Gender Differences in Atrial Fibrillation: From the Thromboembolic Risk to the Anticoagulant Treatment Response
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Female Sex and Thromboembolic Risk Scores
3.2. Mortality Rate Gender Differences
3.3. Biological Gender Differences and Thromboembolic Risk
3.4. Gender Differences in VKAs Treatment Response
3.5. Gender Differences in Thromboembolic Risk and Anticoagulant Therapy in the Era of Direct Oral Anticoagulants
- -
- Women are more frequently overdosed than men (probably due to differences in the volume of distribution and clearance of drugs);
- -
- They are more sensitive to drug effects than men (probably due to differences in receptor numbers, receptor binding, and the signal transduction pathway following receptor binding);
- -
- They take a greater amount of medications than men, with a higher potential for drug interactions.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertaglia, E.; Anselmino, M.; Zorzi, A.; Russo, V.; Toso, E.; Peruzza, F.; Rapacciuolo, A.; Migliore, F.; Gaita, F.; Cucchini, U.; et al. Stabile G NOACs and atrial fibrillation: Incidence and predictors of left atrial thrombus in the real world. Int. J. Cardiol. 2017, 249, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.; Rahman, F.; Schnabel, R.B.; Yin, X.; Benjamin, E.; Christophersen, I.E. Atrial fibrillation in women: Epidemiology, pathophysiology, presentation, and prognosis. Nat. Rev. Cardiol. 2016, 13, 321–332. [Google Scholar] [CrossRef]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151, Erratum in N. Engl. J. Med. 2010, 363, 1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Špinar, J.; et al. Edoxaban versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.V.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Ave-zum, A.; et al. Apixaban versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Stabile, G.; Russo, V.; Rapacciuolo, A.; De Divitiis, M.; De Simone, A.; Solimene, F.; D’Onofrio, A.; Iuliano, A.; Maresca, G.; Esposito, F.; et al. Transesophageal echocardiograpy in patients with persistent atrial fibrillation undergoing electrical cardioversion on new oral anticoagulants: A multi center registry. Int. J. Cardiol. 2015, 184, 283–284. [Google Scholar] [CrossRef]
- Russo, V.; Di Napoli, L.; Bianchi, V.; Tavoletta, V.; De Vivo, S.; Cavallaro, C.; Vecchione, F.; Rago, A.; Sarubbi, B.; Calabrò, P.; et al. A new integrated strategy for direct current cardioversion in non-valvular atrial fibrillation patients using short term rivaroxaban administration: The MonaldiVert real life experience. Int. J. Cardiol. 2016, 224, 454–455. [Google Scholar] [CrossRef]
- Russo, V.; Rago, A.; Papa, A.A.; D’Onofrio, A.; Golino, P.; Nigro, G. Efficacy and safety of dabigatran in patients with atrial fibrillation scheduled for transoesophageal echocardiogram-guided direct electrical current cardioversion: A prospective propensity score-matched cohort study. J. Thromb. Thrombolysis 2017, 45, 206–212. [Google Scholar] [CrossRef]
- Budget impact analysis of rivaroxaban vs. warfarin anticoagulation strategy for direct current cardioversion in non-valvular atrial fibrillation patients: The MonaldiVert Economic Study. Minerva Cardioangiol. 2017, 66, 1–5. [CrossRef]
- Attena, E.; Mazzone, C.; Esposito, F.; Parisi, V.; Bancone, C.; Rago, A.; Nigro, G.; Sangiuolo, R.; Onofrio, A.D.; Russo, V. Nonvitamin K Antagonist Oral Anticoagulants Use in Patients with Atrial Fibrillation and Bioprosthetic Heart Valves/Prior Surgical Valve Repair: A Multicenter Clinical Practice Experience. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2018; Volume 44, pp. 364–369. [Google Scholar] [CrossRef]
- Russo, V.; Rago, A.; Proietti, R.; Attena, E.; Rainone, C.; Crisci, M.; Papa, A.A.; Calabrò, P.; D’Onofrio, A.; Golino, P.; et al. Safety and Efficacy of Triple Antithrombotic Therapy with Dabigatran versus Vitamin K Antagonist in Atrial Fibrillation Patients: A Pilot Study. BioMed Res. Int. 2019, 2019, 5473240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rago, A.; Papa, A.A.; Attena, E.; Parisi, V.; Golino, P.; Nigro, G.; Russo, V. Direct Current Cardioversion in Atrial Fibrillation Patients on Edoxaban Therapy Versus Vitamin K Antagonists: A Real-world Propensity Score–Matched Study. Cardiovasc. Drugs Ther. 2020, 35, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Rago, A.; Papa, A.A.; Cassese, A.; Arena, G.; Magliocca, M.C.G.; D’Onofrio, A.; Golino, P.; Nigro, G.; Russo, V. Clinical Performance of Apixaban vs. Vitamin K Antagonists in Patients with Atrial Fibrillation Undergoing Direct Electrical Current Cardioversion: A Prospective Propensity Score-Matched Cohort Study. Am. J. Cardiovasc. Drugs 2019, 19, 421–427. [Google Scholar] [CrossRef]
- Rago, A.; Pezzullo, E.; D’Aquino, M.M.C.; Scognamiglio, G.; Caso, V.M.; Martone, F.; Attena, E.; Parisi, V.; D’Onofrio, A.; Golino, P.; et al. Non Vitamin K Antagonist Oral Anticoagulants in Atrial Fibrillation Patients Scheduled for Electrical Cardioversion: A Real-Life Propensity Score Matched Study. J. Blood Med. 2021, 12, 413–420. [Google Scholar] [CrossRef]
- Russo, V.; Attena, E.; Mazzone, C.; Melillo, E.; Rago, A.; Galasso, G.; Riegler, L.; Parisi, V.; Rotunno, R.; Nigro, G.; et al. Real-life Performance of Edoxaban in Elderly Patients with Atrial Fibrillation: A Multicenter Propensity Score–Matched Cohort Study. Clin. Ther. 2019, 41, 1598–1604. [Google Scholar] [CrossRef]
- Russo, V.; Attena, E.; Rago, A. Clinical Outcome of Edoxaban vs. Vitamin K Antagonists in Pa-tients with Atrial Fibrillation and Diabetes Mellitus: Results from a Multicenter, Propensity-Matched, Real-World Cohort Study. J. Clin. Med. 2020, 9, 1621. [Google Scholar] [CrossRef] [PubMed]
- The SPAF III Writing Committee for the Stroke Prevention in Atrial Fibrillation Investigators. Patients with nonvalvularatrialfibrillationat low risk of stroke during treatment with aspirin: Stroke Prevention in Atrial Fibrillation III Study. JAMA 1998, 279, 1273–1277.
