Tetrandrine Treatment May Improve Clinical Outcome in Patients with COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Chemicals
2.3. Definition
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Comparison of the Clinical Outcomes in Total Patients (n = 60) Treated with and without Antibiotic, Tetrandrine, and Arbidol
3.3. Comparison of the Clinical Outcomes in Patients with Moderate Type (n = 51) Treated with and without Antibiotic, Tetrandrine, and Arbidol
3.4. Symptom Improvements with and without Antibiotic, Tetrandrine, and Arbidol
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Callaway, E. Delta coronavirus variant: Scientists brace for impact. Nature 2021, 595, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Gao, Q.; Gao, F.; Wang, Q.; He, Q.; Wu, X.; Mao, Q.; Xu, M.; Liang, Z. Impact of the Delta variant on vaccine efficacy and response strategies. Expert Rev. Vaccines 2021, 20, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, S.; Reiff, A.O. A hitchhiker’s guide through the COVID-19 galaxy. Clin. Immunol. 2021, 232, 108849. [Google Scholar] [CrossRef]
- Liu, Y.; Rocklov, J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta. J. Travel Med. 2022, 29, taac037. [Google Scholar] [CrossRef]
- Umakanthan, S.; Sahu, P.; Ranade, A.V.; Bukelo, M.M.; Rao, J.S.; Abrahao-Machado, L.F.; Dahal, S.; Kumar, H.; Kv, D. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad. Med. J. 2020, 96, 753–758. [Google Scholar] [CrossRef]
- Bian, X.W.; Team, C.-P. Autopsy of COVID-19 patients in China. Natl. Sci. Rev. 2020, 7, 1414–1418. [Google Scholar] [CrossRef]
- Esakandari, H.; Nabi-Afjadi, M.; Fakkari-Afjadi, J.; Farahmandian, N.; Miresmaeili, S.M.; Bahreini, E. A comprehensive review of COVID-19 characteristics. Biol. Proced. Online 2020, 22, 19. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Korompoki, E.; Fotiou, D.; Migkou, M.; Tzanninis, I.G.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Emerging treatment strategies for COVID-19 infection. Clin. Exp. Med. 2021, 21, 167–179. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Xiao, M.; Tian, J.; Zhou, Y.; Xu, X.; Min, X.; Lv, Y.; Peng, M.; Zhang, Y.; Yan, D.; Lang, S.; et al. Efficacy of Huoxiang Zhengqi dropping pills and Lianhua Qingwen granules in treatment of COVID-19: A randomized controlled trial. Pharmacol. Res. 2020, 161, 105126. [Google Scholar] [CrossRef]
- Liang, S.B.; Fang, M.; Liang, C.H.; Lan, H.D.; Shen, C.; Yan, L.J.; Hu, X.Y.; Han, M.; Robinson, N.; Liu, J.P. Therapeutic effects and safety of oral Chinese patent medicine for COVID-19: A rapid systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2021, 60, 102744. [Google Scholar] [CrossRef]
- Poon, P.M.; Wong, C.K.; Fung, K.P.; Fong, C.Y.; Wong, E.L.; Lau, J.T.; Leung, P.C.; Tsui, S.K.; Wan, D.C.; Waye, M.M.; et al. Immunomodulatory effects of a traditional Chinese medicine with potential antiviral activity: A self-control study. Am. J. Chin. Med. 2006, 34, 13–21. [Google Scholar] [CrossRef]
- Zhan, X.; Liu, B.; Tong, Z.H. [Postinflammatroy pulmonary fibrosis of COVID-19: The current status and perspective]. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sun, L.X.; Feng, R.E. [Comparison of clinical and pathological features between severe acute respiratory syndrome and coronavirus disease 2019]. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Zhang, H.J.; Ye, Z.G.; Zhang, G.P. [Research development on modern pharmacological effect of tetrandrine]. Zhongguo Zhong Yao Za Zhi 2020, 45, 20–28. [Google Scholar] [CrossRef]
