Regeneration of Intrabony Defects Using a Novel Magnesium Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Surgical Protocol
3. Results
3.1. Case 1
3.2. Case 2
3.3. Case 3
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, S.; Chug, A.; Mahesh, L.; Singh, S.; Singh, K. Optimal management of intrabony defects: Current insights. Clin. Cosmet. Investig. Dent. 2019, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Takayama, T.; Iwano, Y. Clinical classification of tooth position in the alveolar bone housing with periodontal defects. J. Dent. Sci. 2021, 16, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Sultan, N.; Jafri, Z.; Sawai, M.; Bhardwaj, A. Minimally invasive periodontal therapy. J. Oral Biol. Craniofacial Res. 2020, 10, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, S.; Ajit, P.; Sundararajan, S.; Rao, S.R. Reconstruction of interdental papilla using autogenous bone and connective tissue grafts. J. Indian. Soc. Periodontol. 2016, 20, 464. [Google Scholar] [CrossRef] [PubMed]
- Azzi, R.; Takei, H.; Etienne, D.; Carranza, F.A. Root coverage and papilla reconstruction using autogenous osseous and connective tissue grafts. Int. J. Periodontics Restor. Dent. 2001, 21, 141–147. [Google Scholar]
- Ziahosseini, P.; Hussain, F.; Millar, B.J. Management of gingival black triangles. Br. Dent. J. 2014, 217, 559–563. [Google Scholar] [CrossRef]
- Anoixiadou, S.; Parashis, A.; Vouros, I. Minimally Invasive Non-Surgical Technique in the Treatment of Intrabony Defects—A Narrative Review. Dent. J. 2023, 11, 25. [Google Scholar] [CrossRef]
- Singh, V.P.; Uppoor, A.S.; Nayak, D.G.; Shah, D. Black triangle dilemma and its management in esthetic dentistry. Dent. Res. J. 2013, 10, 296. [Google Scholar]
- Prato Pini, P.G.; Roberto, R.; Pierpaolo, C.; Carlo, T.; Robert, A. Interdental papilla management: A review and classification of the therapeutic approaches. Int. J. Periodontics Restor. Dent. 2004, 24, 246–255. [Google Scholar] [CrossRef]
- Needleman, I.; Worthington, H.V.; Giedrys-Leeper, E.; Tucker, R. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst. Rev. 2006, 19, CD001724. [Google Scholar] [CrossRef]
- Kubota, T.; Nemoto, Y.; Nohno, K.; Nezu, A.; Morozumi, T.; Yoshie, H. A Comparable Study of Combinational Regenerative Therapies Comprising Enamel Matrix Derivative plus Deproteinized Bovine Bone Mineral with or without Collagen Membrane in Periodontitis Patients with Intrabony Defects. Open J. Stomatol. 2018, 8, 277–286. [Google Scholar] [CrossRef]
- Bunyaratavej, P.; Wang, H.-L. Collagen Membranes: A Review. J. Periodontol. 2001, 72, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017, 125, 315–337. [Google Scholar] [CrossRef]
- Cortellini, P.; Tonetti, M.S. Long-term tooth survival following regenerative treatment of intrabony defects. J. Periodontol. 2004, 75, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Elad, A.; Rider, P.; Rogge, S.; Witte, F.; Tadić, D.; Kačarević, Ž.P.; Steigmann, L. Application of Biodegradable Magnesium Membrane Shield Technique for Immediate Dentoalveolar Bone Regeneration. Biomedicines 2023, 11, 744. [Google Scholar] [CrossRef] [PubMed]
- Amberg, R.; Elad, A.; Rothamel, D.; Fienitz, T.; Szakacs, G.; Heilmann, S.; Witte, F. Design of a migration assay for human gingival fibroblasts on biodegradable magnesium surfaces. Acta Biomater. 2018, 79, 158–167. [Google Scholar] [CrossRef]