- Fang, M.C.; Singer, D.E.; Chang, Y.; Hylek, E.M.; Henault, L.E.; Jensvold, N.G.; Go, A.S. Gender Differences in the Risk of Ischemic Stroke and Peripheral Embolism in Atrial Fibrillation. Circulation 2005, 112, 1687–1691. [Google Scholar] [CrossRef]
- Wang, T.; Massaro, J.; Levy, D. A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community. The Framingham Heart Study. ACC Curr. J. Rev. 2003, 12, 54. [Google Scholar] [CrossRef]
- Friberg, J.; Scharling, H.; Gadsbøll, N.; Truelsen, T.; Jensen, G.B. Comparison of the impact of atrial fibrillation on the risk of stroke and cardiovascular death in women versus men (The Copenhagen City Heart Study). Am. J. Cardiol. 2004, 94, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.-F.; Liu, C.-J.; Chen, S.-J.; Wang, K.-L.; Lin, Y.-J.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Tuan, T.-C.; Wu, T.-J.; et al. Atrial Fibrillation and the Risk of Ischemic Stroke. Stroke 2012, 43, 2551–2555. [Google Scholar] [CrossRef] [Green Version]
- Friberg, L.; Benson, L.; Rosenqvist, M.; Lip, G.Y.H. Assessment of female sex as a risk factor in atrial fibrillation in Sweden: Nationwide retrospective cohort study. BMJ 2012, 344, e3522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackevicius, C.A.; Tsadok, M.A.; Rahme, E.; Humphries, K.H.; Behlouli, H.; Pilote, L. Sex Differences in Stroke Risk Among Older Patients with Recently Diagnosed Atrial Fibrillation. JAMA 2012, 307, 1952–1958. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, A.P.; Lindhardsen, J.; Lip, G.Y.H.; Gislason, G.H.; Torp-Pedersen, C.; Olesen, J.B. Female sex as a risk factor for stroke in atrial fibrillation: A nationwide cohort study. J. Thromb. Haemost. 2012, 10, 1745–1751. [Google Scholar] [CrossRef]
- Piccini, J.P.; Simon, D.N.; Steinberg, B.A.; Thomas, L.; Allen, L.A.; Fonarow, G.C.; Gersh, B.; Hylek, E.; Kowey, P.R.; Reiffel, J.A.; et al. Differences in Clinical and Functional Outcomes of Atrial Fibrillation in Women and Men. JAMA Cardiol. 2016, 1, 282–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, M.R.F.; Pittrow, D.; Beltzer, A.; Kruck, I.; Kirch, W.; Kohlhaussen, A.; Bonnemeier, H. Gender differences in patients with atrial fibrillation. Herzschrittmacherther. + Elektrophysiol. 2013, 24, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Atarashi, H.; Okumura, K.; Yamashita, T.; Origasa, H.; Kumagai, N.; Sakurai, M.; Kawamura, Y.; Kubota, I.; Matsumoto, K.; et al. Impact of Gender on the Prognosis of Patients with Nonvalvular Atrial Fibrillation. Am. J. Cardiol. 2013, 113, 957–962. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Lee, C.-H.; Yu, C.-C.; Tsai, C.-T.; Lai, L.-P.; Hwang, J.-J.; Chen, P.-C.; Lin, J.-L. Risk factors and incidence of ischemic stroke in Taiwanese with nonvalvular atrial fibrillation—A nation wide database analysis. Atherosclerosis 2011, 217, 292–295. [Google Scholar] [CrossRef]
- Poli, D.; Antonucci, E.; Testa, S.; Ageno, W.; Palareti, G. Gender differences of bleeding and stroke risk in very Old atrial fibrillation patients on VKA treatment. Thromb. Res. 2012, 131, 12–16. [Google Scholar] [CrossRef]
- Potpara, T.S.; Marinkovic, J.M.; Polovina, M.M.; Stankovic, G.; Seferovic, P.M.; Ostojic, M.C.; Lip, G.Y. Gender-related differences in presentation, treatment and long-term outcome in patients with first-diagnosed atrial fibrillation and structurally normal heart: The Belgrade atrial fibrillation study. Int. J. Cardiol. 2012, 161, 39–44. [Google Scholar] [CrossRef]
- Salam, A.M.; AlBinali, H.A.; Al-Mulla, A.W.; Asaad, N.; Singh, R.; Al-Qahtani, A.; Al Suwaidi, J. Women hospitalized with atrial fibrillation: Gender differences, trends and outcome from a 20-year registry in a middle eastern country (1991–2010). Int. J. Cardiol. 2012, 168, 975–980. [Google Scholar] [CrossRef]
- Renoux, C.; Coulombe, J.; Suissa, S. Revisiting sex differences in outcomes in non-valvular atrial fibrillation: A population-based cohort study. Eur. Heart J. 2017, 38, 1473–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atrial Fibrillation Investigators. Echocardiographicpredictors of stroke in patients with atrialfibrillation: A prospective study of 1066 patients from 3 clinical trials. Arch. Intern. Med. 1998, 158, 1316–1320. [Google Scholar] [CrossRef]
- Fuster, V.; Ryden, L.E.; Cannom, D.S.; Crijns, H.J.; Curtis, A.B.; Ellenbogen, K.A.; Halperin, J.L.; Le Heuzey, J.Y.; Kay, G.N.; Lowe, J.E.; et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation-executive summary: A report of the American college of cardiology/american heart association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation). Eur. Heart J. 2006, 27, 1979–2030. [Google Scholar] [CrossRef]
