden, A.T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 2011, 105 (Suppl. S1), S13–S33. [Google Scholar] [CrossRef]
- Bergmann, C.B.; Hefele, F.; Unger, M.; Huber-Wagner, S.; Biberthaler, P.; Van Griensven, M.; Hanschen, M. Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model. Immunol. Res. 2016, 64, 508–517. [Google Scholar] [CrossRef]
- Bock, M.; Bergmann, C.B.; Jung, S.; Kalbitz, M.; Relja, B.; Huber-Wagner, S.; Biberthaler, P.; van Griensven, M.; Hanschen, M. The posttraumatic activation of CD4+ T regulatory cells is modulated by TNFR2- and TLR4-dependent pathways, but not by IL-10. Cell. Immunol. 2018, 331, 137–145. [Google Scholar] [CrossRef]
- Klinger, M.H.; Jelkmann, W. Review: Role of Blood Platelets in Infection and Inflammation. J. Interferon Cytokine Res. 2002, 22, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Morrell, C.N.; Aggrey, A.A.; Chapman, L.M.; Modjeski, K.L. Emerging roles for platelets as immune and inflammatory cells. Blood 2014, 123, 2759–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarbock, A.; Polanowska-Grabowska, R.K.; Ley, K. Platelet-neutrophil-interactions: Linking hemostasis and inflammation. Blood Rev. 2007, 21, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Elzey, B.D.; Sprague, D.L.; Ratliff, T.L. The emerging role of platelets in adaptive immunity. Cell. Immunol. 2005, 238, 1–9. [Google Scholar] [CrossRef]
- Henn, V.; Slupsky, J.R.; Gräfe, M.; Anagnostopoulos, I.; Forster, R.; Müller-Berghaus, G.; Kroczek, R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998, 391, 591–594. [Google Scholar] [CrossRef]
- Hefele, F.; Ditsch, A.; Krysiak, N.; Caldwell, C.C.; Biberthaler, P.; van Griensven, M.; Huber-Wagner, S.; Hanschen, M. Trauma Induces Interleukin-17A Expression on Th17 Cells and CD4+ Regulatory T Cells as Well as Platelet Dysfunction. Front. Immunol. 2019, 10, 2389. [Google Scholar] [CrossRef] [PubMed]
- Veer, C.V.; Van Der Poll, T.; De Stoppelaar, S.F. The role of platelets in sepsis. Thromb. Haemost. 2014, 112, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Zarbock, A.; Gomez, H.; Kellum, J.A. Sepsis-induced acute kidney injury revisited: Pathophysiology, prevention and future therapies. Curr. Opin. Crit. Care 2014, 20, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Kellum, A.J.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766. [Google Scholar] [CrossRef]
- Brandt, M.-M.; Falvo, A.J.; Rubinfeld, I.S.; Blyden, D.; Durrani, N.K.; Horst, H.M. Renal Dysfunction in Trauma: Even a Little Costs a Lot. J. Trauma Acute Care Surg. 2007, 62, 1362–1364. [Google Scholar] [CrossRef]
- Morris, J.A.; Mucha, P.; Ross, S.E.; Moore, B.F.A.; Hoyt, D.B.; Gentilello, L.; Landercasper, J.; Feliciano, D.V.; Shackford, S.R. Acute Posttraumatic Renal Failure: A Multicenter Perspective. J. Trauma 1991, 31, 1584–1590. [Google Scholar] [CrossRef]
- Podoll, A.S.; Kozar, R.; Holcomb, J.B.; Finkel, K.W. Incidence and Outcome of Early Acute Kidney Injury in Critically-Ill Trauma Patients. PLoS ONE 2013, 8, e77376. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Wang, W. Acute Renal Failure and Sepsis. N. Engl. J. Med. 2004, 351, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Singbartl, K.; Forlow, S.B.; Ley, K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure. FASEB J. 2001, 15, 2337–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singbartl, K.; Ley, K. Leukocyte recruitment and acute renal failure. J. Mol. Med. 2004, 82, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.P.; Emal, D.; Teske, G.J.; Dessing, M.C.; Florquin, S.; Roelofs, J.J. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int. 2017, 91, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Batteux, F.; Chéreau, C.; Kavian, N.; Marut, W.; Gobeaux, C.; Borderie, D.; Dinh-Xuan, A.T.; Weill, B.; Nicco, C. Clopidogrel protects from cell apoptosis and oxidative damage in a mouse model of renal ischaemia-reperfusion injury. J. Pathol. 2011, 225, 265–275. [Google Scholar] [CrossRef]
