Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report
Abstract
:1. Introduction
2. Detailed Case Description
2.1. Timeline
2.2. Diagnostic Assessment
Manual Dexterity Tests
2.3. Technical Design
2.4. Results of Manual Dexterity Tests
3. Discussion
“The tactile feedback is a great help to me. I no longer have to constantly check whether I’m holding something with the prosthesis. In my spare time, I love building nest boxes for birds. FEELIX makes work processes safer and easier. I also get a better feel for my hands and can work with both hands again”, a summary of doctor’s visits (10/2022).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMU | Control module unit |
JASP | Jeffreys’s Amazing Statistics Program |
FEELIX | Name of the vibrotactile feedback add-on prototype |
FSR | Force sensitive resistor |
LAO | Lightweight Abstract Objects |
SHAP | Southampton Hand Assessment Procedure |
SMU | Sensor module unit |
TMR | Targeted muscle reinnervation |
TSR | Targeted sensory reinnervation |
References
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Dillingham, T.R.; Pezzin, L.E.; Mackenzie, E.J. Limb Amputation and Limb Deficiency: Epidemiology and Recent Trends in the United States. South. Med. J. 2002, 95, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Braza, D.W.; Yacub Martin, J.N. Upper Limb Amputations, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 651–657. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, X.; Wu, Q.; Zheng, Z.; Ying, J.; Zhang, M.N. Explosive eye injuries: Characteristics, traumatic mechanisms, and prognostic factors for poor visual outcomes. Mil. Med. Res. 2023, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Dahmen, G.; Remmele, R. Langzeiterfahrung mit der myoelektrischen Armprothese bei blinden Ohnhändern [Long-term experience with the myoelectrical arm prosthesis for blind hand-amputees]. Rehabilitation 1982, 21, 157–160. [Google Scholar]
- Sukkarieh, G.; Lahoud, C.; Ghorayeb, R.; Abi Karam, M.; Succarieh, Y.; Saleh, M.; Jalkh, A. Characteristics of open eye injuries in the Beirut Port explosion. Injury 2021, 52, 2601–2605. [Google Scholar] [CrossRef]
- Flaxman, A.D.; Wittenborn, J.S.; Robalik, T.; Gulia, R.; Gerzoff, R.B.; Lundeen, E.A.; Saaddine, J.; Rein, D.B. Prevalence of Visual Acuity Loss or Blindness in the US: A Bayesian Meta-analysis. JAMA Ophthalmol. 2021, 139, 717–723. [Google Scholar] [CrossRef]
- Pleis, J.R.; Lucas, J.W.; Ward, B.W. Summary Health Statistics for U.S. Adults: National Health Interview Survey, 2008; Vital and Health Statistics; Series 10, Data from the National Health Survey; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2009; pp. 1–157.
- Carty, M.J.; Bueno, E.; Lehmann, L.S.; Pomahac, B. A position paper in support of hand transplantation in the blind. Plast. Reconstr. Surg. 2011, 128, 510–515. [Google Scholar] [CrossRef]
- Frank, R.P.; Oder, W.; Titze, W. Das Gutachten in der Gesetzlichen Unfallversicherung, 2nd ed.; Manz’sche Verlags- u. Universitätsbuchhandlung: Vienna, Austria, 2021. [Google Scholar]
- Svensson, P.; Wijk, U.; Björkman, A.; Antfolk, C. A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev. Med. Devices 2017, 14, 439–447. [Google Scholar] [CrossRef]
- Antfolk, C.; Björkman, A.; Frank, S.; Sebelius, F.; Lundborg, G.; Rosen, B. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin. J. Rehabil. Med. 2012, 44, 702–707. [Google Scholar] [CrossRef]
- Fallahian, N.; Saeedi, H.; Mokhtarinia, H.; Tabatabai Ghomshe, F. Sensory feedback add-on for upper-limb prostheses. Prosthet. Orthot. Int. 2017, 41, 314–317. [Google Scholar] [CrossRef]
