Coronary CT Value in Quantitative Assessment of Intermediate Stenosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Image Acquisition
2.3. Imaging Analysis
2.4. Study End Points
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristic
3.2. Quantitative CCTA Analysis
3.3. MACE Predictors
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Saraste, A.; Knuuti, J. ESC 2019 guidelines for the diagnosis and management of chronic coronary syndromes: Recommendations for cardiovascular imaging. Herz 2020, 45, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Cury, R.C. President’s page: Ten years of innovation in cardiac CT. J. Cardiovasc. Comput. Tomogr. 2014, 8, 338–339. [Google Scholar] [CrossRef] [PubMed]
- Senoner, T.; Plank, F.; Barbieri, F.; Beyer, C.; Birkl, K.; Widmann, G.; Adukauskaite, A.; Friedrich, G.; Dichtl, W.; Feuchtner, G.M. Added value of high-risk plaque criteria by coronary CTA for prediction of long-term outcomes. Atherosclerosis 2020, 300, 26–33. [Google Scholar] [CrossRef]
- Hoffmann, U.; Ferencik, M.; Udelson, J.E.; Picard, M.H.; Truong, Q.A.; Patel, M.R.; Huang, M.; Pencina, M.; Mark, D.B.; Heitner, J.F.; et al. PROMISE Investigators. Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: Insights from the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation 2017, 135, 2320–2332. [Google Scholar] [CrossRef] [PubMed]
- Wardziak, Ł.; Kruk, M.; Pleban, W.; Demkow, M.; Rużyłło, W.; Dzielińska, Z.; Kępka, C. Coronary CTA enhanced with CTA based FFR analysis provides higher diagnostic value than invasive coronary angiography in patients with intermediate coronary stenosis. J. Cardiovasc. Comput. Tomogr. 2019, 13, 62–67. [Google Scholar] [CrossRef]
- Jespersen, L.; Hvelplund, A.; Abildstrøm, S.Z.; Pedersen, F.; Galatius, S.; Madsen, J.K.; Jørgensen, E.; Kelbæk, H.; Prescott, E. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur. Heart J. 2012, 33, 734–744. [Google Scholar] [CrossRef]
- Bae, J.H.; Corban, M.T.; Seo, Y.H.; Kim, T.; Lee, G.; Kwon, T.G.; Kim, K.H.; Song, I.G.; Lee, M.S.; Rihal, C.S.; et al. Ten-year clinical outcomes of an intermediate coronary lesion; prognosis and predictors of major adverse cardiovascular events. Int. J. Cardiol. 2020, 299, 26–30. [Google Scholar] [CrossRef]
- Burzotta, F.; Leone, A.M.; Aurigemma, C.; Zambrano, A.; Zimbardo, G.; Arioti, M.; Vergallo, R.; De Maria, G.L.; Cerracchio, E.; Romagnoli, E.; et al. Fractional Flow Reserve or Optical Coherence Tomography to Guide Management of Angiographically Intermediate Coronary Stenosis: A Single-Center Trial. JACC Cardiovasc. Interv. 2020, 13, 49–58. [Google Scholar] [CrossRef]