- Rider, P.; Kačarević, Ž.P.; Elad, A.; Tadic, D.; Rothamel, D.; Sauer, G.; Bornert, F.; Windisch, P.; Hangyási, D.B.; Molnar, B.; et al. Biodegradable magnesium barrier membrane used for guided bone regeneration in dental surgery. Bioact. Mater. 2022, 14, 152–168. [Google Scholar] [CrossRef]
- Rider, P.; Kačarević, Ž.P.; Elad, A.; Rothamel, D.; Sauer, G.; Bornert, F.; Windisch, P.; Hangyási, D.; Molnar, B.; Hesse, B.; et al. Analysis of a Pure Magnesium Membrane Degradation Process and Its Functionality When Used in a Guided Bone Regeneration Model in Beagle Dogs. Materials 2022, 15, 3106. [Google Scholar] [CrossRef]
- Ortolani, E.; Quadrini, F.; Bellisario, D.; Santo, L.; Polimeni, A.; Santarsiero, A. Mechanical qualification of collagen membranes used in dentistry. Ann. Ist. Super. Sanita 2015, 51, 229–235. [Google Scholar] [CrossRef]
- Coïc, M.; Placet, V.; Jacquet, E.; Meyer, C. Propriétés mécaniques des membranes de collagne. Rev. Stomatol. Chir. Maxillofac. 2010, 111, 286–290. [Google Scholar] [CrossRef]
- Milella, E.; Ramires, P.A.; Brescia, E.; La Sala, G.; Di Paola, L.; Bruno, V. Physicochemical, mechanical, and biological properties of commercial membranes for GTR. J. Biomed. Mater. Res. 2001, 58, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Atrens, A.; Song, G.L.; Liu, M.; Shi, Z.; Cao, F.; Dargusch, M.S. Review of Recent Developments in the Field of Magnesium Corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R. Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for magnesium. EFSA J. 2015, 13, 4186. [Google Scholar] [CrossRef]
- Levine, R.A.; Saleh, M.H.A.; Dias, D.R.; Ganeles, J.; Araújo, M.G.; Renouard, F.; Pinsky, H.M.; Miller, P.D.; Wang, H.-L. Periodontal Regeneration Risk Assessment in the Treatment of Intrabony Defects. Clin. Adv. Periodontics 2023, 1–10. [Google Scholar] [CrossRef]
- Eickholz, P.; Kim, T.-S.; Holle, R. Guided tissue regeneration with non-resorbable and biodegradable barriers: 6 months results. J. Clin. Periodontol. 1997, 24, 92–101. [Google Scholar] [CrossRef]
- Ren, Y.; Fan, L.; Alkildani, S.; Liu, L.; Emmert, S.; Najman, S.; Rimashevskiy, D.; Schnettler, R.; Jung, O.; Xiong, X.; et al. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int. J. Mol. Sci. 2022, 23, 14987. [Google Scholar] [CrossRef]
- Rakhmatia, Y.D.; Ayukawa, Y.; Furuhashi, A.; Koyano, K. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodont. Res. 2013, 57, 3–14. [Google Scholar] [CrossRef]
- Amberg, R.; Elad, A.; Beuer, F.; Vogt, C.; Bode, J.; Witte, F. Effect of physical cues of altered extract media from biodegradable magnesium implants on human gingival fibroblasts. Acta Biomater. 2019, 98, 186–195. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Q.; Zhang, X.; Qiu, J.; Qian, S.; Liu, X. Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts. Bioact. Mater. 2020, 6, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Rider, P.; Kačarević, Ž.P.; Elad, A.; Rothamel, D.; Sauer, G.; Bornert, F.; Windisch, P.; Hangyási, D.; Molnar, B.; Hesse, B.; et al. Biodegradation of a Magnesium Alloy Fixation Screw Used in a Guided Bone Regeneration Model in Beagle Dogs. Materials 2022, 15, 4111. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Shadanbaz, S.; Woodfield, T.B.F.; Staiger, M.P.; Dias, G.J. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2014, 102, 1316–1331. [Google Scholar] [CrossRef] [PubMed]
