Effects of the Oxytocin Hormone on Pelvic Floor Muscles in Pregnant Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Examination of Pelvic Floor Muscles
2.2. Preparation of Oxytocin Solution
2.3. Statistical Analysis
3. Results
3.1. Mean Values of Sections from the Rats
3.2. Observational Findings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Messelink, B.; Benson, T.; Berghmans, B.; Bø, K.; Corcos, J.; Fowler, C.; Laycock, J.; Lim, P.H.-C.; van Lunsen, R.; Nijeholt, G.L.Á.; et al. Standardization of terminology of pelvic floor muscle function and dysfunction: Report from the pelvic floor clinical assessment group of the International Continence Society. Neurourol. Urodyn. 2005, 24, 374–380. [Google Scholar] [CrossRef]
- Alperin, M.; Lawley, D.M.; Esparza, M.C.; Lieber, R.L. Pregnancy-induced adaptations in the intrinsic structure of rat pelvic floor muscles. Am. J. Obs. Gynecol. 2015, 213, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Pascali, D. The pelvic floor. In Oxorn–Foote Human Labor & Birth, 6th ed.; Posner, G.D., Dy, J., Black, A.Y., Jones, G.D., Eds.; McGraw-Hill Education: New York, NY, USA, 2013; pp. 10–13. [Google Scholar]
- Hilde, G.; Stær Jensen, J.; Siafarikas, F.; Engh, M.E.; Brækken, I.H.; Bø, K. Impact of childbirth and mode of delivery on vaginal resting pressure and on pelvic floor muscle strength and endurance. Am. J. Obs. Gynecol. 2013, 208, 50.e1–50.e7. [Google Scholar] [CrossRef]
- Obloza, A.; Toozs Hobson, P. 2D USS of the pelvic floor in the 3rd trimester versus mode of delivery. Eur. J. Obs. Gynecol. Reprod. Biol. 2018, 230, 153–158. [Google Scholar] [CrossRef]
- Lammers, K.; Prokop, M.; Vierhout, M.E.; Kluivers, K.B.; Fütterer, J.J. A pictorial overview of pubovisceral muscle avulsions on pelvic floor magnetic resonance imaging. Insights Imaging 2013, 4, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.L.; Hutchon, S.P. Mechanism and management of normal labour. Curr. Obstet. Gynaecol. 2004, 14, 301–308. [Google Scholar] [CrossRef]
- Bozkurt, M.; Yumru, A.E.; Şahin, L. Pelvic floor dysfunction, and effects of pregnancy and mode of delivery on pelvic floor. Taiwan J. Obs. Gynecol. 2014, 53, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Dellino, M.; Crupano, F.M.; He, X.; Malvasi, A.; Vimercati, A. Uterine rupture after previous caesarean section with hysterotomy above the lower uterine segment. Acta Biomed. 2022, 93, 2. [Google Scholar]
- Vimercati, A.; Dellino, M.; Suma, C.; Damiani, G.R.; Malvasi, A.; Cazzato, G.; Cascardi, E.; Resta, L.; Cicinelli, E. Spontaneous Uterine Rupture and Adenomyosis, a Rare but Possible Correlation: Case Report and Literature Review. Diagnostics 2022, 12, 1574. [Google Scholar] [CrossRef] [PubMed]
- Oliphant, S.S.; Nygaard, I.E.; Zong, W.; Canavan, T.P.; Moalli, P.A. Maternal adaptations in preparation for parturition predict uncomplicated spontaneous delivery outcome. Am. J. Obs. Gynecol. 2014, 211, 630.e1–630.e7. [Google Scholar] [CrossRef] [PubMed]
- Vila Pouca, M.C.P.; Ferreira, J.P.S.; Oliveira, D.A.; Parente, M.P.L.; Mascarenhas, T.; Natal Jorge, R.M. On the effect of labour durations using an anisotropic visco-hyperelastic-damage approach to simulate vaginal deliveries. J. Mech. Behav. Biomed. Mater. 2018, 88, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Mias, N.L.; Martínez Franco, E.; Aguado, J.; Sánchez, E.; Amat Tardiu, L. Pelvic organ prolapse and stress urinary incontinence, do they share the same risk factors? Eur. J. Obs. Gynecol. Reprod. Biol. 2015, 190, 52–57. [Google Scholar] [CrossRef]