- Boogers, M.J.; Broersen, A.; van Velzen, J.E.; de Graaf, F.R.; El-Naggar, H.M.; Kitslaar, P.H.; Dijkstra, J.; Delgado, V.; Boersma, E.; de Roos, A.; et al. Automated quantification of coronary plaque with computed tomography: Comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur. Heart J. 2012, 33, 1007–1016. [Google Scholar] [CrossRef]
- van Hamersvelt, R.W.; Zreik, M.; Voskuil, M.; Viergever, M.A.; Išgum, I.; Leiner, T. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. Eur. Radiol. 2019, 29, 2350–2359. [Google Scholar] [CrossRef] [Green Version]
- de Knegt, M.C.; Haugen, M.; Linde, J.J.; Kühl, J.T.; Nordestgaard, B.G.; Køber, L.V.; Hove, J.D.; Kofoed, K.F. Reproducibility of quantitative coronary computed tomography angiography in asymptomatic individuals and patients with acute chest pain. PLoS ONE 2018, 13, e0207980. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Sung, J.M.; Rizvi, A.; Lin, F.Y.; Kumar, A.; Hadamitzky, M.; Kim, Y.J.; Conte, E.; Andreini, D.; Pontone, G.; et al. Quantification of Coronary Atherosclerosis in the Assessment of Coronary Artery Disease. Circ. Cardiovasc. Imaging 2018, 11, e007562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbab-Zadeh, A. Coronary Atheroma Burden Is the Main Determinant of Patient Outcome: But How Much Detail Is Needed? Circ. Cardiovasc. Imaging 2018, 11, e007992. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Berman, D.S.; Miller, R.J.H.; Andreini, D.; Budoff, M.J.; Cademartiri, F.; Chinnaiyan, K.; Choi, J.H.; Conte, E.; Marques, H.; et al. Association of Cardiovascular Disease Risk Factor Burden With Progression of Coronary Atherosclerosis Assessed by Serial Coronary Computed Tomographic Angiography. JAMA Netw. Open. 2020, 3, e2011444. [Google Scholar] [CrossRef] [PubMed]
- Cury, R.C.; Abbara, S.; Achenbach, S.; Agatston, A.; Berman, D.S.; Budoff, M.J.; Dill, K.E.; Jacobs, J.E.; Maroules, C.D.; Rubin, G.D.; et al. CAD-RADS™: Coronary Artery Disease-Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J. Am. Coll. Radiol. 2016, 13, 1458–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, S.; Al Heidous, M.; Alkuwari, M. Coronary Artery Disease-Reporting and Data System (CAD-RADS): Strengths and limitations. Clin. Radiol. 2019, 74, 411–417. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, 618–651. [Google Scholar] [CrossRef]
- Mortensen, M.B.; Dzaye, O.; Steffensen, F.H.; Bøtker, H.E.; Jensen, J.M.; Rønnow Sand, N.P.; Kragholm, K.H.; Sørensen, H.T.; Leipsic, J.; Mæng, M.; et al. Impact of Plaque Burden Versus Stenosis on Ischemic Events in Patients with Coronary Atherosclerosis. J. Am. Coll. Cardiol. 2020, 76, 2803–2813. [Google Scholar] [CrossRef]
- Ayoub, C.; Erthal, F.; Abdelsalam, M.A.; Murad, M.H.; Wang, Z.; Erwin, P.J.; Hillis, G.S.; Kritharides, L.; Chow, B.J.W. Prognostic value of segment involvement score compared to other measures of coronary atherosclerosis by computed tomography: A systematic review and meta-analysis. J. Cardiovasc. Comput. Tomogr. 2017, 11, 258–267. [Google Scholar] [CrossRef]