- Zarbock, A.; Singbartl, K.; Ley, K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J. Clin. Investig. 2006, 116, 3211–3219. [Google Scholar] [CrossRef] [Green Version]
- Zarbock, A. The role of platelets in acute lung injury (ALI). Front. Biosci. 2009, 14, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Looney, M.R.; Nguyen, J.X.; Hu, Y.; Van Ziffle, J.A.; Lowell, C.A.; Matthay, M.A. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J. Clin. Investig. 2009, 119, 3450–3461. [Google Scholar] [CrossRef] [Green Version]
- Kasotakis, G.; Starr, N.; Nelson, E.; Sarkar, B.; Burke, P.A.; Remick, D.G.; Tompkins, R.G. The Inflammation and Host Response to Injury Investigators Platelet transfusion increases risk for acute respiratory distress syndrome in non-massively transfused blunt trauma patients. Eur. J. Trauma Emerg. Surg. 2018, 45, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Nydam, T.L.; Kashuk, J.L.; Moore, E.E.; Johnson, J.L.; Burlew, C.C.; Biffl, W.L.; Barnett, C.C.; Sauaia, A. Refractory Postinjury Thrombocytopenia Is Associated with Multiple Organ Failure and Adverse Outcomes. J. Trauma Acute Care Surg. 2011, 70, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.M.; Kornblith, L.Z.; Hendrickson, C.M.; Redick, B.J.; Conroy, A.S.; Nelson, M.F.; Callcut, R.A.; Calfee, C.S.; Cohen, M.J. Differences in degree, differences in kind: Characterizing lung injury in trauma. J. Trauma Acute Care Surg. 2015, 78, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harr, J.N.; Moore, E.E.; Johnson, J.; Chin, T.L.; Wohlauer, M.V.; Maier, R.; Cuschieri, J.; Sperry, J.; Banerjee, A.; Silliman, C.C.; et al. Antiplatelet Therapy Is Associated with Decreased Transfusion-Associated Risk of Lung Dysfunction, Multiple Organ Failure, and Mortality in Trauma Patients. Crit. Care Med. 2013, 41, 399–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, A.J.; Di Gangi, S.; Hamid, U.I.; Mottram, L.-J.; McNamee, L.; White, G.; Cross, L.M.; McNamee, J.J.; O’Kane, C.M.; McAuley, D.F. Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: A prospective analysis. Crit. Care 2015, 19, 109. [Google Scholar] [CrossRef] [Green Version]
- Greve, F.; Mair, O.; Aulbach, I.; Biberthaler, P.; Hanschen, M. Correlation between Platelet Count and Lung Dysfunction in Multiple Trauma Patients—A Retrospective Cohort Analysis. J. Clin. Med. 2022, 11, 1400. [Google Scholar] [CrossRef]
- Sauaia, A.; Moore, F.A.; Moore, E.E.; Haenel, J.B.; Read, R.A.; Lezotte, D.C. Early Predictors of Postinjury Multiple Organ Failure. Arch. Surg. 1994, 129, 39–45. [Google Scholar] [CrossRef]
- Sauaia, A.; Moore, F.A.; Moore, E.E.; Norris, J.M.; Lezotte, D.C.; Hamman, R.F. Multiple Organ Failure Can Be Predicted as Early as 12 Hours after Injury. J. Trauma Acute Care Surg. 1998, 45, 291–303. [Google Scholar] [CrossRef]
- Bösch, F.; Angele, M.K.; Chaudry, I.H. Gender differences in trauma, shock and sepsis. Mil. Med. Res. 2018, 5, 35. [Google Scholar] [CrossRef]
- Gennarelli, T.; Wodzin, E. Abbreviated Injury Scale 2005: Update 2008. 2016. Available online: https://www.aaam.org/how-do-i-cite-the-ais-dictionary/ (accessed on 28 May 2022).
