The Prognostic Utilities of Various Risk Factors for Laryngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Registration
2.2. Literature Search
2.3. Selection Criteria
2.4. Data Curation and Methodological Assessment
2.5. Statistical Analysis and Outcome Measurements
3. Results
3.1. Study Selection
3.2. Overall Survival by Patient-, Tumor-, and Treatment-Related Factors
3.3. Subgroups Analysis
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics Statement
References
- Santos, A.; Santos, I.C.; Dos Reis, P.F.; Rodrigues, V.D.; Peres, W.A.F. Impact of Nutritional Status on Survival in Head and Neck Cancer Patients After Total Laryngectomy. Nutr. Cancer 2021, 74, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Lu, Z.M.; Luo, X.N.; Chen, L.S.; Ge, P.J.; Song, X.H.; Chen, S.H.; Wu, Y.L. Retrospective analysis of prognostic factors in 205 patients with laryngeal squamous cell carcinoma who underwent surgical treatment. PLoS ONE 2013, 8, e60157. [Google Scholar]
- Zhao, Y.; Qin, J.; Qiu, Z.; Guo, J.; Chang, W. Prognostic role of neutrophil-to-lymphocyte ratio to laryngeal squamous cell carcinoma: A meta-analysis. Braz J. Otorhinolaryngol. 2020, 88, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef] [Green Version]
- Forastiere, A.A.; Zhang, Q.; Weber, R.S.; Maor, M.H.; Goepfert, H.; Pajak, T.F.; Morrison, W.; Glisson, B.; Trotti, A.; Ridge, J.A.; et al. Long-term results of RTOG 91-11: A comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J. Clin. Oncol. 2013, 31, 845–852. [Google Scholar] [CrossRef]
- Boukovalas, S.; Goepfert, R.P.; Smith, J.M.; Mecham, E.; Liu, J.; Zafereo, M.E.; Chang, E.I.; Hessel, A.C.; Hanasono, M.M.; Gross, N.D.; et al. Association between postoperative complications and long-term oncologic outcomes following total laryngectomy: 10-year experience at MD Anderson Cancer Center. Cancer 2020, 126, 4905–4916. [Google Scholar] [CrossRef]
- Goossen, K.; Tenckhoff, S.; Probst, P.; Grummich, K.; Mihaljevic, A.L.; Büchler, M.W.; Diener, M.K. Optimal literature search for systematic reviews in surgery. Langenbecks Arch. Surg. 2018, 403, 119–129. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.W.; Stybayeva, G.; Lim, S.Y.; Hwang, S.H. Predictive Value of Olfactory and Taste Symptoms in the Diagnosis of COVID-19: A Systematic Review and Meta-Analysis. Clin. Exp. Otorhinolaryngol. 2021, 14, 312–320. [Google Scholar] [CrossRef]
- Hwang, S.H.; Kim, J.-S.; Choi, B.Y.; Kim, J.K.; Kim, B.G. Practical Review of Olfactory Training and COVID-19. J. Rhinol. 2022, 29, 127–133. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, J.; Kim, S.W.; Hwang, S.H. The Efficacy of Hypotensive Agents on Intraoperative Bleeding and Recovery Following General Anesthesia for Nasal Surgery: A Network Meta-Analysis. Clin. Exp. Otorhinolaryngol. 2021, 14, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Nichols, A.C.; Whelan, F.; Basmaji, J.; Dhaliwal, S.; Dowthwaite, S.; Chapeskie, C.; Read, N.; Palma, D.A.; Fung, K.; Venkatesan, V.; et al. Ki-67 expression predicts radiotherapy failure in early glottic cancer. J. Otolaryngol. Head Neck Surg. 2012, 41, 124–130. [Google Scholar] [PubMed]