- Deseive, S.; Kupke, M.; Straub, R.; Stocker, T.J.; Broersen, A.; Kitslaar, P.; Martinoff, S.; Massberg, S.; Hadamitzky, M.; Hausleiter, J. Quantified coronary total plaque volume from computed tomography angiography provides superior 10-year risk stratification. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 314–321. [Google Scholar] [CrossRef]
- Williams, M.C.; Kwiecinski, J.; Doris, M.; McElhinney, P.; D’Souza, M.S.; Cadet, S.; Adamson, P.D.; Moss, A.J.; Alam, S.; Hunter, A.; et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results from the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 2020, 141, 1452–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Qi, J.; Mao, H.; Wang, N.; Ye, X.; Zhou, L.; Tong, G.; Yang, J.; Pan, H.; Huang, J. Coronary plaque tissue characterization in patients with premature coronary artery disease. Int. J. Cardiovasc. Imaging 2020, 36, 1003–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.J.; Jeong, M.H.; Ahn, Y.; Sim, D.S.; Chung, J.W.; Cho, J.S.; Yoon, N.S.; Yoon, H.J.; Moon, J.Y.; Kim, K.H.; et al. Age-related differences in intravascular ultrasound findings in 1009 coronary artery disease patients. Circ. J. 2008, 72, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.; Li, W.; Lu, Z.; Wei, M.; Zhang, J. Calcification remodeling index assessed by cardiac CT predicts severe coronary stenosis in lesions with moderate to severe calcification. J. Cardiovasc. Comput. Tomogr. 2018, 12, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, D.; Achenbach, S.; Schuhbaeck, A.; Pflederer, T.; Nakazato, R.; Slomka, P.J.; Berman, D.S.; Marwan, M. Comparison of quantitative atherosclerotic plaque burden from coronary CT angiography in patients with first acute coronary syndrome and stable coronary artery disease. J. Cardiovasc. Comput. Tomogr. 2014, 8, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.; Madder, R. OCT-NIRS Imaging for Detection of Coronary Plaque Structure and Vulnerability. Front. Cardiovasc. Med. 2020, 7, 90. [Google Scholar] [CrossRef]
- Otsuka, F.; Kramer, M.C.; Woudstra, P.; Yahagi, K.; Ladich, E.; Finn, A.V.; de Winter, R.J.; Kolodgie, F.D.; Wight, T.N.; Davis, H.R.; et al. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: A pathology study. Atherosclerosis 2015, 241, 772–782. [Google Scholar] [CrossRef] [Green Version]
Demographic Parameter | Total n = 129 (100%) | MACE | Non-MACE | p Value |
---|---|---|---|---|
n = 40 (31.0%) | n = 89 (69.0%) | |||
Age, years | 65.3 ± 9.6 | 65.3 ± 10.1 | 65.3 ± 9.5 | 0.909 |
Male (%) | 59 (45.7) | 20 (50.0) | 39 (43.8) | 0.515 |
Hypertension (%) | 110 (85.3) | 35 (87.5) | 75 (84.3) | 0.632 |