- Gage, B.F.; Waterman, A.D.; Shannon, W.; Boechler, M.; Rich, M.W.; Radford, M.J. Validation of Clinical Classification Schemes for Predicting Stroke: Results from the National Registry of Atrial Fibrillation. JAMA 2001, 285, 2864–2870. [Google Scholar] [CrossRef]
- Camm, A.J.; Kirchhof, P.; Lip, G.Y.H.; Schotten, U.; Savelieva, I.; Ernst, S.; Van Gelder, I.C.; Al-Attar, N.; Hindricks, G.; Prendergast, B.; et al. Guidelines for the management of atrial fibrillation. EP Eur. 2010, 12, 1360–1420. [Google Scholar] [CrossRef]
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J. Refiningclinical risk stratification for predicting stroke and thromboembolism in atrialfibrillationusing a novel risk factor-basedapproach: The Euro Heart Survey on Atrial Fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Conway, D.S.; Lip, G.Y. Comparison of outcomes of patients with symptomatic peripheral artery disease with and without atrial fibrillation (the West Birmingham Atrial Fibrillation Project). Am. J. Cardiol. 2004, 93, 1422–1425. [Google Scholar] [CrossRef] [PubMed]
- Siu, C.-W.; Jim, M.-H.; Ho, H.-H.; Miu, R.; Lee, S.W.; Lau, C.-P.; Tse, H.-F. Transient Atrial Fibrillation Complicating Acute Inferior Myocardial Infarction. Chest 2007, 132, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.B.; Lip, G.Y.; Lane, D.A.; Køber, L.; Hansen, M.L.; Karasoy, D.; Hansen, C.M.; Gislason, G.H.; Torp-Pedersen, C. Vascular Disease and Stroke Risk in Atrial Fibrillation: A Nationwide Cohort Study. Am. J. Med. 2012, 125, 826.e13–826.e23. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.M.; Larson, J.; Chung, M.K.; Curtis, A.B.; Lakshminarayan, K.; Newman, J.D.; Perez, M.; Rexrode, K.; Shara, N.M.; Solomon, A.J.; et al. Does CHA2DS2-VASc Improve Stroke Risk Stratification in Postmenopausal Women with Atrial Fibrillation? Am. J. Med. 2013, 126, 1143.e1–1143.e8. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.B.; Lip, G.Y.H.; Hansen, M.L.; Hansen, P.R.; Tolstrup, J.; Lindhardsen, J.; Selmer, C.; Ahlehoff, O.; Olsen, A.-M.S.; Gislason, G.; et al. Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: Nationwide cohort study. BMJ 2011, 342, d124. [Google Scholar] [CrossRef] [Green Version]
- Siu, C.-W.; Lip, G.Y.; Lam, K.; Tse, H.F. Risk of stroke and intracranial hemorrhage in 9727 Chinese with atrial fibrillation in Hong Kong. Heart Rhythm. 2014, 11, 1401–1408. [Google Scholar] [CrossRef]
- Olesen, J.B.; Torp-Pedersen, C.; Hansen, M.L.; Lip, G.Y.H. The value of the CHA2DS2-VASc score for refining stroke risk stratification in patients with atrial fibrillation with a CHADS2 score 0–1: A nationwide cohort study. Thromb. Haemost. 2012, 107, 1172–1179. [Google Scholar] [CrossRef]
- Wagstaff, A.J.; Overvad, T.F.; Lip, G.Y.H.; Lane, D.A. Is female sex a risk factor for stroke and thromboembolism in patients with atrial fibrillation? A systematic review and meta-analysis. QJM Int. J. Med. 2014, 107, 955–967. [Google Scholar] [CrossRef]
- Nielsen, P.B.; Skjøth, F.; Overvad, T.F.; Larsen, T.B.; Lip, G.Y.H. Female Sex Is a Risk Modifier Rather Than a Risk Factor for Stroke in Atrial Fibrillation. Circulation 2018, 137, 832–840. [Google Scholar] [CrossRef]
- Brieger, D.; Amerena, J.; Attia, J.; Bajorek, B.; Chan, K.H.; Connell, C.; Freedman, B.; Ferguson, C.; Hall, T.; Haqqani, H.; et al. National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand: Australian Clinical Guidelines for the Diagnosis and Management of Atrial Fibrillation 2018. Heart Lung Circ. 2018, 27, 1209–1266. [Google Scholar] [CrossRef] [Green Version]
- Overvad, T.F.; Potpara, T.S.; Nielsen, P.B. Stroke Risk Stratification: CHA2DS2-VA or CHA2DS2-VASc? Heart Lung Circ. 2018, 28, e14–e15. [Google Scholar] [CrossRef]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.-C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, 2893–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch. Intern. Med. 1994, 154, 1449–1457, Erratum in Arch. Intern. Med. 1994, 154, 2254. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kim, M.H.; Bin Kim, H.; Kang, S.Y.; Lee, K.M.; Hyun, K.-Y.; Yun, S.-C. Validation of the CHA2DS2-VA Score (Excluding Female Sex) in Nonvalvular Atrial Fibrillation Patients: A Nationwide Population-Based Study. J. Clin. Med. 2022, 11, 1823. [Google Scholar] [CrossRef]
- Emdin, C.A.; Wong, C.X.; Hsiao, A.J.; Altman, D.G.; Peters, S.A.; Woodward, M.; Odutayo, A.A. Atrial fibrillation as risk factor for cardiovascular disease and death in women compared with men: Systematic review and meta-analysis of cohort studies. BMJ 2016, 532, h7013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute for Health Metrics and Evaluation (IHME). GBD Compare Data Visualization; IHME, University of Washington: Seattle, WA, USA, 2018; Available online: http://vizhub.healthdata.org/gbd-compare (accessed on 3 June 2020).