- Miao, R.M.; Sun, X.F.; Zhang, Y.Y.; Wu, W.; Fang, Z.H.; Zhao, R.; Zhao, D.K.; Qian, G.L.; Ji, J. [Clinical efficacy of tetrandrine combined with acetylcysteine effervescent tablets in treatment of silicosis]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2013, 31, 857–858. [Google Scholar] [PubMed]
- Guo, X.; Qi, J.; Li, H.; Xing, Z. Clinical efficacy of acetylcysteine combined with tetrandrine tablets on patients with silicosis and its effect on exercise tolerance and pulmonary function. Exp. Ther. Med. 2020, 20, 1285–1290. [Google Scholar] [CrossRef]
- Sakurai, Y.; Kolokoltsov, A.A.; Chen, C.C.; Tidwell, M.W.; Bauta, W.E.; Klugbauer, N.; Grimm, C.; Wahl-Schott, C.; Biel, M.; Davey, R.A. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 2015, 347, 995–998. [Google Scholar] [CrossRef]
- Grimm, C.; Tang, R. Could an endo-lysosomal ion channel be the Achilles heel of SARS-CoV2? Cell Calcium 2020, 88, 102212. [Google Scholar] [CrossRef]
- Heister, P.M.; Poston, R.N. Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19. Pharmacol. Res. Perspect. 2020, 8, e00653. [Google Scholar] [CrossRef]
- Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Pache, L.; Burgstaller-Muehlbacher, S.; De Jesus, P.D.; Teriete, P.; Hull, M.V.; et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature 2020, 586, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020, 11, 1620. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules 2019, 9, 696. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, S.A.M.; Yosri, N.; El-Mallah, M.F.; Ghonaim, R.; Guo, Z.; Musharraf, S.G.; Du, M.; Khatib, A.; Xiao, J.; Saeed, A.; et al. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Phytomedicine 2021, 85, 153311. [Google Scholar] [CrossRef] [PubMed]
- Ntambara, J.; Chu, M. The risk to child nutrition during and after COVID-19 pandemic: What to expect and how to respond. Public Health Nutr. 2021, 24, 3530–3536. [Google Scholar] [CrossRef]
- Lian, N.; Xie, H.; Lin, S.; Huang, J.; Zhao, J.; Lin, Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study. Clin. Microbiol. Infect. 2020, 26, 917–921. [Google Scholar] [CrossRef]
- Nojomi, M.; Yassin, Z.; Keyvani, H.; Makiani, M.J.; Roham, M.; Laali, A.; Dehghan, N.; Navaei, M.; Ranjbar, M. Effect of Arbidol (Umifenovir) on COVID-19: A randomized controlled trial. BMC Infect. Dis. 2020, 20, 954. [Google Scholar] [CrossRef]
- Pulia, M.S.; Wolf, I.; Schulz, L.T.; Pop-Vicas, A.; Schwei, R.J.; Lindenauer, P.K. COVID-19: An Emerging Threat to Antibiotic Stewardship in the Emergency Department. West. J. Emerg. Med. 2020, 21, 1283–1286. [Google Scholar] [CrossRef]
- Calabrese, F.; Pezzuto, F.; Fortarezza, F.; Hofman, P.; Kern, I.; Panizo, A.; von der Thusen, J.; Timofeev, S.; Gorkiewicz, G.; Lunardi, F. Pulmonary pathology and COVID-19: Lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020, 477, 359–372. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Satapathy, A.; Naidu, M.M.; Mukhopadhyay, S.; Sharma, S.; Barton, L.M.; Stroberg, E.; Duval, E.J.; Pradhan, D.; Tzankov, A.; et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19)—Anatomic pathology perspective on current knowledge. Diagn. Pathol. 2020, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- Konopka, K.E.; Wilson, A.; Myers, J.L. Postmortem Lung Findings in a Patient With Asthma and Coronavirus Disease 2019. Chest 2020, 158, e99–e101. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, M.; Ishida, K.; Ogasawara, K.; Nozaki, T.; Satoh, Y.I.; Sata, T.; Sato, Y.; Hasegawa, H.; Nakajima, N. Serial Section Array Scanning Electron Microscopy Analysis of Cells from Lung Autopsy Specimens following Fatal A/H1N1 2009 Pandemic Influenza Virus Infection. J. Virol. 2019, 93, e00644-19. [Google Scholar] [CrossRef] [PubMed]