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef]
- Boilard, E.; Nigrovic, P.A.; Larabee, K.; Watts, G.F.M.; Coblyn, J.S.; Weinblatt, M.E.; Massarotti, E.M.; Remold-O’Donnell, E.; Farndale, R.W.; Ware, J.; et al. Platelets Amplify Inflammation in Arthritis via Collagen-Dependent Microparticle Production. Science 2010, 327, 580–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laschke, M.W.; Dold, S.; Menger, M.D.; Jeppsson, B.; Thorlacius, H. Platelet-dependent accumulation of leukocytes in sinusoids mediates hepatocellular damage in bile duct ligation-induced cholestasis. J. Cereb. Blood Flow Metab. 2008, 153, 148–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, R.W.; Zolfaghari, P.; Wan, Y.; Pearse, R.M.; Puthucheary, Z.; Prowle, J.R. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma. Intensiv. Care Med. 2019, 45, 1718–1731. [Google Scholar] [CrossRef]
- Sauaia, A.; Moore, F.A.; Moore, E.E.; Lezotte, D.C. Early Risk Factors for Postinjury Multiple Organ Failure. World J. Surg. 1996, 20, 392–400. [Google Scholar] [CrossRef]
- Bhatia, M.; Moochhala, S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J. Pathol. 2004, 202, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, F.; Ahmad, Z.; Rosenberger, G.; Fan, S.; Nicolai, L.; Busch, B.; Yavuz, G.; Luckner, M.; Ishikawa-Ankerhold, H.; Hennel, R.; et al. Migrating Platelets Are Mechano-scavengers that Collect and Bundle Bacteria. Cell 2017, 171, 1368–1382.e23. [Google Scholar] [CrossRef]
- Ciesla, D.J.; Moore, E.E.; Johnson, J.L.; Burch, J.M.; Cothren, C.C.; Sauaia, A. The role of the lung in postinjury multiple organ failure. Surgery 2005, 138, 749–758. [Google Scholar] [CrossRef]
- Jansen, M.P.B.; Florquin, S.; Roelofs, J.J.T.H. The role of platelets in acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 457–471. [Google Scholar] [CrossRef]
- Ragab, D.; Abdallah, D.M.; El-Abhar, H.S. Cilostazol Renoprotective Effect: Modulation of PPAR-γ, NGAL, KIM-1 and IL-18 Underlies Its Novel Effect in a Model of Ischemia-Reperfusion. PLoS ONE 2014, 9, e95313. [Google Scholar] [CrossRef] [Green Version]
- Lax, S.; Rayes, J.; Wichaiyo, S.; Haining, E.J.; Lowe, K.; Grygielska, B.; Laloo, R.; Flodby, P.; Borok, Z.; Crandall, E.D.; et al. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse. Am. J. Physiol. Cell. Mol. Physiol. 2017, 313, L1016–L1029. [Google Scholar] [CrossRef]
- Frink, M.; Pape, H.-C.; van Griensven, M.; Krettek, C.; Chaudry, I.H.; Hildebrand, F. Influence of sex and age on mods and cytokines after multiple injuries. Shock 2007, 27, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, G.; Huynh, T.; Sing, R.F.; Miles, W.S.; Norton, H.J.; Thomason, M.H. Gender-Related Outcomes in Trauma. J. Trauma Acute Care Surg. 2002, 53, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Wohltmann, C.D.; Franklin, G.A.; Boaz, P.W.; Luchette, F.A.; Kearney, P.A.; Richardson, J.; Spain, D.A. A multicenter evaluation of whether gender dimorphism affects survival after trauma. Am. J. Surg. 2001, 181, 297–300. [Google Scholar] [CrossRef]
- Kang, K.P.; Lee, J.E.; Lee, A.S.; Jung, Y.J.; Kim, D.; Lee, S.; Hwang, H.P.; Kim, W.; Park, S.K. Effect of gender differences on the regulation of renal ischemia-reperfusion-induced inflammation in mice. Mol. Med. Rep. 2014, 9, 2061–2068. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-C.; Chang, C.-Y.; Chang, S.-T.; Chen, S.-H. 17β-Estradiol Accelerated Renal Tubule Regeneration in Male Rats after Ischemia/Reperfusion-Induced Acute Kidney Injury. Shock 2016, 46, 158–163. [Google Scholar] [CrossRef]
- Kasımay, O.; Şener, G.; Çakır, B.; Yüksel, M.; Çetinel, S.; Contuk, G.; Yeğen, B. Estrogen Protects against Oxidative Multiorgan Damage in Rats with Chronic Renal Failure. Ren. Fail. 2009, 31, 711–725. [Google Scholar] [CrossRef]