- Lee, E.; Choi, E.-K.; Han, K.-D.; Lee, H.; Choe, W.-S.; Lee, S.-R.; Cha, M.-J.; Lim, W.-H.; Kim, Y.-J.; Oh, S. Mortality and causes of death in patients with atrial fibrillation: A nationwide population-based study. PLoS ONE 2018, 13, e0209687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphries, K.H.; Kerr, C.R.; Connolly, S.J.; Klein, G.; Boone, J.A.; Green, M.; Sheldon, R.; Talajic, M.; Dorian, P.; Newman, D. New-Onset Atrial Fibrillation: Sex differences in presentation, treatment, and outcome. Circulation 2001, 103, 2365–2370. [Google Scholar] [CrossRef] [Green Version]
- Murphy, N.F.; Simpson, C.; Jhund, P.; Stewart, S.; Kirkpatrick, M.; Chalmers, J.; Macintyre, K.; McMurray, J.J.V. A national survey of the prevalence, incidence, primary care burden and treatment of atrial fibrillation in Scotland. Heart 2007, 93, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, M.; Huisman, M.V.; Rothman, K.J.; Paquette, M.; Teutsch, C.; Diener, H.-C.; Dubner, S.J.; Halperin, J.L.; Zint, K.; França, L.R.; et al. Gender Differences in Antithrombotic Treatment for Newly Diagnosed Atrial Fibrillation: The GLORIA-AF Registry Program. Am. J. Med. 2018, 131, 945–955.e3. [Google Scholar] [CrossRef] [Green Version]
- Anselmino, M.; Battaglia, A.; Gallo, C.; Gili, S.; Matta, M.; Castagno, D.; Ferraris, F.; Giustetto, C.; Gaita, F. Atrial fibrillation and female sex. J. Cardiovasc. Med. 2015, 16, 795–801. [Google Scholar] [CrossRef]
- Rienstra, M.; Van Veldhuisen, D.J.; Hagens, V.E.; Ranchor, A.V.; Veeger, N.J.; Crijns, H.J.; Van Gelder, I.C. Gender-Related Differences in Rhythm Control Treatment in Persistent Atrial Fibrillation: Data of the Rate Control Versus Electrical Cardioversion (RACE) Study. J. Am. Coll. Cardiol. 2005, 46, 1298–1306. [Google Scholar] [CrossRef] [Green Version]
- Dagres, N.; Nieuwlaat, R.; Vardas, P.E.; Andresen, D.; Lévy, S.; Cobbe, S.; Kremastinos, D.T.; Breithardt, G.; Cokkinos, D.V.; Crijns, H.J. Gender-Related Differences in Presentation, Treatment, and Outcome of Patients with Atrial Fibrillation in Europe: A Report from the Euro Heart Survey on Atrial Fibrillation. J. Am. Coll. Cardiol. 2007, 49, 572–577. [Google Scholar] [CrossRef]
- Lip, G.Y.; Laroche, C.; Boriani, G.; Cimaglia, P.; Dan, G.-A.; Santini, M.; Kalarus, Z.; Rasmussen, L.H.; Popescu, M.I.; Tica, O.; et al. Sex-related differences in presentation, treatment, and outcome of patients with atrial fibrillation in Europe: A report from the Euro Observational Research Programme Pilot survey on Atrial Fibrillation. Eurospace 2014, 17, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Moser, K.; Carroll, K. Trends in the prevalence and management of atrial fibrillation in general practice in England and Wales, 1994–1998: Analysis of data from the general practice research database. Heart 2001, 86, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lip, G.Y.; Rushton-Smith, S.K.; Goldhaber, S.Z.; Fitzmaurice, D.A.; Mantovani, L.G.; Goto, S.; Haas, S.; Bassand, J.-P.; Camm, A.J.; Ambrosio, G.; et al. Does Sex Affect Anticoagulant Use for Stroke Prevention in Nonvalvular Atrial Fibrillation?: The Prospective Global Anticoagulant Registry in the FIELD-Atrial Fibrillation. Circ. Cardiovasc. Qual. Outcomes 2015, 8, S12–S20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlott, J.S.; George, R.A.; Huang, X.; Odeh, M.; Kaufman, H.W.; Ansell, J.; Hylek, E.M. National Assessment of Warfarin Anticoagulation Therapy for Stroke Prevention in Atrial Fibrillation. Circulation 2014, 129, 1407–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, A.J.; Ozonoff, A.; Henault, L.E.; Hylek, E.M. Warfarin for atrial fibrillation in community-based practise. J. Thromb. Haemost. 2008, 6, 1647–1654. [Google Scholar] [CrossRef]
- Antonucci, E.; Grifoni, E.; Abbate, R.; Gensini, G.F.; Prisco, D.; Poli, D. Gender differences in stroke risk of atrial fibrillation patients on oral anticoagulant treatment. Thromb. Haemost. 2009, 101, 938–942. [Google Scholar] [CrossRef]
- Sheu, J.-J.; Kang, J.-H.; Lin, H.-C.; Lin, H.-C. Hyperthyroidism and Risk of Ischemic Stroke in Young Adults. Stroke 2010, 41, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Jayachandran, M.; Preston, C.C.; Hunter, L.W.; Jahangir, A.; Owen, W.G.; Korach, K.; Miller, V.M. Loss of estrogen receptor β decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice. Age 2009, 32, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.; McGuire, D.K.; Murphy, S.A.; Stanek, H.G.; Das, S.R.; Vongpatanasin, W.; Wians, F.H.; Grundy, S.M.; de Lemos, J.A. Race and Gender Differences in C-Reactive Protein Levels. J. Am. Coll. Cardiol. 2005, 46, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Panwar, B.; Jenny, N.S.; Howard, V.J.; Wadley, V.G.; Muntner, P.; Kissela, B.M.; Judd, S.E.; Gutiérrez, O.M. Fibroblast Growth Factor 23 and Risk of Incident Stroke in Community-Living Adults. Stroke 2015, 46, 322–328. [Google Scholar] [CrossRef]
