The Importance of Immunohistochemical Heterogeneous Expression of MMR Protein in Patients with Colorectal Cancer in Stage II and III of the Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation and Collection
2.2. Sample Classification
2.3. Immunohistochemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cysik, A.L.; Nugent, Z.; Wightman, R.H.; Singh, H.; McManus, K.J. Characterizing Microsatellite Instability and Chromosome Instability in Interval Colorectal Cancers. Neoplasia 2018, 20, 943–950. [Google Scholar]
- Nojadeh, J.N.; Sharif, S.B.; Sakhinia, E. Microsatellite Instability in Colorectal Cancer. EXCLI J. 2018, 17, 159–168. [Google Scholar] [PubMed]
- Bogaert, J.; Prenen, H. Molecular genetics of colorectal cancer. Ann. Gastroenterol. 2014, 27, 9–14. [Google Scholar] [PubMed]
- Pal, T.; Permuth-Wey, J.; Sellers, T.A. A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer 2008, 113, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Nicolaides, N.C.; Markowitz, S.; Willson, J.K.; Parsons, R.; Jen, J.; Papadopolous, N.; Peltomäki, P.; De La Chapelle, A.; Hamilton, S.R.; et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat. Genet. 1995, 9, 48–55. [Google Scholar] [CrossRef]
- Gologan, A.; Sepulveda, A.R. Microsatellite instability and DNA mismatch repair deficiency testing in hereditary and sporadic gastrointestinal cancers. Clin. Lab. Med. 2005, 25, 179–196. [Google Scholar] [CrossRef]
- Sinicrope, F.A.; Sargent, D.J. Molecular Pathways: Microsatellite Instability in Colorectal Cancer: Prognostic, Predictive, and Therapeutic Implications. Clin. Cancer Res. 2012, 18, 1506–1512. [Google Scholar] [CrossRef] [Green Version]
- Ribic, C.M.; Sargent, D.J.; Moore, M.J.; Thibodeau, S.N.; French, A.J.; Goldberg, R.M.; Hamilton, S.R.; Laurent-Puig, P.; Gryfe, R.; Shepherd, L.E.; et al. Tumor Microsatellite-Instability Status as a Predictor of Benefit from Fluorouracil-Based Adjuvant Chemotherapy for Colon Cancer. N. Engl. J. Med. 2003, 349, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Tougeron, D.; Mouillet, G.; Trouilloud, I.; Lecomte, T.; Coriat, R.; Aparicio, T.; Des Guetz, G.; Lécaille, C.; Artru, P.; Sickersen, G.; et al. Efficacy of Adjuvant Chemotherapy in Colon Cancer with Microsatellite Instability: A Large Multicenter AGEO Study. J. Natl. Cancer Inst. 2016, 108, djv438. [Google Scholar] [CrossRef]
- Venderbosch, S.; Nagtegaal, I.D.; Maughan, T.S.; Smith, C.G.; Cheadle, J.P.; Fisher, D.; Kaplan, R.; Quirke, P.; Seymour, M.T.; Richman, S.D.; et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN and FOCUS studies. Clin. Cancer Res. 2014, 20, 5322–5330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibodeau, S.N.; Bren, G.; Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 1993, 260, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Chapusot, C.; Martin, L.; Bouvier, A.M.; Bonithon-Kopp, C.; Ecarnot-Laubriet, A.; Rageot, D.; Ponnelle, T.; Laurent Puig, P.; Faivre, J.; Piard, F. Microsatellite instability and intratumoural heterogeneity in 100 right-sided sporadic colon carcinomas. Br. J. Cancer 2002, 87, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Fléjou, J.