Effects of Metformin on Risk and Prognosis of Biliary Tract Cancer: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods and Materials
2.1. Search Strategy
2.2. Eligibility Criteria and Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. Quality Assessment
3.3. Association between Metformin Use and Risk of BTC
3.4. Association between Metformin Use and OS of BTC
3.5. Association between Metformin Use and DFS of BTC
3.6. Publication Bias
3.7. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valle, J.W.; Kelley, R.K.; Nervi, B.; Oh, D.-Y.; Zhu, A.X. Biliary tract cancer. Lancet 2021, 397, 428–444. [Google Scholar] [CrossRef] [PubMed]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Islami, F.; Bray, F.; Jemal, A. Worldwide Burden of and Trends in Mortality from Gallbladder and Other Biliary Tract Cancers. Clin. Gastroenterol. Hepatol. 2018, 16, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Lim, K.-H. Current biologics for treatment of biliary tract cancers. J. Gastrointest. Oncol. 2017, 8, 430–440. [Google Scholar] [CrossRef]
- Lamarca, A.; Edeline, J.; Goyal, L. How I treat biliary tract cancer. ESMO Open 2022, 7, 100378. [Google Scholar] [CrossRef]
- Morizane, C.; Ueno, M.; Ikeda, M.; Okusaka, T.; Ishii, H.; Furuse, J. New developments in systemic therapy for advanced biliary tract cancer. Jpn. J. Clin. Oncol. 2018, 48, 703–711. [Google Scholar] [CrossRef]
- Ciardiello, D.; Maiorano, B.A.; Parente, P.; Rodriquenz, M.G.; Latiano, T.P.; Chiarazzo, C.; Pazienza, V.; Guerrera, L.P.; Amoruso, B.; Normanno, N.; et al. Immunotherapy for Biliary Tract Cancer in the Era of Precision Medicine: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 820. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Kamgar, M.; Mahipal, A. Targeted Therapies in Advanced Biliary Tract Cancer: An Evolving Paradigm. Cancers 2020, 12, 2039. [Google Scholar] [CrossRef]
- Gu, J.; Yan, S.; Wang, B.; Shen, F.; Cao, H.; Fan, J.; Wang, Y. Type 2 diabetes mellitus and risk of gallbladder cancer: A systematic review and meta-analysis of observational studies. Diabetes Metab. Res. Rev. 2015, 32, 63–72. [Google Scholar] [CrossRef]
- Tsilidis, K.K.; Kasimis, J.C.; Lopez, D.S.; Ntzani, E.E.; Ioannidis, J.P.A. Type 2 diabetes and cancer: Umbrella review of meta-analyses of observational studies. BMJ 2015, 350, g7607. [Google Scholar] [CrossRef]
- Jing, C.; Wang, Z.; Fu, X. Effect of diabetes mellitus on survival in patients with gallbladder Cancer: A systematic review and meta-analysis. BMC Cancer 2020, 20, 689. [Google Scholar] [CrossRef]
- Roderburg, C.; Loosen, S.H.; Hoyer, L.; Luedde, T.; Kostev, K. Prevalence of diabetes mellitus among 80,193 gastrointestinal cancer patients in five European and three Asian countries. J. Cancer Res. Clin. Oncol. 2022, 148, 1057–1062. [Google Scholar] [CrossRef]
- Gurney, J.; Stanley, J.; Teng, A.; Krebs, J.; Koea, J.; Lao, C.; Lawrenson, R.; Meredith, I.; Sika-Paotonu, D.; Sarfati, D. Cancer and diabetes co-occurrence: A national study with 44 million person-years of follow-up. PLoS ONE 2022, 17, e0276913. [Google Scholar] [CrossRef]
- Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical use in type 2 diabetes. Diabetologia 2017, 60, 1586–1593. [Google Scholar] [CrossRef]
- Lv, Z.; Guo, Y. Metformin and Its Benefits for Various Diseases. Front. Endocrinol. 2020, 11, 191. [Google Scholar] [CrossRef]
- Morales, D.R.; Morris, A.D. Metformin in Cancer Treatment and Prevention. Annu. Rev. Med. 2015, 66, 17–29. [Google Scholar] [CrossRef]
- Di Matteo, S.; Nevi, L.; Overi, D.; Landolina, N.; Faccioli, J.; Giulitti, F.; Napoletano, C.; Oddi, A.; Marziani, A.M.; Costantini, D.; et al. Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Sci. Rep. 2021, 11, 2557. [Google Scholar] [CrossRef]
- Yamashita, T.; Kato, K.; Fujihara, S.; Iwama, H.; Morishita, A.; Yamana, H.; Kobayashi, K.; Kamada, H.; Chiyo, T.; Kobara, H.; et al. Anti-diabetic drug metformin inhibits cell proliferation and tumor growth in gallbladder cancer via G0/G1 cell cycle arrest. Anti-Cancer Drugs 2020, 31, 231–240. [Google Scholar] [CrossRef]
- Zhu, H.-Q.; Ma, J.-B.; Song, X.; Gao, H.-J.; Ma, C.-Q.; Chang, H.; Li, H.-G.; Liu, F.-F.; Lu, J.; Zhou, X. Metformin potentiates the anticancer activities of gemcitabine and cisplatin against cholangiocarcinoma cells in vitro and in vivo. Oncol. Rep. 2016, 36, 3488–3496. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.-H. Metformin and Biliary Tract Cancer in Patients With Type 2 Diabetes. Front. Oncol. 2020, 10, 587666. [Google Scholar] [CrossRef] [PubMed]
- Chaiteerakij, R.; Yang, J.D.; Harmsen, W.S.; Slettedahl, S.; Mettler, T.A.; Fredericksen, Z.S.; Kim, W.R.; Gores, G.J.; Roberts, R.O.; Olson, J.E.; et al. Risk factors for intrahepatic cholangiocarcinoma: Association between metformin use and reduced cancer risk. Hepatology 2012, 57, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.K.; Song, I.-A. Metformin Use and the Risk of Cancer in Patients with Diabetes: A Nationwide Sample Cohort Study. Cancer Prev. Res. 2020, 13, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, X.; Roberts, R.O.; Roberts, L.R.; Chaiteerakij, R. Metformin does not improve survival of cholangiocarcinoma patients with diabetes. Hepatology 2016, 63, 667–668. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 89, 105906. [Google Scholar]
- Wells, G.A.; Shea, B.; O’Connell, D.; Pereson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 12 February 2019).
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and Fill: A Simple Funnel-Plot-Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Y.; Wang, G. Metformin Use and Survival in Patients with Advanced Extrahepatic Cholangiocarcinoma: A Single-Center Cohort Study in Fuyang, China. Gastroenterol. Res. Pract. 2021, 2021, 9468227. [Google Scholar] [CrossRef]
- Casadei-Gardini, A.; Filippi, R.; Rimini, M.; Rapposelli, I.G.; Fornaro, L.; Silvestris, N.; Aldrighetti, L.; Aimar, G.; Rovesti, G.; Bartolini, G.; et al. Effects of Metformin and Vitamin D on Clinical Outcome in Cholangiocarcinoma Patients. Oncology 2021, 99, 292–299. [Google Scholar] [CrossRef]
- Sookaromdee, P.; Wiwanitkit, V. Decreased risk of cholangiocarcinoma in diabetic patients treated with metformin. J. Cancer Res. Ther. 2020, 16, S82–S83. [Google Scholar] [CrossRef]