- Dziegielewski, P.T.; O’Connell, D.A.; Klein, M.; Fung, C.; Singh, P.; Alex Mlynarek, M.; Fung, D.; Harris, J.R.; Seikaly, H. Primary total laryngectomy versus organ preservation for T3/T4a laryngeal cancer: A population-based analysis of survival. J. Otolaryngol. Head Neck Surg. 2012, 41 (Suppl. S1), S56–S64. [Google Scholar]
- Dionysopoulos, D.; Pavlakis, K.; Kotoula, V.; Fountzilas, E.; Markou, K.; Karasmanis, I.; Angouridakis, N.; Nikolaou, A.; Kalogeras, K.T.; Fountzilas, G. Cyclin D1, EGFR, and Akt/mTOR pathway. Potential prognostic markers in localized laryngeal squamous cell carcinoma. Strahlenther Onkol. 2013, 189, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, A.J.; Lange, C.A.; de Bois, J.A.; van Werkhoven, E.; Hamming-Vrieze, O.; Hilgers, F.J.; van den Brekel, M.W. Tumor volume as a prognostic factor for local control and overall survival in advanced larynx cancer. Laryngoscope 2016, 126, E60–E67. [Google Scholar] [CrossRef]
- Wong, B.Y.; Stafford, N.D.; Green, V.L.; Greenman, J. Prognostic value of the neutrophil-to-lymphocyte ratio in patients with laryngeal squamous cell carcinoma. Head Neck 2016, 38 (Suppl. S1), E1903–E1908. [Google Scholar] [CrossRef]
- Grover, S.; Swisher-McClure, S.; Mitra, N.; Li, J.; Cohen, R.B.; Ahn, P.H.; Lukens, J.N.; Chalian, A.A.; Weinstein, G.S.; O’Malley, B.W., Jr.; et al. Total Laryngectomy Versus Larynx Preservation for T4a Larynx Cancer: Patterns of Care and Survival Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 594–601. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Song, X.; Zeng, W.; Wang, S.; Chen, F.; Ding, H. The prognostic value of systemic and local inflammation in patients with laryngeal squamous cell carcinoma. Onco Targets Ther. 2016, 9, 7177–7185. [Google Scholar] [CrossRef] [Green Version]
- Tu, X.P.; Qiu, Q.H.; Chen, L.S.; Luo, X.N.; Lu, Z.M.; Zhang, S.Y.; Chen, S.H. Preoperative neutrophil-to-lymphocyte ratio is an independent prognostic marker in patients with laryngeal squamous cell carcinoma. BMC Cancer 2015, 15, 743. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liu, W.; OuYang, D.; Yang, A.; Zhang, Q. Preoperative Neutrophil-to-lymphocyte Ratio Predicts Long-term Survival in Patients Undergoing Total Laryngectomy With Advanced Laryngeal Squamous Cell Carcinoma: A Single-center Retrospective Study. Medicine 2016, 95, e2689. [Google Scholar] [CrossRef]
- Graboyes, E.M.; Zhan, K.Y.; Garrett-Mayer, E.; Lentsch, E.J.; Sharma, A.K.; Day, T.A. Effect of postoperative radiotherapy on survival for surgically managed pT3N0 and pT4aN0 laryngeal cancer: Analysis of the National Cancer Data Base. Cancer 2017, 123, 2248–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyckhoff, G.; Plinkert, P.K.; Ramroth, H. A change in the study evaluation paradigm reveals that larynx preservation compromises survival in T4 laryngeal cancer patients. BMC Cancer 2017, 17, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkeland, A.C.; Beesley, L.; Bellile, E.; Rosko, A.J.; Hoesli, R.; Chinn, S.B.; Shuman, A.G.; Prince, M.E.; Wolf, G.T.; Bradford, C.R.; et al. Predictors of survival after total laryngectomy for recurrent/persistent laryngeal squamous cell carcinoma. Head Neck 2017, 39, 2512–2518. [Google Scholar] [CrossRef] [PubMed]