- Perkins, Z.B.; Captur, G.; Bird, R.; Gleeson, L.; Singer, B.; O’Brien, B. Trauma induced acute kidney injury. PLoS ONE 2019, 14, e0211001. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, M.; Brattström, O.; Mårtensson, J.; Larsson, E.; Oldner, A. Acute kidney injury following severe trauma: Risk factors and long-term outcome. J. Trauma Acute Care Surg. 2015, 79, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Haines, R.W.; Lin, S.-P.; Hewson, R.; Kirwan, C.J.; Torrance, H.D.; O’Dwyer, M.J.; West, A.; Brohi, K.; Pearse, R.; Zolfaghari, P.; et al. Acute Kidney Injury in Trauma Patients Admitted to Critical Care: Development and Validation of a Diagnostic Prediction Model. Sci. Rep. 2018, 8, 3665. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative Workgroup. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Acute Kidney Injury Network. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n = 83 (100%) | Mean ± SD/Median (IQR Q25–Q75) | |
---|---|---|
Age | Median 51 years (34–64 years) | |
<60 years | 57 (68.7%) | Median 43 years (29–51 years) |
≥60 years | 26 (31.3%) | Median 73 years (66–76 years) |
Gender | ||
Men | 62 (74.7%) | - |
Women | 21 (25.3%) | - |
Trauma Mechanism | ||
Blunt | 76 (91.6%) | - |
Penetrating | 7 (8.4%) | - |
Abbreviated Injury Scale | ||
Head | 59 (71.1%) | Median 3 (0–4) |
face | 28 (33.7%) | Median 0 (0–2) |
thorax | 45 (54.2%) | Median 2 (0–3) |
abdomen | 28 (33.7%) | Median 0 (0–3) |
extremities /pelvis | 62 (74.7%) | Median 3 (0–4) |
other | 25 (30.1%) | Median 0 (0–1) |
Injury Severity Score | - | Median 22 (18–36) |
<35 | 62 (74.7%) | Median 19 (17–25) |
≥35 | 21 (25.3%) | Median 41 (38–57) |
Need for intensive care medicine | ||
Duration | 0–56 days | Mean 8.3 days ± 13.0 days |
No ICU stay | 16 (19%) | Mean 15.1 days ± 5.8 days |
Admission to ICU | 67 (81%) | Mean 10.1 days ± 13.7 days |
Outcome | ||
Deceased | 10 (12%) | - |
Survivors | 73 (88%) | - |
Variable | Estimate | Standard Error | 95% CI | p | ||
---|---|---|---|---|---|---|
D1 | Creatinine (mg/dL) | Platelets | ≤0.001 | ≤0.001 | <−0.001 to ≤0.001 | 0.377 |
Age | ≤0.004 | 0.002 | ≤0.001 to 0.001 | 0.01 * | ||
Sex (Female) | −0.197 | 0.066 | −0.328 to −0.066 | 0.004 ** | ||
ISS | 0.006 | 0.003 | <0.001 to 0.012 | 0.014 * | ||
Days on ICU | −0.002 | 0.002 | −0.007 to 0.003 | 0.361 | ||
D3 | Creatinine (mg/dL) | Platelets | −0.002 | 0.002 | −0.006 to 0.003 | 0.538 |
Age | 0.005 | 0.007 | −0.008 to 0.018 | 0.451 | ||
Sex (Female) | −0.371 | 0.283 | −0.934 to 0.193 | 0.194 | ||
ISS | 0.015 | 0.012 | −0.009 to 0.040 | 0.216 | ||
Days on ICU | 0.004 | 0.01 | −0.016 to 0.025 | 0.657 | ||
D5 | Creatinine (mg/dL) | Platelets | −0.004 | 0.001 | −0.008 to −7.722 | 0.046 * |
Age | 0.007 | 0.008 | −0.009 to 0.0219 | 0.141 | ||
Sex (Female) | −0.415 | 0.333 | −1.080 to 0.250 | 0.139 | ||
ISS | 0.017 | 0.014 | −0.011 to 0.045 | 0.147 | ||
Days on ICU | −0.004 | 0.012 | −0.028 to 0.019 | 0.044 | ||
D10 | Creatinine (mg/dL) | Platelets | ≤−0.001 | ≤0.001 | −0.002 to 0.001 | 0.482 |
Age | 0.004 | 0.006 | −0.009 to 0.017 | 0.515 | ||
Sex (Female) | −0.268 | 0.244 | −0.758 to 0.221 | 0.276 | ||
ISS | 0.016 | 0.011 | −0.006 to 0.039 | 0.156 | ||
Days on ICU | 0.001 | 0.009 | −0.016 to 0.019 | 0.882 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greve, F.; Aulbach, I.; Mair, O.; Biberthaler, P.; Hanschen, M. The Clinical Impact of Platelets on Post-Injury Serum Creatinine Concentration in Multiple Trauma Patients: A Retrospective Cohort Study. Medicina 2022, 58, 901. https://doi.org/10.3390/medicina58070901
Greve F, Aulbach I, Mair O, Biberthaler P, Hanschen M. The Clinical Impact of Platelets on Post-Injury Serum Creatinine Concentration in Multiple Trauma Patients: A Retrospective Cohort Study. Medicina. 2022; 58(7):901. https://doi.org/10.3390/medicina58070901
Chicago/Turabian StyleGreve, Frederik, Ina Aulbach, Olivia Mair, Peter Biberthaler, and Marc Hanschen. 2022. "The Clinical Impact of Platelets on Post-Injury Serum Creatinine Concentration in Multiple Trauma Patients: A Retrospective Cohort Study" Medicina 58, no. 7: 901. https://doi.org/10.3390/medicina58070901
APA StyleGreve, F., Aulbach, I., Mair, O., Biberthaler, P., & Hanschen, M. (2022). The Clinical Impact of Platelets on Post-Injury Serum Creatinine Concentration in Multiple Trauma Patients: A Retrospective Cohort Study. Medicina, 58(7), 901. https://doi.org/10.3390/medicina58070901