- Bonilla, L.M.; Schleck, C.; Harmsen, W.; Therneau, T.; Sadr-Azodi, O.; Roberts, L.R.; Brusselaers, N. 3437 Associations of aspirin, non-aspirin NSAIDs, statins, and metformin with risk of biliary cancer: A Swedish population-based cohort study. J. Clin. Transl. Sci. 2019, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- De Jong, R.G.; Burden, A.M.; de Kort, S.; van Herk-Sukel, M.P.; Vissers, P.A.; Janssen, P.K.; Haak, H.R.; Masclee, A.A.; de Vries, F.; Janssen-Heijnen, M.L. No Decreased Risk of Gastrointestinal Cancers in Users of Metformin in The Netherlands; A Time-Varying Analysis of Metformin Exposure. Cancer Prev. Res. 2017, 10, 290–297. [Google Scholar] [CrossRef]
- Valent, F. Diabetes mellitus and cancer of the digestive organs: An Italian population-based cohort study. J. Diabetes Its Complicat. 2015, 29, 1056–1061. [Google Scholar] [CrossRef]
- McNamara, M.G.; Aneja, P.; Le, L.W.; Horgan, A.M.; McKeever, E.; Knox, J.J. Effects of statin, aspirin, or metformin use on recurrence free and overall survival in patients with biliary tract cancer (BTC). J. Clin. Oncol. 2014, 32, 303. [Google Scholar] [CrossRef]
- Park, J.-H.; Hong, J.Y.; Park, Y.S.; Kang, G.; Han, K.; Park, J.O. Association of prediabetes, diabetes, and diabetes duration with biliary tract cancer risk: A nationwide cohort study. Metabolism 2021, 123, 154848. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, T.I.; Jeon, S.M.; Hong, S.P.; Cheon, J.H.; Kim, W.H. The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. Int. J. Cancer 2011, 131, 752–759. [Google Scholar] [CrossRef]
- Lai, S.-W.; Chen, P.-C.; Liao, K.-F.; Muo, C.-H.; Lin, C.-C.; Sung, F.-C. Risk of Hepatocellular Carcinoma in Diabetic Patients and Risk Reduction Associated With Anti-Diabetic Therapy: A Population-Based Cohort Study. Am. J. Gastroenterol. 2012, 107, 46–52. [Google Scholar] [CrossRef]
- Lee, M.-S.; Hsu, C.-C.; Wahlqvist, M.L.; Tsai, H.-N.; Chang, Y.-H.; Huang, Y.-C. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: A representative population prospective cohort study of 800,000 individuals. BMC Cancer 2011, 11, 20. [Google Scholar] [CrossRef]
- Hassan, M.M.; Curley, S.A.; Dalia, M.M.; Kaseb, A.; Davila, M.; Abdalla, E.K.; Javle, M.; Bs, D.M.M.; Lozano, R.D.; Abbruzzese, J.L.; et al. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer 2010, 116, 1938–1946. [Google Scholar] [CrossRef]
- Donadon, V.; Balbi, M.; Mas, M.D.; Casarin, P.; Zanette, G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int. 2010, 30, 750–758. [Google Scholar] [CrossRef]
- Li, D.; Yeung, S.J.; Hassan, M.M.; Konopleva, M.; Abbruzzese, J.L. Antidiabetic Therapies Affect Risk of Pancreatic Cancer. Gastroenterology 2009, 137, 482–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Sahra, I.; Laurent, K.; Loubat, A.; Giorgetti-Peraldi, S.; Colosetti, P.; Auberger, P.; Tanti, J.F.; Le Marchand-Brustel, Y.; Bost, F. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008, 27, 3576–3586. [Google Scholar] [CrossRef] [PubMed]