-F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, L.A.; Peltomäki, P.; Leach, F.S.; Sistonen, P.; Pylkkänen, L.; Mecklin, J.-P.; Järvinen, H.; Powell, S.M.; Jen, J.; Hamilton, S.R.; et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993, 260, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.T.; Lynch, P.M.; Lanspa, S.J.; Snyder, C.L.; Lynch, J.F.; Boland, C.R. Review of the Lynch syndrome: History, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 2009, 76, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Shia, J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: Part I. The utility of immunohistochemistry. J. Mol. Diagn. 2008, 10, 293–300. [Google Scholar] [CrossRef] [Green Version]
- de La Chapelle, A. Microsatellite instability phenotype of tumors: Genotyping or immunohistochemistry? The jury is still out. J. Clin. Oncol. 2002, 20, 897–899. [Google Scholar] [CrossRef]
- Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Clendenning, M.; Sotamaa, K.; Prior, T.; Westman, J.A.; et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol. 2008, 26, 5783–5788. [Google Scholar] [CrossRef] [Green Version]
- Overbeek, L.I.H.; Ligtenberg, M.J.L.; Willems, R.W.; Hermens, R.P.M.G.; Blokx, W.; Dubois, S.V.; Van Der Linden, H.; Meijer, J.W.R.; Mlynek-Kersjes, M.L.; Hoogerbrugge, N.; et al. Interpretation of immunohistochemistry for mismatch repair proteins is only reliable in a specialized setting. Am. J. Surg. Pathol. 2008, 32, 1246–1251. [Google Scholar] [CrossRef]
- Fadhil, W.; Ilyas, M. Immunostaining for mismatch repair (MMR) protein expression in colorectal cancer is better and easier to interpret when performed on diagnostic biopsies. Histopathology 2012, 60, 653–655. [Google Scholar] [CrossRef] [PubMed]
- Kumarasinghe, A.P.; de Boer, B.; Bateman, A.C.; Kumarasinghe, M.P. DNA mismatch repair enzyme immunohistochemistry in colorectal cancer: A comparison of biopsy and resection material. Pathology 2010, 42, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Shia, J.; Ellis, N.A.; Klimstra, D.S. The utility of immunohistochemical detection of DNA mismatch repair gene proteins. Virchows Arch. 2004, 445, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.; Panarelli, N.C.; Rennert, H.; Sherr, D.L.; Yantiss, R.K. Neoadjuvant therapy induces loss of MSH6 expression in colorectal carcinoma. Am. J. Surg. Pathol. 2010, 34, 1798–1804. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.P.; Kerr, S.E.; Butz, M.L.; Thibodeau, S.N.; Halling, K.C.; Smyrk, T.C.; Dina, M.A.; Waugh, V.M.; Rumilla, K.M. Heterogenous MSH6 loss is a result of microsatellite instability within MSH6 and occurs in sporadic and hereditary colorectal and endometrial carcinomas. Am. J. Surg. Pathol. 2015, 39, 1370–1376. [Google Scholar] [CrossRef]
- Halvarsson, B.; Lindblom, A.; Rambech, E.; Lagerstedt, K.; Nilbert, M. Microsatellite instability analysis and/or immunostaining for the diagnosis of hereditary nonpolyposis colorectal cancer? Virchows Arch. 2004, 444, 135–141. [Google Scholar]