- Mathew, J.S.; Sachs, M.; Katz, R.; Patton, K.K.; Heckbert, S.R.; Hoofnagle, A.N.; Alonso, A.; Chonchol, M.; Deo, R.; Ix, J.H.; et al. Fibroblast Growth Factor-23 and Incident Atrial Fibrillation: The Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation 2014, 130, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Dokainish, H.; Tsai, P.; Lakkis, N. Update on the Association of Inflammation and Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2010, 21, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Karunatilleke, A.; Ameenathul, Z.Z.; Fawzy, M.; Gregory, Y.H.L. Sex Differences in Atrial Fibrillation: Focus on Thromboembolic Risk and Anticoagulation Therapy; Chapter 47 Sex and Cardiac Electrophysiology; Academic Press: Cambridge, MA, USA, 2020; pp. 533–541. [Google Scholar] [CrossRef]
- Kishi, S.; Reis, J.P.; Venkatesh, B.A.; Gidding, S.S.; Armstrong, A.C.; Jacobs, D.R.; Sidney, S.; Wu, C.O.; Cook, N.L.; Lewis, C.E.; et al. Race–Ethnic and Sex Differences in Left Ventricular Structure and Function: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. J. Am. Heart Assoc. 2015, 4, e001264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akoum, N.; Mahnkopf, C.; Kholmovski, E.G.; Brachmann, J.; Marrouche, N.F. Age and sex differences in atrial fibrosis among patients with atrial fibrillation. EP Eurospace 2017, 20, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Gurevitz, O.T.; Varadachari, C.J.; Ammash, N.M.; Malouf, J.F.; Rosales, A.G.; Herges, R.M.; Bruce, C.J.; Somers, V.K.; Hammill, S.C.; Gersh, B.J.; et al. The effect of patient sex on recurrence of atrial fibrillation following successful direct current cardioversion. Am. Heart J. 2006, 152, 155.e9–155.e13. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.S.; GustinIV, W.; Wong, N.D.; Larson, M.G.; Weber, M.A.; Kannel, W.B.; Levy, D. Hemodynamic Patterns of Age-Related Changes in Blood Pressure. Circulation 1997, 96, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakatta, E.G. Arterial and Cardiac Aging: Major Shareholders in Cardiovascular Disease Enterprises: Part III: Cellular and molecular clues to heart and arterial aging. Circulation 2003, 107, 490–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton-Tyrrell, K.; Najjar, S.S.; Boudreau, R.; Venkitachalam, L.; Kupelian, V.; Simonsick, E.M.; Havlik, R.; Lakatta, E.G.; Spurgeon, H.; Kritchevsky, S.; et al. Elevated Aortic Pulse Wave Velocity, a Marker of Arterial Stiffness, Predicts Cardiovascular Events in Well-Functioning Older Adults. Circulation 2005, 111, 3384–3390. [Google Scholar] [CrossRef]
- Hijazi, Z.; Oldgren, J.; Andersson, U.; Connolly, S.J.; Ezekowitz, M.D.; Hohnloser, S.H.; Reilly, P.A.; Vinereanu, D.; Siegbahn, A.; Yusuf, S.; et al. Cardiac Biomarkers Are Associated with an Increased Risk of Stroke and Death in Patients with Atrial Fibrillation: A Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation 2012, 125, 1605–1616. [Google Scholar] [CrossRef]
- Linde, C.; Bongiorni, M.G.; Birgersdotter-Green, U.; Curtis, A.B.; Deisenhofer, I.; Furokawa, T.; Gillis, A.M.; Haugaa, K.H.; Lip, G.Y.H.; Van Gelder, I.; et al. Sex differences in cardiac arrhythmia: A consensus document of the European Heart Rhythm Association, endorsed by the Heart Rhythm Society and Asia Pacific Heart Rhythm Society. EP Europace 2018, 20, 1565–1565ao. [Google Scholar] [CrossRef]
- Senoo, K.; Lip, G.Y. Female Sex, Time in Therapeutic Range, and Clinical Outcomes in Atrial Fibrillation Patients Taking Warfarin. Stroke 2016, 47, 1665–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pancholy, S.B.; Sharma, P.S.; Pancholy, D.S.; Patel, T.M.; Callans, D.J.; Marchlinski, F.E. Meta-Analysis of Gender Differences in Residual Stroke Risk and Major Bleeding in Patients with Nonvalvular Atrial Fibrillation Treated with Oral Anticoagulants. Am. J. Cardiol. 2014, 113, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.M.; Zhang, J.; Zamba, G.; Lip, G.Y.; Olshansky, B. Relation of Gender-Specific Risk of Ischemic Stroke in Patients with Atrial Fibrillation to Differences in Warfarin Anticoagulation Control (from AFFIRM). Am. J. Cardiol. 2012, 110, 1799–1802. [Google Scholar] [CrossRef]
- Essebag, V.; Joza, J.; Arensi, A.; Levi, M.; Russo, V.; Tzikas, A.; Danna, P.; Sagone, A.; Viecca, M.; Proietti, R. Novel nonpharmacologic approaches for stroke prevention in atrial fibrillation: Results from clinical trials. Med. Devices Évid. Res. 2015, 8, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Russo, V.; Rago, A.; Papa, A.A. Use of Non-Vitamin K Antagonist Oral Anticoagulants in Atrial Fibrillation Patients with Malignancy: Clinical Practice Experience in a Single Institution and Literature Review. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2018; Volume 44, pp. 370–376. [Google Scholar] [CrossRef]
- AlTurki, A.; Marafi, M.; Russo, V.; Proietti, R.; Essebag, V. Subclinical Atrial Fibrillation and Risk of Stroke: Past, Present and Future. Medicina 2019, 55, 611. [Google Scholar] [CrossRef] [Green Version]