- Cheraghlou, S.; Kuo, P.; Mehra, S.; Yarbrough, W.G.; Judson, B.L. Salvage Surgery after Radiation Failure in T1/T2 Larynx Cancer: Outcomes following Total versus Conservation Surgery. Otolaryngol. Head Neck Surg. 2018, 158, 497–504. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, H.; Yang, J.; Lu, Y.; Zhang, D.; Wang, J.; Kuang, C.; Zhu, S.; Wang, M.; Ma, X. Survival and prognostic analysis of preoperative inflammatory markers in patients undergoing surgical resection for laryngeal squamous cell carcinoma. BMC Cancer 2018, 18, 816. [Google Scholar] [CrossRef]
- Oh, J.; Prisman, E.; Olson, R.; Berthelet, E.; Wu, J.; Tran, E.; Bakos, B.; Kaviani, R.; Hamilton, S.N. Primary organ preservation vs total laryngectomy for T4a larynx cancer. Head Neck 2019, 41, 3265–3275. [Google Scholar] [CrossRef]
- Patel, S.A.; Qureshi, M.M.; Dyer, M.A.; Jalisi, S.; Grillone, G.; Truong, M.T. Comparing surgical and nonsurgical larynx-preserving treatments with total laryngectomy for locally advanced laryngeal cancer. Cancer 2019, 125, 3367–3377. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, S.T.; Chen, W.Z.; Xie, R.; Yu, J.C. Pretreatment albumin globulin ratio has a superior prognostic value in laryngeal squamous cell carcinoma patients: A comparison study. J. Cancer 2019, 10, 594–601. [Google Scholar] [CrossRef]
- Song, S.; Chen, H.; Dong, W.; Zhou, H. The prognostic value of preoperative derived neutrophil-to-lymphocyte ratio in patients undergoing total laryngectomy with laryngeal carcinoma. Acta Otolaryngol. 2019, 139, 294–298. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, M.; Zhou, D.; Gorur, A.; Sun, Z.; Zeng, W.; Cata, J.P.; Chen, W.; Miao, C. Increased mu-opioid receptor expression is associated with reduced disease-free and overall survival in laryngeal squamous cell carcinoma. Br. J. Anaesth 2020, 125, 722–729. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, H.; Chen, Y.; Xu, Y.; Chen, X.; Fan, H.; Wu, X.; Ke, X.; Lin, C. Long-term survival trend after primary total laryngectomy for patients with locally advanced laryngeal carcinoma. J. Cancer 2021, 12, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.E.; Amdur, R.J.; Morris, C.M.; Hitchcock, K.E.; Dziegielewski, P.T.; Boyce, B.J.; Silver, N.L.; Shaw, C.; Mendenhall, W.M. Curative-dose Chemoradiotherapy Versus Total Laryngectomy For Stage T3-T4 Squamous Cell Carcinoma of the Larynx: An "Apples-to-Apples" Analysis of the National Cancer Database. Am. J. Clin. Oncol. 2019, 42, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Parmar, M.K.; Torri, V.; Stewart, L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat. Med. 1998, 17, 2815–2834. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Guo, H.; Zhang, Y.; Liu, H.; Dou, Q. Prognostic significance of SHP2 (PTPN11) expression in solid tumors: A meta-analysis. PLoS ONE 2022, 17, e0262931. [Google Scholar] [CrossRef]
- Deeks, J.; Dinnes, J.; D’Amico, R.; Sowden, A.; Sakarovitch, C.; Song, F.; Petticrew, M.; Altman, D. Evaluating non-randomised intervention studies. Health Technol. Assess. 2003, 7, 1–173. [Google Scholar] [CrossRef] [Green Version]