- Oshibe, N.; Marukawa, E.; Yoda, T.; Harada, H. Degradation and interaction with bone of magnesium alloy WE43 implants: A long-term follow-up in vivo rat tibia study. J. Biomater. Appl. 2019, 33, 1157–1167. [Google Scholar] [CrossRef]
- Abolfazli, N.; Saleh Saber, F.; Lafzi, A.; Eskandari, A.; Mehrasbi, S. A Clinical Comparison of Cenobone (A Decalcified Freeze-dried Bone Allograft) with Autogenous Bone Graft in the Treatment of Two- and Three-wall Intrabony Periodontal Defects: A Human Study with Six-month Reentry. J. Dent. Res. Dent. Clin. Dent. Prospects 2008, 2, 1–8. [Google Scholar] [CrossRef]
- Sculean, A.; Berakdar, M.; Chiantella, G.C.; Donos, N.; Arweiler, N.B.; Brecx, M. Healing of intrabony defects following treatment with a bovine-derived xenograft and collagen membrane. J. Clin. Periodontol. 2003, 30, 73–80. [Google Scholar] [CrossRef]
- Sculean, A.; Schwarz, F.; Chiantella, G.C.; Donos, N.; Arweiler, N.B.; Brecx, M.; Becker, J. Five-year results of a prospective, randomized, controlled study evaluating treatment of intra-bony defects with a natural bone mineral and GTR. J. Clin. Periodontol. 2007, 34, 72–77. [Google Scholar] [CrossRef]
- Chen, C.-C.; Wang, H.-L.; Smith, F.; Glickman, G.N.; Shyr, Y.; O’Neal, R.B. Evaluation of a collagen membrane with and without bone grafts in treating periodontal intrabony defects. J. Periodontol. 1995, 66, 838–847. [Google Scholar] [CrossRef]
- Tarakji, B.; Beshr, K.; Mossa, H.; Elkhatat, E.; Elkhatat, A.; Azzeghaiby, S. Clinical and radiographic evaluation of periodontal intrabony defects by open flap surgery alone or in combination with Biocollagen® membrane: A randomized clinical trial. J. Int. Soc. Prev. Community Dent. 2015, 5, 190. [Google Scholar] [CrossRef]
- Lee, I.K.; Choi, H.S.; Jeong, S.H.; Lee, J.T. Evaluating Change of Marginal Bone Height with Cone-Beam Computed Tomography Following Surgical Treatment with Guided Tissue Regeneration (Bone Grafting) or Access Flap Alone: A Retrospective Study. Medicina 2021, 57, 869. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, K.; Sculean, A.; Jepsen, S. Complications and treatment errors related to regenerative periodontal surgery. Periodontol. 2000 2023, 92, 120–134. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hangyasi, D.B.; Körtvélyessy, G.; Blašković, M.; Rider, P.; Rogge, S.; Siber, S.; Kačarević, Ž.P.; Čandrlić, M. Regeneration of Intrabony Defects Using a Novel Magnesium Membrane. Medicina 2023, 59, 2018. https://doi.org/10.3390/medicina59112018
Hangyasi DB, Körtvélyessy G, Blašković M, Rider P, Rogge S, Siber S, Kačarević ŽP, Čandrlić M. Regeneration of Intrabony Defects Using a Novel Magnesium Membrane. Medicina. 2023; 59(11):2018. https://doi.org/10.3390/medicina59112018
Chicago/Turabian StyleHangyasi, David Botond, Győző Körtvélyessy, Marko Blašković, Patrick Rider, Svenja Rogge, Stjepan Siber, Željka Perić Kačarević, and Marija Čandrlić. 2023. "Regeneration of Intrabony Defects Using a Novel Magnesium Membrane" Medicina 59, no. 11: 2018. https://doi.org/10.3390/medicina59112018