- Russo, V.; Bottino, R.; Rago, A.; Papa, A.A.; Liccardo, B.; D’Onofrio, A.; Golino, P.; Nigro, G. Clinical Performance of Nonvitamin K Antagonist Oral Anticoagulants in Real-World Obese Patients with Atrial Fibrillation. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2020; Volume 46, pp. 970–976. [Google Scholar] [CrossRef]
- Russo, V.; Carbone, A.; Rago, A. Direct Oral Anticoagulants in Octogenarians with Atrial Fi-brillation: It Is Never Too Late. J. Cardiovasc. Pharmacol. 2019, 3, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Melillo, E.; Carbone, A.; Rago, A. Update on Direct Oral Anticoagulants in Atrial Fibrillation Patients Undergoing Cardiac Interventional Procedures: From Clinical Trials to Real-World Evidence. Cardiovasc. Pharmacol. 2020, 75, 185–199. [Google Scholar] [CrossRef]
- Grifoni, E.; Gori, A.M.; Giusti, B. Gender differences in antithrombotic therapy. Ital. J. Gen. Der. Specif. Med. 2017, 3, 15–22. [Google Scholar]
- Russo, V.; Rago, A.; D’Onofrio, A.; Nigro, G. The clinical performance of dabigatran in the Italian real-life experience. J. Cardiovasc. Med. 2017, 18, 922–923. [Google Scholar] [CrossRef]
- Russo, V.; Rago, A.; Laezza, N. Edoxaban in elderly patient with morbid obesity and atrial fi-brillation: The role of plasma levels evaluation for selecting the appropriate dose. Monaldi Arch Chest Dis. 2020, 90. [Google Scholar] [CrossRef] [Green Version]
- Russo, V.; Attena, E.; Di Maio, M.; Carbone, A.; Parisi, V.; Rago, A.; Grieco, F.V.; Buonauro, A.; Golino, P.; Nigro, G. Non-vitamin K vs vitamin K oral anticoagulants in patients aged >80 year with atrial fibrillation and low body weight. Eur. J. Clin. Investig. 2020, 50, e13335. [Google Scholar] [CrossRef] [PubMed]
- Bottino, R.; Rago, A.; Di Micco, P.; Onofrio, A.D.; Liccardo, B.; Golino, P.; Nigro, G.; Russo, V. Atrial Fibrillation and Malignancy: The Clinical Performance of Non–Vitamin K Oral Anticoagulants—A Systematic Review. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2018; Volume 45, pp. 205–214. [Google Scholar] [CrossRef]
- Russo, V.; Bottino, R.; D’Andrea, A.; Silverio, A.; Di Maio, M.; Golino, P.; Nigro, G.; Valsecchi, O.; Attena, E.; Canonico, M.E.; et al. Chronic Oral Anticoagulation and Clinical Outcome in Hospitalized COVID-19 Patients. Cardiovasc. Drugs Ther. 2021, 36, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Melillo, E.; Rago, A.; Proietti, R.; Attena, E.; Carrella, M.; Golino, P.; D’Onofrio, A.; Nigro, G.; Russo, V. Atrial Fibrillation and Mitral Regurgitation: Clinical Performance of Direct Oral Anticoagulants in a Real-World Setting. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 564–569. [Google Scholar] [CrossRef]
- Verdecchia, P.; D’Onofrio, A.; Russo, V.; Fedele, F.; Adamo, F.; Benedetti, G.; Ferrante, F.; Lodigiani, C.; Paciullo, F.; Aita, A.; et al. Persistence on apixaban in atrial fibrillation patients. J. Cardiovasc. Med. 2019, 20, 66–73. [Google Scholar] [CrossRef]
- Renon, F.; Rago, A.; Liccardo, B.; D’Andrea, A.; Riegler, L.; Golino, P.; Nigro, G.; Russo, V. Direct Oral Anticoagulants Plasma Levels Measurement: Clinical Usefulness from Trials and Real-World Data. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers: New York, NY, USA, 2021; Volume 47, pp. 150–160. [Google Scholar] [CrossRef]
- Law, S.W.; Lau, W.C.; Wong, I.C.; Lip, G.Y.; Mok, M.T.; Siu, C.-W.; Chan, E.W. Sex-Based Differences in Outcomes of Oral Anticoagulation in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2018, 72, 271–282. [Google Scholar] [CrossRef]
- Beyer-Westendorf, J. DOACS in women: Pros and cons. Thromb. Res. 2019, 181, S19–S22. [Google Scholar] [CrossRef] [PubMed]
- Gallù, M.; Marrone, G.; Legramante, J.M.; De Lorenzo, A.; Di Daniele, N.; Noce, A. Female Sex as a Thromboembolic Risk Factor in the Era of Nonvitamin K Antagonist Oral Anticoagulants. Cardiovasc. Ther. 2020, 2020, 1743927. [Google Scholar] [CrossRef]
- Wańkowicz, P.; Staszewski, J.; Dębiec, A.; Nowakowska-Kotas, M.; Szylińska, A.; Rotter, I. Ischemic Stroke Risk Factors in Patients with Atrial Fibrillation Treated with New Oral Anticoagulants. J. Clin. Med. 2021, 10, 1223. [Google Scholar] [CrossRef]
- Okumura, K.; Akao, M.; Yoshida, T.; Kawata, M.; Okazaki, O.; Akashi, S.; Eshima, K.; Tanizawa, K.; Fukuzawa, M.; Hayashi, T.; et al. Low-Dose Edoxaban in Very Elderly Patients with Atrial Fibrillation. N. Engl. J. Med. 2020, 383, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Ardissino, M.; Andreotti, F.; O’Donoghue, M.L.; Yin, O.; Park, J.