- Sheahan, P. Management of advanced laryngeal cancer. Rambam Maimonides Med. J. 2014, 5, e0015. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, J.L.; Lartigau, E. Preservation of form and function during management of cancer of the larynx and hypopharynx. World J. Surg. 2003, 27, 811–816. [Google Scholar] [CrossRef]
- Forastiere, A.A.; Goepfert, H.; Maor, M.; Pajak, T.F.; Weber, R.; Morrison, W.; Glisson, B.; Trotti, A.; Ridge, J.A.; Chao, C.; et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N. Engl. J. Med. 2003, 349, 2091–2098. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, H.T.; Porter, K.; Karnell, L.H.; Cooper, J.S.; Weber, R.S.; Langer, C.J.; Ang, K.K.; Gay, G.; Stewart, A.; Robinson, R.A. Laryngeal cancer in the United States: Changes in demographics, patterns of care, and survival. Laryngoscope 2006, 116, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ramos Innocentini, L.M.A.; Teixeira, A.H.; Casemiro, L.A.; Andrade, M.C.; Ferrari, T.C.; Ricz, H.M.A.; Macedo, L.D.d. Laryngeal Cancer Attributable Factors and the Influence on Survival Rates: A Single Brazilian Institution Experience. Int. Arch. Otorhinolaryngol. 2019, 23, e299–e304. [Google Scholar] [CrossRef] [Green Version]
- Reid, B.C.; Alberg, A.J.; Klassen, A.C.; Rozier, R.G.; Garcia, I.; Winn, D.M.; Samet, J.M. A comparison of three comorbidity indexes in a head and neck cancer population. Oral Oncol. 2002, 38, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Fong, P.Y.; Tan, S.H.; Lim, D.W.T.; Tan, E.H.; Ng, Q.S.; Sommat, K.; Tan, D.S.W.; Ang, M.K. Association of clinical factors with survival outcomes in laryngeal squamous cell carcinoma (LSCC). PLoS ONE 2019, 14, e0224665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.E.; LaMonte, S.J.; Erb, N.L.; Beckman, K.L.; Sadeghi, N.; Hutcheson, K.A.; Stubblefield, M.D.; Abbott, D.M.; Fisher, P.S.; Stein, K.D.; et al. American Cancer Society Head and Neck Cancer Survivorship Care Guideline. CA Cancer J. Clin. 2016, 66, 203–239. [Google Scholar] [CrossRef]
- Baijal, G.; Gupta, T.; Hotwani, C.; Laskar, S.G.; Budrukkar, A.; Murthy, V.; Agarwal, J.P. Impact of comorbidity on therapeutic decision-making in head and neck cancer: Audit from a comprehensive cancer center in India. Head Neck 2012, 34, 1251–1254. [Google Scholar] [CrossRef]
- Sommers, L.W.; Steenbakkers, R.; Bijl, H.P.; Vemer-van den Hoek, J.G.M.; Roodenburg, J.L.N.; Oosting, S.F.; Halmos, G.B.; de Rooij, S.E.; Langendijk, J.A. Survival Patterns in Elderly Head and Neck Squamous Cell Carcinoma Patients Treated With Definitive Radiation Therapy. Int. J. Radiat Oncol. Biol. Phys. 2017, 98, 793–801. [Google Scholar] [CrossRef]
- Islami, F.; Tramacere, I.; Rota, M.; Bagnardi, V.; Fedirko, V.; Scotti, L.; Garavello, W.; Jenab, M.; Corrao, G.; Straif, K.; et al. Alcohol drinking and laryngeal cancer: Overall and dose-risk relation--a systematic review and meta-analysis. Oral Oncol. 2010, 46, 802–810. [Google Scholar] [CrossRef]