- Lisonkova, S.; Lavery, J.A.; Ananth, C.V.; Chen, I.; Muraca, G.; Cundiff, G.W.; Joseph, K.S. Temporal trends in obstetric trauma and inpatient surgery for pelvic organ prolapse: An age-period-cohort analysis. Am. J. Obs. Gynecol. 2016, 215, 208.e1–208.e12. [Google Scholar] [CrossRef] [Green Version]
- Memon, H.U.; Handa, V.L. Vaginal childbirth and pelvic floor disorders. Women’s Health 2013, 9, 265–277. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Parente, M.P.; Calvo, B.; Mascarenhas, T.; Natal Jorge, R.M. Numerical simulation of the damage evolution in the pelvic floor muscles during childbirth. J. Biomech. 2016, 49, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Lindo, F.M.; Carr, E.S.; Reyes, M.; Gendron, J.M.; Ruiz, J.; Parks, V.L.; Kuehl, T.J.; Larsen, W.I. Randomized trial of cesarean vs vaginal delivery for effects on the pelvic floor in squirrel monkeys. Am. J. Obs. Gynecol. 2015, 213, 735.e1–735.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alperin, M.; Tuttle, L.J.; Conner, B.R.; Dixon, D.M.; Mathewson, M.A.; Ward, S.R.; Lieber, R.L. Comparison of pelvic muscle architecture between humans and commonly used laboratory species. Int. UroGynecol. J. 2014, 25, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Bracken, J.N.; Reyes, M.; Gendron, J.M.; Pierce, L.M.; Runge, V.M.; Kuehl, T.J. Alterations in pelvic floor muscles and pelvic organ support by pregnancy and vaginal delivery in squirrel monkeys. Int. UroGynecol. J. 2011, 22, 1109–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dheresa, M.; Worku, A.; Oljira, L.; Mengiste, B.; Assefa, N.; Berhane, Y. One in five women suffer from pelvic floor disorders in Kersa district Eastern Ethiopia: A community-based study. BMC Women’s Health 2018, 18, 95. [Google Scholar] [CrossRef] [Green Version]
- Pregazzi, R.; Sartore, A.; Troiano, L.; Grimaldi, E.; Bortoli, P.; Siracusano, S.; Guaschino, S. Postpartum urinary symptoms: Prevalence and risk factors. Eur. J. Obs. Gynecol. Reprod. Biol. 2002, 103, 179–182. [Google Scholar] [CrossRef]
- Lipschuetz, M.; Cohen, S.M.; Liebergall-Wischnitzer, M.; Zbedat, K.; Hochner-Celnikier, D.; Lavy, Y.; Yagel, S. Degree of bother from pelvic floor dysfunction in women one year after first delivery. Eur. J. Obs. Gynecol. Reprod. Biol. 2015, 191, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Durnea, C.M.; Khashan, A.S.; Kenny, L.C.; Durnea, U.A.; Dornan, J.C.; O’Sullivan, S.M.; O’Reilly, B. What is to blame for postnatal pelvic floor dysfunction in primiparous women-Pre-pregnancy or intrapartum risk factors? Eur. J. Obs. Gynecol. Reprod. Biol. 2017, 214, 36–43. [Google Scholar] [CrossRef]
- Cyr, M.P.; Kruger, J.; Wong, V.; Dumoulin, C.; Girard, I.; Morin, M. Pelvic floor morphometry and function in women with and without puborectalis avulsion in the early postpartum period. Am. J. Obs. Gynecol. 2017, 216, 274.e1–274.e8. [Google Scholar] [CrossRef] [PubMed]
- Dietz, H.P.; Campbell, S. Toward normal birth–but at what cost? Am. J. Obs. Gynecol. 2016, 215, 439–444. [Google Scholar] [CrossRef]
- Leijonhufvud, A.; Lundholm, C.; Cnattingius, S.; Graanath, F.; Andolf, E.; Altman, D. Risks of stress urinary incontinence and pelvic organ prolapse surgery in relation to mode of childbirth. Am. J. Obs. Gynecol. 2011, 204, 70.e1–70.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel Spiegel, E.; Weiner, Z.; Ben Shlomo, I.; Shalev, E. For how long should oxytocin be continued during induction of labour? BJOG 2004, 111, 331–334. [Google Scholar] [CrossRef]