-G.; Murphy, S.A.; Ruff, C.T.; Lanz, H.J.; Antman, E.M.; et al. Comparison of the Efficacy and Safety Outcomes of Edoxaban in 8040 Women Versus 13 065 Men with Atrial Fibrillation in the ENGAGE AF-TIMI 48 Trial. Circulation 2021, 143, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Tsadok, M.A.; Jackevicius, C.A.; Rahme, E.; Humphries, K.H.; Pilote, L. Sex Differences in Dabigatran Use, Safety, And Effectiveness in a Population-Based Cohort of Patients with Atrial Fibrillation. Circ. Cardiovasc. Qual. Outcomes 2015, 8, 593–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinereanu, D.; Stevens, S.R.; Alexander, J.H.; Al-Khatib, S.M.; Avezum, A.; Bahit, M.C.; Granger, C.B.; Lopes, R.D.; Halvorsen, S.; Hanna, M.; et al. Clinical outcomes in patients with atrial fibrillation according to sex during anticoagulation with apixaban or warfarin: A secondary analysis of a randomized controlled trial. Eur. Heart J. 2015, 36, 3268–3275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camm, A.J.; Accetta, G.; Al Mahmeed, W.; Ambrosio, G.; Goldhaber, S.Z.; Haas, S.; Jansky, P.; Kayani, G.; Misselwitz, F.; Oh, S.; et al. Impact of gender on event rates at 1 year in patients with newly diagnosed non-valvular atrial fibrillation: Contemporary perspective from the GARFIELD-AF registry. BMJ Open 2017, 7, e014579. [Google Scholar] [CrossRef] [PubMed]
Reference | Study | Study Type | No of AF Patients (% Women) | No of TE Events | Adjusted Risk (95% CI) | Mean Age [Years (SD)] | Conclusion |
---|---|---|---|---|---|---|---|
[18] | SPAF III | Observational cohort study | 892 (22) | ? | NS | 67 (10) | |
SPAF I-III | Observational cohort study | 2012 (28) | 130 | RR 1.6 (?), p = 0.01 | 69 (10) | Female patient > 75 years with AF are considered at high risk for stroke events | |
[19] | ATRIA | Comparative study | 13,559 | 394 | RR (1.6 (1.3–1.9) p-value is not reported | 73.9% ≥ 70 | Female sex is an independent risk factor for thromboembolism |
[20] | The Framingham heart study | Observational cohort study | 868 (47) | 83 | HR 1.92 (1.20–3.07) p-value is not reported | 75(9) | Female sex is an independent risk factor for thromboembolism |
[21] | The Copenhagen City Heart study | Observational cohort study | 276 (39.9) | 35 (22 in women,13 in men) | HR 2.6 (1.3–5.4) p-value is not reported | −58.5 (9.6) women without AF; −58.1 (9.7) man without AF; −69.0 (6.8) women with AF; −67.0 (8.4) men with AF | AF predisposes to a 4-fold increased risk of stroke and to a 2.5-fold increased risk of cardiovascular death |
[22] | Tze-Fan Chao et al. | Observational cohort study | 829 (38.6) | 14 in women | HR 7.77 (3.97–15.19; p = 0.001) | 45.4 (12.0) | Female sex is a risk factor for stroke, in fact women with AF and CHA2DS2-VASc score 1 (attributable to gender) are more predisposed to stroke events. |
[23] | Friberg L et al. | Nationwide cohort study | 100,802 (50.3) | 7221 (59% in women) | HR 1.18 (1.12 to 1.24) p < 0.001 | Male mean age 74.7 (13.5) Female mean age 80.9 (10.6) | Women with AF have an incremented risk of stroke compared with men but women < 65 years without other risk factors are considered at low risk and do not need anticoagulation |
[24] | Avgil Tsadok M., et al. | Observational cohort study | 83,513 (52.8) | 4266 (2570 in women and 1696 in men) | HR, 1.14 (1.07–1.22); p < 0.001 | Women 80.2 (74.8–5.4) Men 77.2 (72.2–2.4) | The stroke risk is greater in women >75 years than in men, regardless of VKAs use |
[25] | Mikkelsen et al. | Nationwide cohort study | 87,202 (51.3) | 1-year 5452 (59.8% in women) 12-year 12,962 (58.4% in women) | 1-year follow-up age: < 65: 0.89 (0.70–1.13) 65–74: 0.91 (0.79–1.05) ≥ 75: 1.20 (1.12–1.28) 12-year follow-up age: < 65: 0.86 (0.76–0.98) 65–74: 0.98 (0.90–1.07) ≥ 75: 1.10 (1.05–1.15) | Male 71.0 ± 14.3 Female 78.2 ± 12.1 | Female sex is only associated with an increased risk of stroke for AF patients aged ≥ 75 years |
[26] | Jonathan P. Piccini et al. | Observational cohort study | 10,135 (42) | −118 in women −96 in men | HR 1.39 (1.05–1.84; p = 0.02) | −77 (69–83) women −73 (65–80) men | Women have lower risk-adjusted all-cause and cardiovascular death compared with men, but higher stroke rates. |
Reference | Study | Study Type | No of AF Patients (% Women) | No of TE Events | Adjusted Risk (95% CI) | Mean Age [Years (SD)] | Conclusion |
---|---|---|---|---|---|---|---|
[27] | Ralph F. Bosch | Randomized Controlled Trial | 2742 patients (37.2% women, mean age 71.2 years | −95 (58 in men −37 in women) | OR 0.97 (0.78–1.21) p 0.79 | −67.5 men −71.2 women | Outcomes (stoke included) do not differ much between the sexes |
[28] | Hiroshi Inoue et al. | Prospective multicenter study | 5241 male subjects, 2165 female subjects | −92 in men −34 in women | OR 1.12 (0.75–1.67) p 0.576 in univariate analysis | 70 | Female gender is not a risk factor for thromboembolic events |
[29] | Lin et al. | Nationwide database analysis | 7920 patients (45.9) | 329 | OR 0.942 (0.787–1.127) p-value 0.512 | Subjects aged 20–64 years, 30.9% aged 65–74 years and 32.4% aged over 75 years. | The gender is not associated with ischemic stroke |
[30] | Poli et al. | Comparative Study | 3015 (54.9) | 591 (19.6): −255 in men −336 in women | RR 1.2 (0.8–1.8) p-value 0.25 | 83 (80–102) | Absence of significant differences in the risk of major clinical outcomes between genders, in- cluding mortality, stroke |
[31] | Potpara et al. | Observational cohort study | 862 (36.5) | −14 in female patients −26 in male patients | RR 0.9 (0.5–1.7) p 0.771 | 52.2 (12.1) | Thromboembolism and stroke events do not differ between the sexes |