- Antfolk, C.; D’Alonzo, M.; Rosen, B.; Lundborg, G.; Sebelius, F.; Cipriani, C. Sensory feedback in upper limb prosthetics. Expert Rev. Med. Devices 2013, 10, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, M.A.; Tan, D.; Sidek, S.M.; Tyler, D.J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 2016, 13, 16001. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, B.T.; Sando, I.C.; Gillespie, R.B.; McLaughlin, B.L.; Gerling, G.J.; Langhals, N.B.; Urbanchek, M.G.; Cederna, P.S. Providing a Sense of Touch to Prosthetic Hands. Plast. Reconstr. Surg. 2015, 135, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Gardetto, A.; Baur, E.M.; Prahm, C.; Smekal, V.; Jeschke, J.; Peternell, G.; Pedrini, M.T.; Kolbenschlag, J. Reduction of phantom limb pain and improved proprioception through a TSR-based surgical technique: A case series of four patients with lower limb amputation. J. Clin. Med. 2021, 10, 4029. [Google Scholar] [CrossRef] [PubMed]
- Kerver, N.; Schuurmans, V.; van der Sluis, C.K.; Bongers, R.M. The multi-grip and standard myoelectric hand prosthesis compared: Does the multi-grip hand live up to its promise? J. Neuroeng. Rehabil. 2023, 20, 22. [Google Scholar] [CrossRef]
- Sensinger, J.W.; Dosen, S. A Review of Sensory Feedback in Upper-Limb Prostheses From the Perspective of Human Motor Control. Front. Neurosci. 2020, 14, 345. [Google Scholar] [CrossRef]
- Farina, D.; Vujaklija, I.; Brånemark, R.; Bull, A.M.J.; Dietl, H.; Graimann, B.; Hargrove, L.J.; Hoffmann, K.P.; Huang, H.; Ingvarsson, T.; et al. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 2023, 7, 473–485. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Mastinu, E.; Sassu, P.; Aszmann, O.C.; Brånemark, R. Self-Contained Neuromusculoskeletal Arm Prostheses. N. Engl. J. Med. 2020, 382, 1732–1738. [Google Scholar] [CrossRef]
- Granata, G.; Vecchio, F.; Miraglia, F.; Raspopovic, S.; Petrini, F.M.; Micera, S.; Rossini, P.M. Sensory feedback generated by intraneural electrical stimulation of peripheral nerves drives cortical reorganization and relieves phantom limb pain: A case study. Clin. Neurophysiol. 2016, 127, e63. [Google Scholar] [CrossRef]
- Raspopovic, S.; Valle, G.; Petrini, F.M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 2021, 20, 925–939. [Google Scholar] [CrossRef]
- Ghafoor, U.; Kim, S.; Hong, K.S. Selectivity and longevity of peripheral-nerve and machine interfaces: A review. Front. Neurorobot. 2017, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Chen, O.; Edmunds, J.L.; Piech, D.K.; Maharbiz, M.M. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat. Biomed. Eng. 2023, 7, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.; Walter-Walsh, K.; Preißler, S.; Hofmann, G.O.; Witte, O.W.; Miltner, W.H.R.; Weiss, T. Sensory feedback prosthesis reduces phantom limb pain: Proof of a principle. Neurosci. Lett. 2012, 507, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Hermansson, L.M.; Fisher, A.G.; Bernspång, B.; Eliasson, A.C. Assessmet of Capacity for Myoelectric Control: A new Rasch-built measure of prosthetic hand control. J. Rehabil. Med. 2005, 37, 166–171. [Google Scholar] [CrossRef]
- Lewis, S.; Russold, M.F.; Dietl, H.; Kaniusas, E. User demands for sensory feedback in upper extremity prostheses. In Proceedings of the 2012 IEEE International Symposium on Medical Measurements and Applications Proceedings, Budapest, Hungary, 18–19 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Diers, M.; Flor, H. Phantomschmerz. Der Schmerz 2013, 27, 205–213. [Google Scholar] [CrossRef]
- Dietrich, C.; Nehrdich, S.; Seifert, S.; Blume, K.R.; Miltner, W.H.R.; Hofmann, G.O.; Weiss, T. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Front. Neurol. 2018, 9, 270. [Google Scholar] [CrossRef]
- Flor, H. Phantom-limb pain: Characteristics, causes, and treatment. Lancet Neurol. 2002, 1, 182–189. [Google Scholar] [CrossRef]
- Penasso, H.; Petersen, F.; Peternell, G. Vascular and Neural Response to Focal Vibration, Sensory Feedback, and Piezo Ion Channel Signaling. J. Vasc. Dis. 2023, 2, 42–90. [Google Scholar] [CrossRef]
- Björkman, A.; Wijk, U.; Antfolk, C.; Björkman-Burtscher, I.; Rosén, B. Sensory qualities of the phantom hand map in the residual forearm of amputees. J. Rehabil. Med. 2016, 48, 365–370. [Google Scholar] [CrossRef]
- Spitzer, M. Phantom Limbs, Self-Organizing Feature Maps, and Noise-Driven Neuroplasticity. In Progress in Neural Processing, 6th ed.; World Scientific: Singapore, 1996; pp. 273–282. [Google Scholar] [CrossRef]