- Belen-Apak, F.B.; Sarialioglu, F. Pulmonary intravascular coagulation in COVID-19: Possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J. Thromb. Thrombolysis 2020, 50, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Sharma, K.; Silakari, O. The interplay between inflammatory pathways and COVID-19: A critical review on pathogenesis and therapeutic options. Microb. Pathog. 2021, 150, 104673. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Guo, F.; Zhang, C.; Song, G.; Yang, J.; Chen, D. Tetrandrine Inhibits Titanium Particle-Induced Inflammatory Osteolysis through the Nuclear Factor-kappaB Pathway. Mediat. Inflamm. 2020, 2020, 1926947. [Google Scholar] [CrossRef]
- Xu, J.; Liu, D.; Yin, Q.; Guo, L. Tetrandrine suppresses betaglucaninduced macrophage activation via inhibiting NFkappaB, ERK and STAT3 signaling pathways. Mol. Med. Rep. 2016, 13, 5177–5184. [Google Scholar] [CrossRef]
- Wei, P.F. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chin. Med. J. 2020, 133, 1087–1095. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Gou, C.; Li, L.; Luo, X.; Zhang, C.; Zhang, Y.; Zhang, J.; Jin, A.; Li, H.; et al. Effect of Jinhua Qinggan granules on novel coronavirus pneumonia in patients. J. Tradit. Chin. Med. 2020, 40, 467–472. [Google Scholar] [CrossRef]
- Zeng, M.; Li, L.; Wu, Z. Traditional Chinese medicine Lianhua Qingwen treating corona virus disease 2019(COVID-19): Meta-analysis of randomized controlled trials. PLoS ONE 2020, 15, e0238828. [Google Scholar] [CrossRef]
- Guo, H.; Zheng, J.; Huang, G.; Xiang, Y.; Lang, C.; Li, B.; Huang, D.; Sun, Q.; Luo, Y.; Zhang, Y.; et al. Xuebijing injection in the treatment of COVID-19: A retrospective case-control study. Ann. Palliat. Med. 2020, 9, 3235–3248. [Google Scholar] [CrossRef] [PubMed]
Parameters | Improvement (n = 50) | Recovery (n = 10) | p-Value |
---|---|---|---|
Age, years | 46.8 (5–79) | 36.8 (2–69) | 0.082 |
Gender | 0.166 | ||
Male, n (%) | 27 (54%) | 3 (30%) | |
Female, n (%) | 23 (46%) | 7 (70%) | |
Occupation | 0.215 | ||
Worker, n (%) | 9 (18%) | 1 (10%) | |
Farmer, n (%) | 26 (52%) | 3 (30%) | |
Office clerk, n (%) | 4 (8%) | 2 (20%) | |
Student, n (%) | 2 (4%) | 1 (10%) | |
Other, n (%) | 9 (18%) | 3 (30%) | |
BMI | 0.486 | ||
<24 kg/m2, n (%) | 26 (52%) | 7 (70%) | |
>24 kg/m2, n (%) | 24 (48%) | 3 (30%) | |
Smoke, n (%) | 3 (6%) | 0 (0%) | 1 |
Initial disease severity | <0.001 | ||
Mild, n (%) | 0 (0%) | 4 (40%) | |
Moderate/severe, n (%) | 50 (100%) | 6 (60%) | |
Duration of hospitalization, days | 12 (6–25) | 12 (9–21) | 0.758 |
Chronic diseases history | |||
Hypertension, n (%) | 9 (18%) | 1 (10%) | 0.877 |
Diabetes, n (%) | 2 (4%) | 0 (0%) | 1 |
Hepatitis, n (%) | 3 (6%) | 1 (10%) | 0.528 |
Coronary heart disease, n (%) | 5 (10%) | 1 (10%) | 1 |
Pulmonary disease history, n (%) | |||
Tracheitis/chronic Bronchitis/asthma, n (%) | 6 | 2 | 0.865 |
Bronchiectasis, n (%) | 2 | 0 | 1 |
Obsolete pulmonary tuberculosis, n (%) | 4 | 0 | 1 |
Treatment | |||
Tetrandrine, n (%) | 20 (40%) | 10 (100%) | 0.010 |
Arbidol, n (%) | 21 (42%) | 0 (0%) | 0.029 |
Antibiotic, n (%) | 49 (98%) | 5 (50%) | <0.001 |
Hormone, n (%) | 8 (16%) | 0 (0%) | 0.396 |
Reduce phlegm, n (%) | 38 (76%) | 8 (80%) | 1 |