- Zakikhani, M.; Dowling, R.; Fantus, I.G.; Sonenberg, N.; Pollak, M. Metformin Is an AMP Kinase–Dependent Growth Inhibitor for Breast Cancer Cells. Cancer Res 2006, 66, 10269–10273. [Google Scholar] [CrossRef] [PubMed]
- Wandee, J.; Prawan, A.; Senggunprai, L.; Kongpetch, S.; Kukongviriyapan, V. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci. 2018, 217, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Wandee, J.; Prawan, A.; Senggunprai, L.; Kongpetch, S.; Tusskorn, O.; Kukongviriyapan, V. Metformin enhances cisplatin induced inhibition of cholangiocarcinoma cells via AMPK-mTOR pathway. Life Sci. 2018, 207, 172–183. [Google Scholar] [CrossRef]
- Bi, T.; Zhu, A.; Yang, X.; Qiao, H.; Tang, J.; Liu, Y.; Lv, R. Metformin synergistically enhances antitumor activity of cisplatin in gallbladder cancer via the PI3K/AKT/ERK pathway. Cytotechnology 2017, 70, 439–448. [Google Scholar] [CrossRef]
- Ling, S.; Xie, H.; Yang, F.; Shan, Q.; Dai, H.; Zhuo, J.; Wei, X.; Song, P.; Zhou, L.; Xu, X.; et al. Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: Roles of p38 MAPK, ERK3, and mTORC1. J. Hematol. Oncol. 2017, 10, 59. [Google Scholar] [CrossRef]
- Ling, S.; Feng, T.; Ke, Q.; Fan, N.; Li, L.; Li, Z.; Dong, C.; Wang, C.; Xu, F.; Li, Y.; et al. Metformin inhibits proliferation and enhances chemosensitivity of intrahepatic cholangiocarcinoma cell lines. Oncol. Rep. 2014, 31, 2611–2618. [Google Scholar] [CrossRef]
- Tang, D.; Xu, L.; Zhang, M.; Dorfman, R.G.; Pan, Y.; Zhou, Q.; Zhou, L.; Wang, Y.; Li, Y.; Yin, Y.; et al. Metformin facilitates BG45-induced apoptosis via an anti-Warburg effect in cholangiocarcinoma cells. Oncol. Rep. 2018, 39, 1957–1965. [Google Scholar] [CrossRef]
- Zhang, J.; Hang, C.; Jiang, T.; Yi, S.; Shao, W.; Li, W.; Lin, D. Nuclear Magnetic Resonance-Based Metabolomic Analysis of the Anticancer Effect of Metformin Treatment on Cholangiocarcinoma Cells. Front. Oncol. 2020, 10, 570516. [Google Scholar] [CrossRef]
- Maemura, K.; Natsugoe, S.; Takao, S. Molecular mechanism of cholangiocarcinoma carcinogenesis. J. Hepato Biliary Pancreat. Sci. 2014, 21, 754–760. [Google Scholar] [CrossRef]
- Viollet, B.; Guigas, B.; Garcia, N.S.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. 2012, 122, 253–270. [Google Scholar] [CrossRef]
- Fujimori, T.; Kato, K.; Fujihara, S.; Iwama, H.; Yamashita, T.; Kobayashi, K.; Kamada, H.; Morishita, A.; Kobara, H.; Mori, H.; et al. Antitumor effect of metformin on cholangiocarcinoma: In vitro and in vivo studies. Oncol. Rep. 2015, 34, 2987–2996. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Ma, H. Chronic inflammation and gallbladder cancer. Cancer Lett. 2014, 345, 242–248. [Google Scholar] [CrossRef]
- Hirsch, H.A.; Iliopoulos, D.; Struhl, K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc. Natl. Acad. Sci. USA 2013, 110, 972–977. [Google Scholar] [CrossRef]
- Lee, J.-W.; Choi, E.-A.; Kim, Y.-S.; Kim, Y.; You, H.-S.; Han, Y.-E.; Kim, H.-S.; Bae, Y.-J.; Kim, J.; Kang, H.-T. Metformin usage and the risk of colorectal cancer: A national cohort study. Int. J. Color. Dis. 2020, 36, 303–310. [Google Scholar] [CrossRef]