- Joost, P.; Veurink, N.; Holck, S.; Klarskov, L.; Bojesen, A.; Harbo, M.; Baldetorp, B.; Rambech, E.; Nilbert, M. Heterogenous mismatch-repair status in colorectal cancer. Diagn. Pathol. 2014, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Watson, N.; Grieu, F.; Morris, M.; Harvey, J.; Stewart, C.; Schofield, L.; Goldblatt, J.; Iacopetta, B. Heterogenous staining for mismatch repair proteins during population-based prescreening for hereditary nonpolyposis colorectal cancer. J Mol. Diagn. 2007, 9, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Tachon, G.; Frouin, E.; Karayan-Tapon, L.; Auriault, M.L.; Godet, J.; Moulin, V.; Wang, Q.; Tougeron, D. Heterogeneity of mismatch repair defect in colorectal cancer and its implications in clinical practice. Eur. J. Cancer 2018, 95, 112–116. [Google Scholar] [CrossRef]
- Mangold, E.; Pagenstecher, C.; Friedl, W.; Fischer, H.P.; Merkelbach-Bruse, S.; Ohlendorf, M.; Friedrichs, N.; Aretz, S.; Buettner, R.; Propping, P.; et al. Tumors from MSH2 expression but many tumors weak positive MLH1 staining. J. Pathol. 2005, 207, 385–395. [Google Scholar] [CrossRef]
- Shia, J.; Klimstra, D.S.; Nafa, K.; Offit, K.; Guillem, J.G.; Markowitz, A.J.; Gerald, W.L.; Ellis, N.A. Value of immunohistochemical detection of DNA mismatch repair proteins in predicting germ-line mutation in hereditary colorectal neoplasmas. Am. J. Surg. Pathol. 2005, 29, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Berrino, E.; Aquilano, M.C.; Valtorta, E.; Amodio, V.; Germano, G.; Gusmini, M.; Gizzi, K.; Fenocchio, E.; Sapino, A.; Marsoni, S.; et al. Unique patterns of heterogenous mismatch repair protein expression in colorectal cancer unvel different degrees of tumor mutational burden and distinc tumor microenvironment features. Mod. Pathol. 2023, 36, 100012. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Proficient MMR (n = 80) | Deficient MMR (n = 12) | Heterogenous MMR (n = 12) | Total (n = 104) | p Value | ||||
---|---|---|---|---|---|---|---|---|---|
Age | |||||||||
≤50 | 5 | 6.3% | 9 | 75.0% | 1 | 8.3% | 15 | 14.4% | 0.000 |
>50 | 75 | 93.8% | 3 | 25.0% | 11 | 91.7% | 89 | 85.6% | |
Sex | |||||||||
Female | 33 | 41.3% | 7 | 58.3% | 6 | 50.0% | 46 | 44.2% | 0.492 |
Male | 47 | 58.8% | 5 | 41.7% | 6 | 50.0% | 58 | 55.8% | |
Tumor localization | |||||||||
Right-sided | 17 | 21.3% | 10 | 83.3% | 5 | 41.7% | 32 | 30.8% | 0.000 |
Left-sided | 63 | 78.8% | 2 | 16.7% | 7 | 58.3% | 72 | 69.2% | |
TNM stage of the disease | |||||||||
Stage III | 40 | 50.0% | 7 | 58.3% | 8 | 66.7% | 55 | 52.9% | 0.516 |
Stage II | 40 | 50.0% | 5 | 41.7% | 4 | 33.3% | 49 | 47.1% | |
Tumor type | |||||||||
Conventional adenocarcinoma | 60 | 75.0% | 10 | 83.3% | 6 | 50.0% | 76 | 73.1% | 0.133 |
Mucinous adenocarcinoma | 20 | 25.0% | 2 | 16.7% | 6 | 50.0% | 28 | 26.9% | |
Tumor grade | |||||||||
High-grade | 43 | 53.8% | 9 | 75.0% | 10 | 83.3% | 62 | 59.6% | 0.077 |