- Valle, G.; Preatoni, G.; Raspopovic, S. Connecting Residual Nervous System and Prosthetic Legs for Sensorimotor and Cognitive Rehabilitation; Academic Press: Cambridge, UK, 2021; pp. 293–320. [Google Scholar] [CrossRef]
- Wijk, U.; Svensson, P.; Antfolk, C.; Carlsson, I.K.; Björkman, A.; Rosén, B. Touch on predefined areas on the forearm can be associated with specific fingers: Towards a new principle for sensory feedback in hand prostheses. J. Rehabil. Med. 2019, 51, 209–216. [Google Scholar] [CrossRef]
- Kuiken, T.A.; Marasco, P.D.; Lock, B.A.; Harden, R.N.; Dewald, J.P.A. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl. Acad. Sci. USA 2007, 104, 20061–20066. [Google Scholar] [CrossRef] [PubMed]
- Pardo, L.A.; Markovic, M.; Schilling, A.F.; Wilke, M.A.; Ernst, J. Vibrotactile mapping of the upper extremity: Absolute perceived intensity is location-dependent; perception of relative changes is not. Front. Neurosci. 2022, 16, 958415. [Google Scholar] [CrossRef] [PubMed]
- Antfolk, C.; D’Alonzo, M.; Controzzi, M.; Lundborg, G.; Rosen, B.; Sebelius, F.; Cipriani, C. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: Vibrotactile versus mechanotactile sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 112–120. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Vasluian, E.; Bongers, R.; Reinders-Messelink, H.; Burgerhof, J.; Dijkstra, P.; Sluis, C. Learning effects of repetitive administration of the Southampton Hand Assessment Procedure in novice prosthetic users. J. Rehabil. Med. 2014, 46, 788–797. [Google Scholar] [CrossRef]
- Kyberd, P.J.; Murgia, A.; Gasson, M.; Tjerks, T.; Metcalf, C.; Chappell, P.H.; Warwick, K.; Lawson, S.E.M.; Barnhill, T. Case studies to demonstrate the range of applications of the Southampton Hand Assessment Procedure. Br. J. Occup. Ther. 2009, 72, 212–218. [Google Scholar] [CrossRef]
- Desrosiers, J.; Bravo, G.; Hébert, R.; Dutil, E.; Mercier, L. Validation of the Box and Block Test as a measure of dexterity of elderly people: Reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 1994, 75, 751–755. [Google Scholar] [CrossRef]
- George, J.A.; Kluger, D.T.; Davis, T.S.; Wendelken, S.M.; Okorokova, E.V.; He, Q.; Duncan, C.C.; Hutchinson, D.T.; Thumser, Z.C.; Beckler, D.T.; et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 2019, 4, eaax2352. [Google Scholar] [CrossRef]
- Light, C.M.; Chappell, P.H.; Kyberd, P.J. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: Normative data, reliability, and validity. Arch. Phys. Med. Rehabil. 2002, 83, 776–783. [Google Scholar] [CrossRef]
- Resnik, L.; Borgia, M.; Cancio, J.M.; Delikat, J.; Ni, P. Psychometric evaluation of the Southampton hand assessment procedure (SHAP) in a sample of upper limb prosthesis users. J. Hand Ther. 2023, 36, 110–120. [Google Scholar] [CrossRef]
- Burgerhof, J.G.M.; Vasluian, E.; Dijkstra, P.U.; Bongers, R.M.; van der Sluis, C.K. The Southampton Hand Assessment Procedure revisited: A transparent linear scoring system, applied to data of experienced prosthetic users. J. Hand Ther. 2017, 30, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult Norms for the Box and Block Test of Manual Dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Valle, G.; Mazzoni, A.; Iberite, F.; D’Anna, E.; Strauss, I.; Granata, G.; Controzzi, M.; Clemente, F.; Rognini, G.; Cipriani, C.; et al. Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness, Tactile Sensitivity, and Manual Dexterity in a Bidirectional Prosthesis. Neuron 2018, 100, 37–45.e7. [Google Scholar] [CrossRef] [PubMed]
- Marasco, P.D.; Hebert, J.S.; Sensinger, J.W.; Beckler, D.T.; Thumser, Z.C.; Shehata, A.W.; Williams, H.E.; Wilson, K.R. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors. Sci. Robot. 2021, 6, eabf3368. [Google Scholar] [CrossRef]
- Flor, H.; Denke, C.; Schaefer, M.; Grüsser, S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 2001, 357, 1763–1764. [Google Scholar] [CrossRef]