- Gastardelo, T.S.; Cunha, B.R.; Raposo, L.S.; Maniglia, J.V.; Cury, P.M.; Lisoni, F.C.; Tajara, E.H.; Oliani, S.M. Inflammation and cancer: Role of annexin A1 and FPR2/ALX in proliferation and metastasis in human laryngeal squamous cell carcinoma. PLoS ONE 2014, 9, e111317. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, A.; Burtness, B. Novel Molecular Targets for Chemoprevention in Malignancies of the Head and Neck. Cancers 2017, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Cornean, C.I.; Cosgarea, M.; Cătană, A.; Mogoantă, C.A.; Necula, V.; Maniu, A.A. Do we know enough about the genetic involvement in laryngeal cancer susceptibility and prognostic outcome? Rom J. Morphol. Embryol. 2019, 60, 353–367. [Google Scholar] [PubMed]
- Nussbaumer-Streit, B.; Klerings, I.; Dobrescu, A.I.; Persad, E.; Stevens, A.; Garritty, C.; Kamel, C.; Affengruber, L.; King, V.J.; Gartlehner, G. Excluding non-English publications from evidence-syntheses did not change conclusions: A meta-epidemiological study. J. Clin. Epidemiol. 2020, 118, 42–54. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Number | Age, Median (Range) or Mean (SD), y | Sex (Male/Female) | Nation | Treatment | Tumor Subsite (Supraglottic/Glottic/
Subglottic) | Laryngeal Tumor Stage | Extracted Outcomes |
---|---|---|---|---|---|---|---|---|---|
Nichols 2012 [12] | Cohort | 75 | NA | 66/9 | UK | Radiotherapy | Early glottis cancer | T1/T2 | Age, gender, T stage, smoking, alcohol |
Dziegielewski 2012 [13] | Cohort | 258 | 64.2 (36–92) | 205/53 | Canada | TL with adjuvant RT ± CT (TL-R/CT), RT, and chemotherapy–radiotherapy (CRT) | Supraglottic/glottic/subglottic | T3/T4a | Treatment modality |
Dionysopoulos 2013 [14] | Cohort | 289 | 63 (36–82) | 277/12 | Greece | Chordectomy, TL ± postoperative radiation | Supraglottic/glottic/subglottic/transglottic | T1/T2/T3/T4 | Nodal involvement, tumor subsite |
Zhang 2013 [2] | Cohort | 205 | 61.8 ± 10.6 | 197/8 | China | Total laryngectomy, partial laryngectomy, or CO2 laser surgery ± postoperative radiation or CT | Supraglottic/glottic | T1/T2/T3/T4 | Age, TMN stage, T stage, node involvement, tumor subsite, smoking, alcohol, Charlson score, patholic differentiation |
Timmermans 2015 [15] | Cohort | 166 | 61.9 (11.3) | 124/42 | The Netherlands | Radiotherapy, chemoradiotherapy, or total laryngectomy with postoperative radiotherapy | Supraglottic/glottic/subglottic/transglottic | T3/T4 | Treatment modality, Age, sex, T stage, node involvement |
Wong 2015 [16] | Cohort | 140 | 66 (36–92) | 121/19 | UK | Primary surgery, surgery with adjuvant chemoradiotherapy or radiotherapy, radical radiotherapy, and chemoradiotherapy | Not commented | T1/T2/T3/T4 | Sex, age, smoking, node involvement, TMN stage |
Grover 2015 [17] | Cohort | 969 | 59.2 (10.4) | 774/195 | USA | Total laryngectomy (TL) plus adjuvant therapy and larynx preservation chemoradiation (LP-CRT) | Supraglottic/glottic/subglottic/transglottic | T4a | Age, TMN stage, node involvement, Charlson score, tumor subsite |
Wang 2016 [18] | Cohort | 120 | 60.6 ± 8.6 | 118/2 | China | Total laryngectomy, partial laryngectomy, or CO2 laser surgery plus postoperative radiation ± CT | Supraglottic/glottic/subglottic | T1/T2/T3/T4 | Age, smoking, alcohol, tumor subsite, T stage, node involvement, TMN stage, pathologic differentiation |