- Hickey, M.; Ruth, D.J. Induction and augmentation of labor. In Intrapartum Management Modules, a Perinatal Education Program, 4th ed.; Kennedy, B.B., Ruth, D.J., Martın, E.J., Eds.; Wolters Kluwer Health–Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009; pp. 218–232. [Google Scholar]
- Cunningham, F.G.; Leveno, K.J.; Bloom, S.L.; Spong, C.Y.; Dashe, J.S.; Hoffman, B.L.; Casey, B.M.; Sheffield, J.S. Williams Obstetrics, 24th ed.; McGraw-Hill Education: New York, NY, USA, 2014; pp. 523–530. [Google Scholar]
- Molitch, M.E.; Schimmer, B.P. Introduction to endocrinology: The hypothalamic-pituitary axis. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed.; Brunton, L.L., Hilal Dandan, R., Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, USA, 2018; pp. 782–784. [Google Scholar]
- Mahlmeister, L.R. Best practices in perinatal care: Evidence-based management of oxytocin induction and augmentation of labor. J. Perinat. Neonatal. Nurs. 2008, 22, 259–263. [Google Scholar] [CrossRef]
- Bernitz, S.; Øian, P.; Rolland, R.; Sandvik, L.; Blix, E. Oxytocin and dystocia as risk factors for adverse birth outcomes: A cohort of low-risk nulliparous women. Midwifery 2014, 30, 364–370. [Google Scholar] [CrossRef]
- Low, L.K.; Zielinski, R.; Tao, Y.; Galecki, A.; Brandon, C.J.; Miller, J.M. Predicting birth-related levator ani tear severity in primiparous women: Evaluating maternal recovery from labor and delivery (EMRLD study). Open J. Obs. Gynecol. 2014, 4, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Aran, T.; Osmanagaoglu, M.A.; Kart, C.; Guven, S.; Sahin, M.; Unsal, M.A. Failed labor induction in nulliparous women at term: The role of pelvic floor muscle strength. Int. UroGynecol. J. 2012, 23, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Kearney, R.; Miller, J.M.; Ashton Miller, J.A.; DeLancey, J.O.L. Obstetrical factors associated with levator ani muscle injury after vaginal birth. Obs. Gynecol. 2006, 107, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Arias, F. Pharmacology of oxytocin and prostaglandins. Clin. Obs. Gynecol. 2000, 43, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Alperin, M.; Kaddis, T.; Pichika, R.; Esparza, M.C.; Lieber, R.L. Pregnancy-induced adaptations in intramuscular extracellular matrix of rat pelvic floor muscles. Am. J. Obs. Gynecol. 2016, 215, 210.e1–210.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lien, K.C.; Mooney, B.; DeLancey, J.O.L.; Ashton Miller, J.A. Levator ani muscle stretch induced by simulated vaginal birth. Obs. Gynecol. 2004, 103, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Karahan, N.; Arslan, H.; Çam, Ç. The behaviour of pelvic floor muscles during uterine contractions in spontaneous and oxytocin-induced labour. J. Obs. Gynaecol. 2018, 38, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.F.; Erickson, E.N.; Carter, C.S. Beyond labor: The role of natural and synthetic oxytocin in the transition to motherhood. J. Midwifery Womens Health 2014, 59, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Shang, S.; Xie, B.; Wang, J.; Hu, B.; Sun, X.; Wu, J.; Hong, N. MRI changes of pelvic floor and pubic bone observed in primiparous women after childbirth by normal vaginal delivery. Arc. Gynecol. Obs. 2016, 294, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Parente, M.P.L.; Jorge, R.N.; Mascarenhas, T.; Fernandes, A.A.; Martins, J.A.C. The influence of an occipito-posterior malposition on the biomechanical behavior of the pelvic floor. Eur. J. Obs. Gynecol. Reprod. Biol. 2009, 144, 166–169. [Google Scholar] [CrossRef]