Low-grade | 37 | 46.3% | 3 | 25.0% | 2 | 16.7% | 42 | 40.4% | |
Mucin secretion | |||||||||
Present | 22 | 27.5% | 7 | 58.3% | 6 | 50.0% | 35 | 33.7% | 0.048 |
Absent | 58 | 72.5% | 5 | 41.7% | 6 | 50.0% | 69 | 66.3% | |
Peritumoral lymphocyte infiltration | |||||||||
Strong | 31 | 38.8% | 8 | 66.7% | 8 | 66.7% | 47 | 45.2% | 0.055 |
Weak | 49 | 61.3% | 4 | 33.3% | 4 | 33.3% | 57 | 54.8% | |
Crohn-like reaction | |||||||||
Positive | 11 | 13.8% | 8 | 66.7% | 2 | 16.7% | 21 | 20.2% | 0.000 |
Negative | 69 | 86.3% | 4 | 33.3% | 10 | 83.3% | 83 | 79.8% | |
Tumor budding | |||||||||
High-grade | 16 | 20.0% | 9 | 75.0% | 1 | 8.3% | 26 | 25.0% | 0.000 |
Low-grade | 64 | 80.0% | 3 | 25.0% | 11 | 91.7% | 78 | 75.0% | |
Lymphovascular invasion | |||||||||
Present | 39 | 48.8% | 8 | 66.7% | 10 | 83.3% | 57 | 54.8% | 0.055 |
Absent | 41 | 51.3% | 4 | 33.3% | 2 | 16.7% | 47 | 45.2% | |
Perineural spread | |||||||||
Present | 37 | 46.3% | 6 | 50.0% | 6 | 50.0% | 49 | 47.1% | 0.949 |
Absent | 43 | 53.8% | 6 | 50.0% | 6 | 50.0% | 55 | 52.9% | |
Metastases in regional lymph nodes | |||||||||
Present | 40 | 50.0% | 7 | 58.3% | 8 | 66.7% | 55 | 52.9% | 0.516 |
Absent | 40 | 50.0% | 5 | 41.7% | 4 | 33.3% | 49 | 47.1% |
Univariate Regression Analysis | p Value | OR | (95% CI of OR) |
Age ≤ 50 years | <0.001 | 1.076 | 0.762–1.389 |
Female sex | 0.238 | 0.159 | 0.107–0.424 |
Right-sided tumor localization | <0.001 | 0.628 | 0.369–0.888 |
TNM stage of the disease (III) | 0.394 | 0.114 | 0.151–0.379 |
Mucinous adenocarcinoma | 0.927 | 0.015 | 0.284–0.314 |
High-grade tumor | 0.054 | 0.261 | −0.005–0.527 |
Presence of mucinous secretion | 0.015 | 0.340 | 0.067–0.613 |
Expressed peritumoral lymphocyte infiltration | 0.024 | 0.300 | 0.040–0.560 |
Crohn-like reaction (positive) | <0.001 | 0.640 | 0.334–0.946 |
High-grade tumor budding | 0.001 | 0.513 | 0.223–0.802 |
Metastases in regional lymph nodes (present) | 0.394 | 0.114 | 0.151–0.379 |
Lymphovascular invasion (present) | 0.069 | 0.243 | 0.019–0.506 |
Perineural spread (present) | 0.766 | 0.040 | 0.226–0.306 |
Multivariate Regression Analysis | p Value | OR | (95% CI of OR) |
Age ≤ 50 years | <0.001 | 0.875 | 0.552–1.198 |
Presence of mucinous secretion | 0.706 | 0.046 | −0.195–0.286 |
Right-sided tumor localization | 0.003 | 0.393 | 0.137–0.648 |
Expressed peritumoral lymphocyte infiltration | 0.939 | −0.010 | −0.264–0.245 |
Crohn-like reaction (positive) | 0.228 | 0.201 | −0.128–0.530 |
High-grade tumor budding | 0.704 | 0.054 | −0.229–0.337 |
Univariate Regression Analysis | p Value | OR | (95% CI of OR) |
---|---|---|---|
Age ≤ 50 years | 0.786 | 1.364 | 0.145–12.788 |
Female sex | 0.569 | 1.424 | 0.422–4.805 |
Right-sided tumor localization | 0.132 | 2.647 | 0.746–9.393 |
TNM stage of the disease (III) | 0.288 | 2.000 | 0.557–7.177 |
Metastases in regional lymph nodes (present) | 0.288 | 2.000 | 0.557–7.177 |
Mucinous adenocarcinoma | 0.082 | 3.000 | 0.869–10.363 |
High-grade tumor | 0.070 | 4.302 | 0.886–20.898 |
Presence of mucinous secretion | 0.123 | 2.636 | 0.768–9.051 |