Diabetes mellitus (%) | 21 (16.3) | 8 (20.0) | 13 (14.6) | 0.443 |
Smoking (%) | 25 (19.4) | 10 (25.0) | 15 (16.9) | 0.279 |
Dyslipidemia (%) | 95 (73.6) | 32 (80.0) | 63 (70.8) | 0.272 |
Total cholesterol, mmol/L | 6.1 ± 1.3 | 6.1 ± 1.5 | 6.1 ± 1.2 | 0.867 |
HDL, mmol/L | 1.4 ± 0.3 | 1.4 ± 0.3 | 1.4 ± 0.3 | 0.659 |
LDL, mmol/L | 3.9 ± 1.1 | 3.9 ± 1.2 | 3.9 ± 1.1 | 0.799 |
Triglyceride, mmol/L | 1.7 ± 1.2 | 1.9 ± 1.6 | 1.6 ± 0.9 | 0.864 |
Creatinine, µmol/L | 79.2 ± 16.3 | 81.8 ± 15.3 | 77.6 ± 16.8 | 0.109 |
Statin use (%) | 93 (72.1) | 31 (77.5) | 62 (69.7) | 0.521 |
Agatston score | 171.6 ± 201.3 | 221.6 ± 204.1 | 149.1 ± 197.0 | 0.025 |
MACE n = 40 (31.0%) | Non-MACE n = 89 (69.0%) | p Value | |||
---|---|---|---|---|---|
Mean ± SD | Median (IQR) | Mean ± SD | Median (IQR) | ||
Lesion area: | |||||
Lesion length, mm | 6.4 ± 4.3 | 5.1 (3.4–8.4) | 6.3 ± 4.0 | 5.2 (3.6–8.0) | 0.921 |
Vessel volume, mm3 | 75.9 ± 62.8 | 57.6 (35.5–94.8) | 70.1 ± 45.6 | 60.2 (40.9–93.9) | 0.943 |
Lumen volume, mm3 | 39.8 ± 38.9 | 31.0 (16.8–45.4) | 36.3 ± 29.3 | 27.9 (17.8–43.7) | 0.961 |
Plaque volume, mm3 | 37.3 ± 28.0 | 29.1 (17.3–55.8) | 34.5 ± 23.3 | 29.6 (18.3–44.7) | 0.815 |
Mean PB, % | 44.6 ± 11.4 | 44.1 (37.0–52.3) | 44.8 ± 12.9 | 43.3 (34.3–53.5) | 0.867 |
Minimal plaque thickness, mm | 0.03 ± 0.08 | 0.02 (0.00–0.03) | 0.02 ± 0.04 | 0.01 (0.00–0.02) | 0.122 |
Maximal plaque thickness, mm | 1.6 ± 0.6 | 1.5 (1.2–2.2) | 1.7 ± 0.6 | 1.7 (1.2–2.2) | 0.539 |
Undefined plaque volume, mm3 | 0.18 ± 0.5 | 0.0 (0.0–0.5) | 0.3 ± 1.4 | 0.0 (0.0–0.0) | 0.885 |
TAG mean, HU/mm | −2.9 ± 18.9 | −1.9 (−13.2–4.2) | −3.9 ± 14.9 | −1.6 (−8.3–2.8) | 0.848 |
TAG patch mean, HU/mm | −3.6 ± 16.5 | −3.0 (−16.4–4.3) | −1.8 ± 17.3 | −0.0 (−10.0–5.5) | 0.450 |
Fibrous volume, mm3 | 18.1 ± 14.4 | 12.3 (8.6–28.6) | 17.4 ± 12.8 | 14.4 (8.8–22.5) | 0.982 |
Percent fibrous volume, % | 54.1 ± 16.8 | 56.8 (43.6–67.3) | 53.7 ± 20.2 | 53.8 (39.5–69.6) | 0.855 |
Fibrous fatty volume, mm3 | 4.4 ± 5.5 | 2.5 (1.1–4.6) | 3.9 ± 3.5 | 2.8 (1.5–4.9) | 0.536 |
Percent fibrous fatty volume, % | 15.3 ± 9.5 | 13.0 (6.8–23.0) | 16.1 ± 12.1 | 14.0 (6.8–20.6) | 0.887 |
Necrotic core volume, mm3 | 2.8 ± 4.3 | 1.1 (0.3–3.0) | 2.8 ± 5.1 | 1.0 (0.4–2.7) | 0.867 |
Percent necrotic core volume, % | 11.3± 14.1 | 6.3 (1.3–17.7) | 9.9 ± 13.1 | 0.4 (1.5–14.5) | 0.587 |
Dense calcium volume, mm3 | 10.6 ± 13.0 | 4.6 (0.1–18.5) | 9.5 ± 13.2 | 5.0 (0.1–15.0) | 0.639 |
Percent dense calcium volume, % | 18.5 ± 19.1 | 15.2 (0.3–30.4) | 18.7 ± 18.8 | 15.2 (0.0–34.5) | 0.955 |
Area of obstruction: | |||||
Vessel wall area, mm2 | 10.1 ± 5.5 | 9.5 (6.2–13.6) | 10.8 ± 4.7 | 10.1 (7.2–13.9) | 0.347 |
Vessel wall diameter, mm | 4.7 ± 8.9 | 3.5 (2.8–4.2) | 3.5 ± 1.0 | 3.6 (3.0–4.2) | 0.382 |