Tu 2015 [19] | Cohort | 141 | 59 (36–87) | 137/4 | China | Total laryngectomy, partial laryngectomy, or CO2 laser surgery | Supraglottic/glottic/subglottic | T1/T2/T3/T4 | T stage, node involvement |
Fu 2016 [20] | Cohort | 420 | 60 ± 9.1 (33–84) | 413/7 | China | Total laryngectomy (TL) ± adjuvant therapy | Supraglottic/glottic/subglottic | T3/T4 | Age, sex, smoking, alcohol, tumor subsite, T stage, node involvement, TMN stage, pathologic differentiation |
Graboyes 2017 [21] | Cohort | 1460 | NA | 531/143 | USA | Partial laryngectomy or Total laryngectomy ± postoperative radiation | Supraglottic/glottic/subglottic/transglottic | T3 | Age, sex, Charlson score, tumor subsite, pathologic differentiation |
Dyckhoff 2017 [22] | Cohort | 769 | 61.9 (9.7) | 626/58 | Germany | Primary chemo-radiotherapy (CRT) or primary radiotherapy alone (RT), total laryngectomy followed by adjuvant (chemo)radiotherapy | Supraglottic/glottic/subglottic/transglottic | T4 | Treatment modality, age, node involvement, tumor subsite, Charlson score |
Birkeland 2017 [23] | Cohort | 244 | NA | 208/36 | USA | Total laryngectomy followed by adjuvant (chemo)radiotherapy | Supraglottic/glottic | T1/T2/T3/T4 | T stage |
Cheraghlo 2018 [24] | Cohort | 726 | NA | 528/198 | USA | Total laryngectomy, open partial laryngectomy, and endoscopic partial laryngectomy | Supraglottic/glottic/subglottic/transglottic | T1/T2 | Age, sex, Charlson score, tumor subsite, T stage, node involvement |
Chen 2018 [25] | Cohort | 361 | 60 (35–87) | 353/8 | China | Total or partial laryngectomy without neoadjuvant chemotherapy or radiotherapy | Supraglottic/glottic/subglottic | T1/T2/T3/T4 | Age, sex, tumor subsite, T stage, node involvement, TMN stage, pathologic differentiation |
Oh 2019 [26] | Cohort | 329 | 62 (57–66) | 30/6 | Canada | Surgery alone, surgery with adjuvant radiotherapy (Sx/RT), radiation alone (RT), and radiation with concurrent chemoradiotherapy (chemoRT) | Not described | T4a | Treatment modality, age, alcohol, sex, node involvement |
Patel 2019 [27] | Cohort | 8703 | NA | 6601/2102 | USA | Chemoradiation (CRT) or partial laryngectomy (PL) and total laryngectomy (TL) with or without adjuvant therapy | Supraglottic/glottic | T2/T3/T4 | Age, sex, Charlson score, pathologic differentiation, T stage, node involvement, treatment modality |
Zhou 2019 [28] | Cohort | 232 | 63 (39–81) | 192/40 | China | Partial or total laryngectomy (±neck dissection) and postoperative radio-/chemotherapy | Supraglottic/glottic/subglottic | T1/T2/T3/T4 | Age sex, smoking, alcohol, tumor subsite, T stage, node involvement, TMN stage, pathologic differentiation |
Song 2019 [29] | Cohort | 137 | NA | 133/4 | China | Total laryngectomy | Supraglottic/glottic/subglottic/transglottic | T1/T2/T3/T4 | Tumor subsite, age, pathologic differentiation |
Bates 2019 [32] | Cohort | 11,237 | NA | 8472/3538 | USA | Chemoradiotherapy (cRT) and total laryngectomy (TL) with adjuvant RT | Not described | T3/T4 | Age, sex, Charlson score, T stage, node involvement, treatment modality |
Boukovalas 2020 [6] | Cohort | 362 | 64 | 294/68 | USA | Total laryngectomy | Not described | T1/T2/T3/T4 | Age, sex, T stage, node involvement, smoking, alcohol |