- Kang, J.; Jeong, S.-M.; Shin, D.W.; Cho, M.; Cho, J.H.; Kim, J. The Associations of Aspirin, Statins, and Metformin With Lung Cancer Risk and Related Mortality: A Time-Dependent Analysis of Population-Based Nationally Representative Data. J. Thorac. Oncol. 2020, 16, 76–88. [Google Scholar] [CrossRef]
- Linkeviciute-Ulinskiene, D.; Patasius, A.; Kincius, M.; Zabuliene, L.; Smailyte, G. Preexisting diabetes, metformin use and long-term survival in patients with prostate cancer. Scand. J. Urol. 2020, 54, 401–407. [Google Scholar] [CrossRef]
- Wynn, A.; Vacheron, A.; Zuber, J.; Solomon, S.S. Metformin Associated with Increased Survival in Type 2 Diabetes Patients with Pancreatic Cancer and Lymphoma. Am. J. Med. Sci. 2019, 358, 200–203. [Google Scholar] [CrossRef]
- Wang, Y.; Maurer, M.J.; Larson, M.C.; Allmer, C.; Feldman, A.L.; Bennani, N.N.; Thompson, C.A.; Porrata, L.F.; Habermann, T.M.; Witzig, T.E.; et al. Impact of metformin use on the outcomes of newly diagnosed diffuse large B-cell lymphoma and follicular lymphoma. Br. J. Haematol. 2019, 186, 820–828. [Google Scholar] [CrossRef]
- Tseng, C.-H. Metformin is associated with decreased skin cancer risk in Taiwanese patients with type 2 diabetes. J. Am. Acad. Dermatol. 2018, 78, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.Y.; Kang, M.J.; Kim, S.K.; Jung, J.H.; Hahm, J.R.; Kim, T.H.; Nam, J.Y.; Lee, B.-W.; Lee, Y.-H.; Chung, J.H.; et al. Protective Effect of Metformin Against Thyroid Cancer Development: A Population-Based Study in Korea. Thyroid 2018, 28, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.; Jick, S.; Meier, C.R.; Bodmer, M. Metformin and the risk of renal cell carcinoma: A case–control analysis. Eur. J. Cancer Prev. 2017, 26, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M.M.; Anderson, E.M.; von Eyben, R.; Pai, J.S.; Poultsides, G.A.; Visser, B.C.; Norton, J.A.; Koong, A.C.; Chang, D.T. Statin and Metformin Use Prolongs Survival in Patients With Resectable Pancreatic Cancer. Pancreas 2016, 45, 64–70. [Google Scholar] [CrossRef]
- Nevadunsky, N.S.; Van Arsdale, A.; Strickler, H.D.; Moadel, A.; Kaur, G.; Frimer, M.; Conroy, E.; Goldberg, G.L.; Einstein, M.H. Metformin use and endometrial cancer survival. Gynecol. Oncol. 2014, 132, 236–240. [Google Scholar] [CrossRef]
Study | Country | Period | Study Design | Mean/Median Age (Years) | Data Source | N (Metformin or Case Group/Non-Metformin or Control Group) | Pathological Type | Analysis Mode | Adjustment/Matching Confounder | Study Endpoints | Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|---|
Tseng, 2020 [21] | Taiwan, China | 1999–2011 | Cohort study | Metformin group: 63.6; non-metformin group: 61.4 | Health care records | 304,224 (16,229/287,995) | NR | Multi | Demographic data, occupation, region of residence, major comorbidities, diabetes-related complications, antidiabetic drugs, potential risk factors of cancer, medications that are commonly used in diabetes patients or may affect cancer risk, follow-up duration | OS, incidence risk | >6 months |
Sookaromdee, 2020 [31] | Thailand | NR | Case–control | NR | Hospital records | 18,547,869 (NR) | CCA | NR | NR | Incidence risk | NR |