- Flor, H.; Diers, M.; Andoh, J. The neural basis of phantom limb pain. Trends Cogn. Sci. 2013, 17, 307–308. [Google Scholar] [CrossRef]
- Flor, H.; Nikolajsen, L.; Jensen, T.S. Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 2006, 7, 873–881. [Google Scholar] [CrossRef]
- Fung, S.J.; Chan, J.Y.H.; Manzoni, D.; White, S.R.; Lai, Y.Y.; Strahlendorf, H.K.; Zhuo, H.; Liu, R.H.; Reddy, V.K.; Barnes, C.D. Cotransmitter-mediated locus coeruleus action on motoneurons. Brain Res. Bull. 1994, 35, 423–432. [Google Scholar] [CrossRef]
- Llorca-Torralba, M.; Borges, G.; Neto, F.; Mico, J.A.; Berrocoso, E. Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 2016, 338, 93–113. [Google Scholar] [CrossRef]
- Tyler, M.E.; Kaczmarek, K.A.; Rust, K.L.; Subbotin, A.M.; Skinner, K.L.; Danilov, Y.P. Non-invasive neuromodulation to improve gait in chronic multiple sclerosis: A randomized double blind controlled pilot trial. J. Neuroeng. Rehabil. 2014, 11, 79. [Google Scholar] [CrossRef]
- Ernst, M.O.; Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002, 415, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Chesler, A.T.; Szczot, M.; Bharucha-Goebel, D.; Čeko, M.; Donkervoort, S.; Laubacher, C.; Hayes, L.H.; Alter, K.; Zampieri, C.; Stanley, C.; et al. The Role of PIEZO2 in Human Mechanosensation. N. Engl. J. Med. 2016, 375, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Szczot, M.; Liljencrantz, J.; Ghitani, N.; Barik, A.; Lam, R.; Thompson, J.H.; Bharucha-Goebel, D.; Saade, D.; Necaise, A.; Donkervoort, S.; et al. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci. Transl. Med. 2018, 10, eaat9892. [Google Scholar] [CrossRef]
- Jarrassé, N.; de Montalivet, E.; Richer, F.; Nicol, C.; Touillet, A.; Martinet, N.; Paysant, J.; de Graaf, J.B. Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees without Surgical Reinnervation: A Preliminary Study. Front. Bioeng. Biotechnol. 2018, 6, 164. [Google Scholar] [CrossRef] [PubMed]
Timed Tasks | With (s) | Without (s) |
---|---|---|
Heavy abstract objects | 50.6 | 63.1 |
Light abstract objects | 45.4 | 75.0 |
Activities of daily living 1 | 270.2 | 276.3 |
Activities of daily living 2 | 71.8 | 173.5 |
Overall total time | 437.9 | 587.9 |
Functionality Profile | With (% Healthy Controls) | Without (% Healthy Controls) |
---|---|---|
Spherical | 65 | 43 |
Power | 57 | 34 |
Tip | 18 | 10 |
Tripod | 23 | 12 |
Lateral | 34 | 24 |
Extension | 45 | 47 |
Index of function | 43 | 30 |
With | Without | |||
---|---|---|---|---|
With Unaffected Hand Assist | Without Unaffected Hand Assist | With Unaffected Hand Assist | Without Unaffected Hand Assist | |
Cubes per minute | 11 | 6 | 11 | 4 |
Failed attempts per minute | 0 | 0 | 0 | 8 |
Comments | No checking with the unaffected hand necessary | Exact grasping is evident | Checking with the unaffected hand necessary | No exact grasping |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peternell, G.; Penasso, H.; Luttenberger, H.; Ronacher, H.; Schlintner, R.; Ashcraft, K.; Gardetto, A.; Ernst, J.; Kropiunig, U. Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report. Medicina 2023, 59, 1710. https://doi.org/10.3390/medicina59101710
Peternell G, Penasso H, Luttenberger H, Ronacher H, Schlintner R, Ashcraft K, Gardetto A, Ernst J, Kropiunig U. Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report. Medicina. 2023; 59(10):1710. https://doi.org/10.3390/medicina59101710
Chicago/Turabian StylePeternell, Gerfried, Harald Penasso, Henriette Luttenberger, Hildegard Ronacher, Roman Schlintner, Kara Ashcraft, Alexander Gardetto, Jennifer Ernst, and Ursula Kropiunig. 2023. "Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report" Medicina 59, no. 10: 1710. https://doi.org/10.3390/medicina59101710
APA StylePeternell, G., Penasso, H., Luttenberger, H., Ronacher, H., Schlintner, R., Ashcraft, K., Gardetto, A., Ernst, J., & Kropiunig, U. (2023). Vibrotactile Feedback for a Person with Transradial Amputation and Visual Loss: A Case Report. Medicina, 59(10), 1710. https://doi.org/10.3390/medicina59101710