Eccentricity index | 0.8 ± 0.2 | 0.9 (0.8–0.9) | 0.8 ± 0.2 | 0.9 (0.8–1.0) | 0.330 |
PB, % | 58.0 ± 13.6 | 59.0 (47.8–66.0) | 54.7 ± 16.4 | 53.8 (43.2–67.1) | 0.226 |
Minimal plaque thickness, mm | 0.2 ± 0.2 | 0.1 (0.1–0.3) | 0.2 ± 0.2 | 0.1 (0.1–0.2) | 0.491 |
Maximal plaque thickness, mm | 1.3 ± 0.6 | 1.3 (0.9–1.8) | 1.4 ± 0.6 | 1.3 (0.9–1.9) | 0.671 |
Remodeling index | 0.7 ± 0.2 | 0.7 (0.7–0.9) | 0.8 ± 0.2 | 0.8 (0.7–1.0) | 0.037 |
Lumen area stenosis, % | 51.8 ± 10.9 | 51.8 (47.4–59.8) | 50.3 ± 11.8 | 51.9 (42.5–57.3) | 0.387 |
Lumen diameter stenosis, % | 30.5 ± 9.9 | 30.8 (26.3–37.2) | 29.4 ± 8.2 | 29.6 (24.8–34.1) | 0.225 |
Undefined plaque area, mm2 | 0.06 ± 0.25 | 0.00 (0.00–0.00) | 0.1 ± 0.3 | 0.0 (0.0–0.0) | 0.459 |
Fibrous area, mm2 | 3.3 ± 1.4 | 3.0 (2.2–4.3) | 3.3 ± 1.7 | 3.1 (2.2–4.3) | 0.982 |
Percent fibrous area, % | 54.5 ± 17.2 | 56.0 (43.1–66.0) | 52.6 ± 21.0 | 52.0 (37.4–66.1) | 0.518 |
Fibrous fatty area, mm2 | 0.8 ± 0.7 | 0.5 (0.4–1.0) | 0.6 ± 0.4 | 0.6 (0.4–0.9) | 0.747 |
Percent fibrous fatty area, % | 15.4 ± 11.3 | 12.7 (5.7–22.9) | 15.2 ± 13.7 | 11.2 (5.0–23.4) | 0.504 |
Necrotic core area, mm2 | 0.5 ± 1.0 | 0.2 (0.1–0.4) | 0.4 ± 0.6 | 0.1 (0.0–0.4) | 0.047 |
Percent necrotic core area, % | 10.5 ± 13.9 | 5.0 (1.0–15.2) | 8.1 ± 13.6 | 2.3 (0.0–11.8) | 0.038 |
Dense calcium area, mm2 | 2.0 ± 2.4 | 1.0 (0.0–3.7) | 2.4 ± 2.7 | 1.4 (0.0–4.3) | 0.623 |
Percent dense calcium area, % | 18.9 ± 19.2 | 17.0 (0.0–34.2) | 23.8 ± 22.6 | 20.9 (0.0–43.5) | 0.441 |
Variables | Hazard Ratio | 95% CI | p Value |
---|---|---|---|
Agatston score | 1.002 | 1.001–1.004 | 0.008 |
Remodeling index | 0.171 | 0.030–0.979 | 0.047 |
Necrotic core area (mm2) | 0.908 | 0.385–2.140 | 0.825 |
Percent necrotic core area (%) | 0.996 | 0.951–1.104 | 0.878 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajančkauskienė, L.; Radionovaitė, L.; Jankauskas, A.; Banišauskaitė, A.; Šakalytė, G. Coronary CT Value in Quantitative Assessment of Intermediate Stenosis. Medicina 2022, 58, 964. https://doi.org/10.3390/medicina58070964
Zajančkauskienė L, Radionovaitė L, Jankauskas A, Banišauskaitė A, Šakalytė G. Coronary CT Value in Quantitative Assessment of Intermediate Stenosis. Medicina. 2022; 58(7):964. https://doi.org/10.3390/medicina58070964
Chicago/Turabian StyleZajančkauskienė, Laura, Laura Radionovaitė, Antanas Jankauskas, Audra Banišauskaitė, and Gintarė Šakalytė. 2022. "Coronary CT Value in Quantitative Assessment of Intermediate Stenosis" Medicina 58, no. 7: 964. https://doi.org/10.3390/medicina58070964
APA StyleZajančkauskienė, L., Radionovaitė, L., Jankauskas, A., Banišauskaitė, A., & Šakalytė, G. (2022). Coronary CT Value in Quantitative Assessment of Intermediate Stenosis. Medicina, 58(7), 964. https://doi.org/10.3390/medicina58070964