Wu, 2021 [29] | China | 2015–2021 | Cohort study | Median ≥ 60 | Hospital records | 722 (133/589) | CCA | NR | Sex, age, ethnicity, and place of residence | OS | 6 months |
Yang, 2016 [24] | USA | 2001–2012 | Cohort study | Mean 68 | Hospital records | 250 (49/165) * | CCA | Multi | Age, sex, and variables with a p ≤ 0.10 in the univariate analysis | OS | NR |
Gardini, 2021 [30] | Italy | 2005–2020 | Cohort study | NR | Hospital records | 706 (57/643) ^ | 557 CCA, 149 GC | Uni | Eastern Cooperative Oncology Group performance status, carbohydrate antigen 19-9, carcinoembryonic antigen, platinum plus gemcitabine therapy versus other therapy, and primary tumor site | OS, DFS | NR |
Chaiteerakij, 2013 [22] | USA | 2000–2010 | Case–control | Case group: 61.2; control group: 61.6 | Hospital records | 1206 (612/594) | ICCA | Multi | Age, sex, ethnicity, and place of residence | Incidence risk | NR |
Oh, 2020 [23] | Korea | 2011–2015 | Cohort study | Mean 60.1 | Health care records | 66,627 (29,974/36,653) | BTC | Multi | Age, sex, income level, place of residence, hypertension, coronary artery disease, cerebrovascular disease, psychobehavioral disorder, musculoskeletal disorders, chronic kidney disease, dyslipidemia, anemia, chronic obstructive pulmonary disease, arrhythmia, liver cirrhosis, receipt of surgery, total number of hospital visit days, and use of other antidiabetic medications (sulfonylureas, alpha-glucosidase inhibitors, thiazolidinediones, and insulin) | Incidence risk | NR |
Jong, 2017 [33] | Netherlands | 1998–2011 | Cohort study | Metformin group: mean 63.5; non-metformin: 67.0 | Hospital records | 57,114 (37,215/19,899) | GC | Multi | Age, sex, use of statins, history of hospitalization | Incidence risk | Mean 4.9 years |
Valent, 2015 [34] | Italy | 2002–2014 | Cohort study | NR | Health care records | 109,225 (NR) | GC | Multi | Sex, age, time when prescription of each drug started (time-dependent variable), and total number of prescriptions of all the other drugs | Incidence risk | NR |
Bonilla, 2019 [32] | Swedish | NR | Cohort study | NR | Prescribed drug records | 5,700,000 (NR) | BTC | NR | NR | Incidence risk | NR |
McNamara, 2015 [35] | Canada | 1987–2013 | Cohort study | Median 65.7 | NR | 795 (81/714) | BTC | NR | NR | OS, DFS | NR |
Study (Cohort) | Representativeness of Exposed Cohort | Selection of Non-Exposed Cohort | Ascertainment of Exposure | Outcome not Present before Study | Comparability | Assessment of Outcome | Follow-Up Long Enough | Adequacy of Follow Up * | Quality Score |
---|---|---|---|---|---|---|---|---|---|
Tseng, 2020 [21] | ★ | ★ | ★ | ★ | ★★ | ★ | ☆ | ★ | 8 |
Wu, 2021 [29] | ★ | ★ | ★ | ★ | ★☆ | ★ | ☆ | ★ | 7 |
Yang, 2016 [24] | ★ | ★ | ★ | ★ | ★★ | ★ | ☆ | ★ | 8 |
Gardini, 2021 [30] | ★ | ★ | ★ | ★ | ★☆ | ★ | ☆ | ★ | 7 |
Oh, 2020 [23] | ★ | ★ | ★ | ★ | ★★ | ★ | ☆ | ★ | 8 |
Jong, 2017 [33] | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Valent, 2015 [34] | ★ | ★ | ★ | ★ | ★★ | ★ | ☆ | ★ | 8 |
Bonilla, 2019 [32] | ★ | ★ | ★ | ★ | ★☆ | ★ | ☆ | ★ | 7 |