[32] | Amar M Salam et al. | Observational Study | 3849 (36.8) | 15 | ? | −54.5 (15.7) men −59 (15) women | Stroke rates are comparable between the sexes |
[33] | Renoux et al. | Cohort study | 147,622 (51.8) | 11,326 | RR 1.01 (0.97, 1.05) p-value is not reported | −73.7 (11.2) men −77.1 (11.2) women | Women are not at higher risk of thromboembolic events than men. |
Scores | Thromboembolic Risk Factors—(Points) | Score | Adjusted Stroke Rate %/Year | References |
---|---|---|---|---|
CHADS2 score | Congestive heart failure or LV dysfunction (1) Hypertension (1) Age ≥ 75 years (1) Diabetes mellitus (1) Stroke or TIA or systemic thromboembolism (2) | Maximum total score: 6 0 1 2 3 4 5 6 | 1.9 2.8 4.0 5.9 8.5 12.5 18.2 | [36] |
CHA2DS2-VASc score | Congestive heart failure or LV dysfunction or HCM (1) Hypertension (1) Age ≥ 75 years (2) Diabetes mellitus (1) Stroke or TIA or systemic thromboembolism (2) Vascular disease (prior myocardial infarction or peripheral arterial disease or complex aortic atheroma or plaque on imaging) (1) Age 65–74 (1) Sex category (female) (1) | Maximum total score: 9 0 1 2 3 4 5 6 7 8 9 | 0 1.3 2.2 3.2 4 6.7 9.8 9.6 6.7 15.2 | [38] |
CHA2DS2-VA score | Congestive heart failure or LV dysfunction (1) Hhypertension (1) Age ≥ 75 years (2) Diabetes mellitus (1) Stroke or TIA or systemic thromboembolism (2) Vascular disease (prior myocardial infarction or peripheral arterial disease or complex aortic atheroma or plaque on imaging) (1) age 65–74 (1) | Maximum total score: 8 0 1 2 ≥3 | 0.72 1.09 2.44 5.46 | [48,53] |
Biological Features | Physiological Mechanisms |
---|---|
AF development at older age in women | AF diagnosis at advanced age is associated with the presence of more stroke risk factors (hypertension; diabetes mellitus, cardiomyopathies and heart failure, renal disfunction, prior stroke). |
Hypertension | Increased stiffness leads to an altered pulse wave velocity, that has been associated with increased stroke and CV mortality risks. |
Time spent in therapeutic range (TTR) during VKAs treatment | Women on VKAs seem to spend less time in therapeutic range. The lower percent TTR in women compared with men could be explained by hormonal differences, care differences between men and women, different pharmacodynamics, and therapeutic efficacy of VKAs anticoagulation. |
Hormonal differences | Beta estrogen platelet receptors are protective in oxidative stress, but they become deficient in post-menopausal age. This results in a loss of platelet viability and increased potential for shedding of thrombogenic microparticles. Hormones likely have a direct influence on electrophysiological processes and hence the propensity for AF development. |
Different pharmacokinetics and pharmacodynamics among men and women | Different pharmacodynamics and therapeutic efficacy of anticoagulation |
Thyroid diseases | The mechanisms of association between hyperthyroidism and stroke are not fully understood. Hyperthyroidism is associated with hypertension, hypercoagulable state, and endothelial dysfunctions, which could increase stroke risk. |
Proinflammatory state | The plasma concentrations of the inflammatory marker C-reactive protein and of fibroblast growth factor-23 have been found to be higher in women than in men. These factors are associated with increased risk of cardioembolic stroke. |
Different myocardium structure in women (higher burden of atrial fibrosis) | A worse mechanical left atrial appendage function, hormones and an increased proinflammatory state in women. predispose to a higher burden of atrial fibrosis determining stroke events. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rago, A.; Pirozzi, C.; D’Andrea, A.; Di Micco, P.; Papa, A.A.; D’Onofrio, A.; Golino, P.; Nigro, G.; Russo, V. Gender Differences in Atrial Fibrillation: From the Thromboembolic Risk to the Anticoagulant Treatment Response. Medicina 2023, 59, 254. https://doi.org/10.3390/medicina59020254
Rago A, Pirozzi C, D’Andrea A, Di Micco P, Papa AA, D’Onofrio A, Golino P, Nigro G, Russo V. Gender Differences in Atrial Fibrillation: From the Thromboembolic Risk to the Anticoagulant Treatment Response. Medicina. 2023; 59(2):254. https://doi.org/10.3390/medicina59020254
Chicago/Turabian StyleRago, Anna, Ciro Pirozzi, Antonello D’Andrea, Pierpaolo Di Micco, Andrea Antonio Papa, Antonio D’Onofrio, Paolo Golino, Gerardo Nigro, and Vincenzo Russo. 2023. "Gender Differences in Atrial Fibrillation: From the Thromboembolic Risk to the Anticoagulant Treatment Response" Medicina 59, no. 2: 254. https://doi.org/10.3390/medicina59020254
APA StyleRago, A., Pirozzi, C., D’Andrea, A., Di Micco, P., Papa, A. A., D’Onofrio, A., Golino, P., Nigro, G., & Russo, V. (2023). Gender Differences in Atrial Fibrillation: From the Thromboembolic Risk to the Anticoagulant Treatment Response. Medicina, 59(2), 254. https://doi.org/10.3390/medicina59020254