Expressed peritumoral lymphocyte infiltration | 0.078 | 3.161 | 0.877–11.390 |
Crohn-like reaction (positive) | 0.787 | 1.255 | 0.242–6.507 |
High-grade tumor budding | 0.349 | 0.364 | 0.044–3.027 |
Lymphovascular invasion (present) | 0.040 | 5.256 | 1.082–25.525 |
Perineural spread (present) | 0.808 | 1.162 | 0.345–3.913 |
Univariate Regression Analysis | p Value | OR | (95% CI of OR) |
Age ≤ 50 years | 0.005 | 33.000 | 2.909–374.311 |
Female sex | 0.682 | 1.400 | 0.279–7.016 |
Right-sided tumor localization | 0.045 | 7.000 | 1.044–46.949 |
TNM stage of the disease (III) | 0.674 | 0.700 | 0.133–3.684 |
Metastases in regional lymph nodes (present) | 0.674 | 0.700 | 0.133–3.684 |
Mucinous adenocarcinoma | 0.096 | 0.200 | 0.030–1.329 |
High-grade tumor | 0.617 | 0.600 | 0.081–4.447 |
Presence of mucinous secretion | 0.682 | 1.400 | 0.279–7.016 |
Expressed peritumoral lymphocyte infiltration | 1.000 | 1.000 | 0.183–5.460 |
Crohn-like reaction (positive) | 0.020 | 10.000 | 1.444–69.262 |
High-grade tumor budding | 0.005 | 33.000 | 2.909–374.311 |
Lymphovascular invasion (present) | 0.353 | 0.400 | 0.058–2.770 |
Perineural spread (present) | 1.000 | 1.000 | 0.202–4.955 |
Multivariate Regression Analysis | p Value | OR | (95% CI of OR) |
Age ≤ 50 years | 0.997 | 9.863 × 1015 | 0.000–∞ |
Right-sided tumor localization | 0.997 | 6.014 × 1015 | 0.000–∞ |
Crohn-like reaction (positive) | 0.998 | 120,003,272.9 | 0.000–∞ |
High-grade tumor budding | 0.997 | 196,797,989.8 | 0.000–∞ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denčić, T.; Petrović, A.; Jovičić Milentijević, M.; Radenković, G.; Jović, M.; Živković, N.; Šalinger, S.; Branković, B.; Veličkov, A.; Ilić, I. The Importance of Immunohistochemical Heterogeneous Expression of MMR Protein in Patients with Colorectal Cancer in Stage II and III of the Disease. Medicina 2023, 59, 489. https://doi.org/10.3390/medicina59030489
Denčić T, Petrović A, Jovičić Milentijević M, Radenković G, Jović M, Živković N, Šalinger S, Branković B, Veličkov A, Ilić I. The Importance of Immunohistochemical Heterogeneous Expression of MMR Protein in Patients with Colorectal Cancer in Stage II and III of the Disease. Medicina. 2023; 59(3):489. https://doi.org/10.3390/medicina59030489
Chicago/Turabian StyleDenčić, Tijana, Aleksandar Petrović, Maja Jovičić Milentijević, Goran Radenković, Marko Jović, Nikola Živković, Sonja Šalinger, Branko Branković, Aleksandra Veličkov, and Ivan Ilić. 2023. "The Importance of Immunohistochemical Heterogeneous Expression of MMR Protein in Patients with Colorectal Cancer in Stage II and III of the Disease" Medicina 59, no. 3: 489. https://doi.org/10.3390/medicina59030489
APA StyleDenčić, T., Petrović, A., Jovičić Milentijević, M., Radenković, G., Jović, M., Živković, N., Šalinger, S., Branković, B., Veličkov, A., & Ilić, I. (2023). The Importance of Immunohistochemical Heterogeneous Expression of MMR Protein in Patients with Colorectal Cancer in Stage II and III of the Disease. Medicina, 59(3), 489. https://doi.org/10.3390/medicina59030489