McNamara, 2015 [35] | ★ | ★ | ★ | ★ | ★☆ | ★ | ☆ | ★ | 7 |
Study (Case–control) | Case Definition | Representativeness of the Cases | Selection of Controls | Definition of Controls | Comparability | Ascertainment of Exposure | Same Method of Ascertainment | Non-Response Rate | Quality Score |
Sookaromdee, 2020 [31] | ★ | ★ | ★ | ★ | ★☆ | ★ | ★ | ★ | 8 |
Chaiteerakij, 2013 [22] | ★ | ★ | ★ | ★ | ★☆ | ★ | ★ | ★ | 8 |
Subgroups | Studies | HR (95%CI) | p Z | Heterogeneity (I2, pH) | Effects Model |
---|---|---|---|---|---|
Risk of biliary tract cancer | 6 | 0.82 (0.50–1.35) | 0.436 | 99.4%, <0.001 | Random |
Participants | |||||
Diabetics | 5 | 0.65 (0.39–1.07) | 0.089 | 92.5%, <0.001 | Random |
General population | 1 | 2.27 (2.14–2.41) | <0.001 | NA | NA |
Median/mean age | |||||
<65 years | 4 | 0.56 (0.31–1.02) | 0.057 | 82.3%, 0.001 | Random |
≥65 years | 0 | NA | NA | NA | NA |
Pathological site | |||||
Cholangiocarcinoma | 2 | 0.69 (0.06–7.47) | 0.761 | 97.9%, <0.001 | Random |
Gallbladder cancer | 1 | 0.993 (0.986–1.000) | 0.051 | NA | NA |
Study location | |||||
Asia | 3 | 0.97 (0.31–3.08) | 0.960 | 98.7%, <0.001 | Random |
non-Asia | 3 | 0.65 (0.24–1.80) | 0.409 | 90.5%, <0.001 | Random |
Sample size | |||||
<100,000 | 3 | 0.60 (0.22–1.70) | 0.339 | 86.8%, <0.001 | Random |
≥100,000 | 3 | 1.04 (0.53–2.01) | 0.916 | 99.7%, <0.001 | Random |
Overall survival | 4 | 0.88 (0.74–1.04) | 0.135 | 0.0%, 0.657 | Fixed |
Participants | |||||
Diabetics | 2 | 0.95 (0.74–1.23) | 0.695 | 0.0%, 0.753 | Fixed |
General population | 2 | 0.82 (0.65–1.04) | 0.097 | 0.0%, 0.437 | Fixed |
Median/mean age | |||||
<65 years | 1 | 0.98 (0.71–1.34) | 0.901 | NA | NA |
≥65 years | 2 | 0.94 (0.72–1.21) | 0.623 | 0.0%, 0.813 | Fixed |
Pathological site | |||||
Cholangiocarcinoma | 1 | 0.90 (0.60–1.40) | 0.70 | NA | NA |
Study location | |||||
Asia | 1 | 0.98 (0.71–1.34) | 0.901 | NA | NA |
Non-Asia | 3 | 0.84 (0.69–1.03) | 0.091 | 0.0%, 0.618 | Fixed |
Sample size | |||||
<300 | 2 | 0.83 (0.59–1.18) | 0.298 | 0.0%, 0.528 | Fixed |
≥300 | 3 | 0.89 (0.73–1.09) | 0.260 | 0.0%, 0.385 | Fixed |
Disease-free survival | 2 | 1.03 (0.79–1.34) | 0.829 | 0.0%, 0.433 | Fixed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Jin, H.; Zhou, H.; Liu, K. Effects of Metformin on Risk and Prognosis of Biliary Tract Cancer: A Systematic Review and Meta-Analysis. Medicina 2023, 59, 298. https://doi.org/10.3390/medicina59020298
Chen J, Jin H, Zhou H, Liu K. Effects of Metformin on Risk and Prognosis of Biliary Tract Cancer: A Systematic Review and Meta-Analysis. Medicina. 2023; 59(2):298. https://doi.org/10.3390/medicina59020298
Chicago/Turabian StyleChen, Junhong, Hengwei Jin, Hao Zhou, and Kai Liu. 2023. "Effects of Metformin on Risk and Prognosis of Biliary Tract Cancer: A Systematic Review and Meta-Analysis" Medicina 59, no. 2: 298. https://doi.org/10.3390/medicina59020298
APA StyleChen, J., Jin, H., Zhou, H., & Liu, K. (2023). Effects of Metformin on Risk and Prognosis of Biliary Tract Cancer: A Systematic Review and Meta-Analysis. Medicina, 59(2), 298. https://doi.org/10.3390/medicina59020298