- Catanzarite, T.; Bremner, S.; Barlow, C.L.; Bou-Malham, L.; O’connor, S.; Alperin, M. Pelvic muscles’ mechanical response to strains in the absence and presence of pregnancy-induced adaptations in a rat model. Am. J. Obs. Gynecol. 2018, 218, 512. [Google Scholar] [CrossRef]
- Lane-Petter, W. Parental Injuries to Offspring: Cannibalism in Rats and Mice. J. R. Soc. Med. 1968, 61, 1295–1296. [Google Scholar] [CrossRef] [Green Version]
- Sayiner, F.D.; Öztürk, D.M.; Ulupinar, E. Stress caused by environmental effects on the birth process and some of the labor hormones at rats: Ideal birth environment and hormones. J. Matern. Fetal. Neonatal. Med. 2019, 34, 2600–2608. [Google Scholar] [CrossRef] [PubMed]
Groups (n = 8) | Body Weight (g) |
---|---|
Group I | 169.3 ± 0.9 (a) |
Group II | 271 ± 1.1 (b) |
Group III | 267.5 ± 30 (b) |
Group IV | 276 ± 22 (b) |
Test Statistics | F = 60.481 |
p | <0.001 |
Muscles | Group I | Group II | Group III | Group IV | |
---|---|---|---|---|---|
m.iliocaudalis vertical | r | −0.287 | 0.329 | −0.352 | 0.051 |
p | 0.491 | 0.427 | 0.393 | 0.904 | |
m.iliocaudalis horizontal | r | 0.358 | 0.377 | −0.669 | 0.632 |
p | 0.384 | 0.357 | 0.070 | 0.093 | |
m.pubocaudalis vertical | r | −0.813 | 0.261 | 0.115 | −0.352 |
p | 0.014 | 0.533 | 0.787 | 0.392 | |
m.pubocaudalis horizontal | r | −0.271 | −0.217 | 0.500 | 0.558 |
p | 0.516 | 0.605 | 0.207 | 0.150 | |
m.coccygeus vertical | r | 0.111 | −0.817 | −0.734 | 0.303 |
p | 0.794 | 0.013 | 0.038 | 0.466 | |
m.coccygeus horizontal | r | 0.510 | −0.757 | 0.499 | −0.432 |
p | 0.196 | 0.030 | 0.208 | 0.285 |
Groups (n = 8) | Vertical (µm) | Horizontal (µm) | Test Statistics |
---|---|---|---|
Group I | 60.1 ± 15.7 | 36.7 ± 8.2 | t = 3.999 |
Group II | 63.4 ± 7.1 | 36.7 ± 4.8 | t = 10.162 |
Group III | 63.4 ± 11.1 | 42.2 ± 4.7 | t = 5.736 |
Group IV | 65.1 ± 7.2 | 40.1 ± 7.4 | t = 9.332 |
Test Statistics | F=0.292 | F = 1.392 | |
p | 0.831 | 0.266 |
Groups (n = 8) | Vertical (µm) | Horizontal (µm) | Test Statistics |
---|---|---|---|
Group I | 67.2 ± 15.7 | 35.7 ± 5.2 (a) | t = 5.853 |
Group II | 73.8 ± 10.0 | 36.3 ± 2.8 (a) | t = 11.901 |
Group III | 76.7 ± 15.3 | 37.7 ± 4.3 (a) | t = 6.514 |
Group IV | 74.8 ± 16.9 | 50.1 ± 5.4 (b) | t = 4.255 |
Test Statistics | F = 0.626 | F= 18.125 | |
p | 0.604 | <0.001 |
Groups (n = 8) | Vertical (µm) | Horizontal (µm) | Test Statistics |
---|---|---|---|
Group I | 64.7 ± 12.3 | 37.6 ± 5.6 (a) | t = 6.165 |
Group II | 88.7 ± 29.5 | 40.3 ± 6.5 (ab) | t = 5.756 |
Group III | 70.7 ± 5.5 | 49.5 ± 10.9 (b) | t = 8.466 |
Group IV | 79.6 ± 22.0 | 46.7 ± 4.5 (ab) | t = 4.482 |
Test Statistics | F = 2.302 | F = 4.642 | |
p | 0.099 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, E.; Mutluay, S.D.; Buyuknacar, H.S. Effects of the Oxytocin Hormone on Pelvic Floor Muscles in Pregnant Rats. Medicina 2023, 59, 234. https://doi.org/10.3390/medicina59020234
Demir E, Mutluay SD, Buyuknacar HS. Effects of the Oxytocin Hormone on Pelvic Floor Muscles in Pregnant Rats. Medicina. 2023; 59(2):234. https://doi.org/10.3390/medicina59020234
Chicago/Turabian StyleDemir, Emine, Sukriye Deniz Mutluay, and Hacer Sinem Buyuknacar. 2023. "Effects of the Oxytocin Hormone on Pelvic Floor Muscles in Pregnant Rats" Medicina 59, no. 2: 234. https://doi.org/10.3390/medicina59020234
APA StyleDemir, E., Mutluay, S. D., & Buyuknacar, H. S. (2023). Effects of the Oxytocin Hormone on Pelvic Floor Muscles in Pregnant Rats. Medicina, 59(2), 234. https://doi.org/10.3390/medicina59020234