Supportive treatment, n (%) | 2 (4%) | 0 (0%) | 1 |
Oxygen therapy, n (%) | 13 (26%) | 2 (20%) | 1 |
Ribavirin, n (%) | 30 (60%) | 9 (90%) | 0.146 |
Vitamin C, n (%) | 28 (56%) | 5 (50%) | 0.742 |
Interferon, n (%) | 42 (84%) | 10 (100%) | 0.396 |
Lianhua Qingwen, n (%) | 13 (26%) | 0 (0%) | 0.161 |
Treatment | Improvement | Recovery | Sum | p-Value |
---|---|---|---|---|
Antibiotic | 49 (98%) | 5 (50%) | 54 (90%) | 0.001 |
Non-antibiotic | 1 (2%) | 5 (50%) | 6 (10%) | |
TET | 20 (40%) | 10 (100%) | 30 (50%) | 0.010 |
Non-TET | 30 (60%) | 0 (0%) | 30 (50%) | |
Arbidol | 21 (42%) | 0 (0%) | 21 (35%) | 0.029 |
Non-arbidol | 29 (58%) | 10 (100%) | 39 (65%) |
Treatment | Improvement | Recovery | Sum | p-Value |
---|---|---|---|---|
Antibiotic | 44 (97.8%) | 5 (83.3%) | 49 (96.1%) | 0.224 |
Non-antibiotic | 1 (2.2%) | 1 (16.7%) | 2 (3.9%) | |
TET | 18 (40.0%) | 6 (100%) | 24 (47.1%) | 0.007 |
Non-TET | 27 (60.0%) | 0 (0%) | 27 (52.9%) | |
Arbidol | 13 (28.9%) | 0 (0%) | 13 (25.5%) | 0.318 |
Non-arbidol | 32 (71.1%) | 6 (100%) | 38 (74.5%) |
Day 7 Improvement Rate | p-Value | Day 7 Improvement Rate | p-Value | Day 7 Improvement Rate | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Symptom | Antibiotic | Non-Antibiotic | TET | Non-TET | Arbidol | Non-Arbidol | |||
Fever | 87.5% (35/40) | 100% (1/1) | 1 | 100% (18/18) | 78.3% (18/23) | 0.056 | 85.7% (6/7) | 88.2% (30/34) | 1 |
Cough | 82.7% (43/52) | 100% (3/3) | 1 | 100% (25/25) | 70.0% (21/30) | 0.003 | 76.9% (10/13) | 85.7% (36/42) | 0.749 |
Fatigue | 76.0% (38/50) | 100% (1/1) | 1 | 100% (21/21) | 60.0% (18/30) | 0.003 | 76.9% (10/13) | 76.3% (29/38) | 1 |
Gastrointestinal symptoms | 86.8% (33/38) | 100% (1/1) | 1 | 100% (15/15) | 79.2% (19/24) | 0.136 | 77.8% (7/9) | 90.0% (27/30) | 0.694 |
Day 7 Improvement Rate | p-Value | Day 7 Improvement Rate | p-Value | Day 7 Improvement Rate | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
Symptom | Antibiotic | Non-Antibiotic | TET | Non-TET | Arbidol | Non-Arbidol | |||
Fever | 87.5% (30/35) | 100% (1/1) | 1 | 100% (16/16) | 75.0% (15/20) | 0.053 | 85.7% (6/7) | 86.2% (25/29) | 1 |
Cough | 83.0% (39/47) | 100% (2/2) | 1 | 100% (22/22) | 70.4% (19/27) | 0.006 | 76.9% (10/13) | 86.1% (31/36) | 0.741 |
Fatigue | 75.6% (34/45) | 100% (1/1) | 1 | 100% (19/19) | 59.3% (16/27) | 0.005 | 76.9% (10/13) | 75.8% (25/33) | 1 |
Gastrointestinal symptoms | 87.9% (29/33) | 100% (1/1) | 1 | 100% (13/13) | 81.0% (17/21) | 0.144 | 77.8% (7/9) | 92.0% (23/25) | 0.281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Liu, Y.; Ge, J.; Yin, J.; Shi, T.; Ntambara, J.; Cheng, Z.; Chu, M.; Gu, H. Tetrandrine Treatment May Improve Clinical Outcome in Patients with COVID-19. Medicina 2022, 58, 1194. https://doi.org/10.3390/medicina58091194
Chen S, Liu Y, Ge J, Yin J, Shi T, Ntambara J, Cheng Z, Chu M, Gu H. Tetrandrine Treatment May Improve Clinical Outcome in Patients with COVID-19. Medicina. 2022; 58(9):1194. https://doi.org/10.3390/medicina58091194
Chicago/Turabian StyleChen, Shiyin, Yiran Liu, Juan Ge, Jianzhong Yin, Ting Shi, James Ntambara, Zhounan Cheng, Minjie Chu, and Hongyan Gu. 2022. "Tetrandrine Treatment May Improve Clinical Outcome in Patients with COVID-19" Medicina 58, no. 9: 1194. https://doi.org/10.3390/medicina58091194
APA StyleChen, S., Liu, Y., Ge, J., Yin, J., Shi, T., Ntambara, J., Cheng, Z., Chu, M., & Gu, H. (2022). Tetrandrine Treatment May Improve Clinical Outcome in Patients with COVID-19. Medicina, 58(9), 1194. https://doi.org/10.3390/medicina58091194