Zhang 2020 [30] | Cohort | 207 | NA | 198/9 | China | Partial or total laryngectomy | Supraglottic/glottic/subglottic/transglottic | T1/T2/T3/T4 | Age, sex, alcohol, smoking, pathologic differentiation, TMN stage, T stage, node involvement |
Lin 2021 [31] | Cohort | 2094 | NA | 1712/382 | China | Total laryngectomy | Supraglottic/glottic | T1/T2/T3/T4 | Age, sex, pathologic differentiation, node involvement |
Voora 2021 | Cohort | 1043 | 62.29 (8.13) | 1039/4 | USA | Chemoradiotherapy (cRT) and total laryngectomy (TL) with adjuvant RT | Supraglottic/glottic/subglottic/transglottic | T4a | Age, sex, Charlson score, alcohol, tumor subsite, smoking, node involvement, treatment modality |
Zhang 2021 | Cohort | 211 | 62.19 (8.328) | 164/47 | China | Total or partial laryngectomy ± Adjuvant radiotherapy | Supraglottic/glottic/subglottic/transglottic | T1/T2/T3/T4 | Sex, alcohol, tumor subsite, smoking, node involvement, TMN stage, pathologic differentiation |
Geng 2022 | Cohort | 78 | 58.1 (51.1–62.1) | 70/8 | USA | Total or partial laryngectomy ± Adjuvant radiotherapy | Supraglottic/glottic/subglottic | T1/T2/T3/T4 | Age, sex, tumor subsite, smoking, TMN stage, pathologic differentiation |
Lin 2022 [31] | Cohort | 154 | 60.90 (9.79) | 147/7 | China | Total or partial laryngectomy ± Adjuvant radiotherapy | Supraglottic/glottic/subglottic | T1/T2/T3/T4 | Age, sex, alcohol, smoking, TMN stage, treatment modality |
Zhu 2022 | Cohort | 998 | 56–70 | 946/52 | China | Chemoradiotherapy (cRT) and total laryngectomy (TL) with adjuvant RT | Supraglottic/glottic/subglottic | T1/T2/T3/T4 | Age, sex, tumor subsite, TMN stage, pathologic differentiation |
Overall Survival | Disease-Free Survival | |
---|---|---|
Age (≥60 vs. 60) | n = 21 | n = 9 |
1.1300 [1.0908; 1.1705]; p < 0.0001; I2 = 91.5% | 1.0070 [1.0005; 1.0136]; p = 0.0359; I2 = 15.9% | |
Sex (male vs. female) | n = 13 | n = 8 |
0.9856 [0.8866; 1.0956]; p = 0.7883; I2 = 53.9% | 1.1047 [0.7234; 1.6869]; p = 0.6448; I2 = 84.7% | |
Smoking (yes vs. no) | n = 11 | n = 9 |
1.2926 [1.0999; 1.5191]; p = 0.0018; I2 = 13.6% | 1.2237 [0.9206; 1.6267]; p = 0.1644; I2 = 61.2% | |
Alcohol (yes vs. no) | n = 9 | n = 7 |
1.1979 [1.0696; 1.3415]; p = 0.0018; I2 = 33.1% | 1.1861 [0.9588; 1.4673]; p = 0.1159; I2 = 54.1% | |
Charlson score (≥2 vs. 0 or 1) | n = 8 | |
1.6716 [1.3533; 2.0647]; p < 0.0001; I2 = 86.6% | ||
Charlson score (1 vs. 0) | n = 5 | |
1.3153 [1.2299; 1.4068]; p < 0.0001; I2 = 12.1% | ||
TNM stage (III and IV vs. I and II) | n = 9 | n = 10 |
2.4583 [1.8323; 3.2980]; p < 0.0001; I2 = 81.9% | 2.3987 [2.0956; 2.7456]; p < 0.0001; I2 = 29.8% | |
Tumor stage (III and IV vs. I and II) | n = 10 | n = 5 |
1.5648 [1.2363; 1.9806]; p < 0.0001; I2 = 86.4% | 1.8441 [1.4507; 2.3441]; p< 0.0001; I2 = 0.0% | |
Tumor location (subglottis vs. glottis) | n = 4 | |
1.3956 [0.5841; 3.3341]; p = 0.4532; I2 = 84.1% | ||
Tumor location (supraglottic vs. glottis) | n = 11 | n = 4 |
1.3740 [1.0730; 1.7594]; p = 0.0118; I2 = 82.3% | 1.6371 [1.0162; 2.6373]; p < 0.0001; I2 = 90.2% | |
Tumor location (transglottic vs. glottis) | n = 5 | |
1.3699 [0.9348; 2.0076]; p = 0.1065; I2 = 69.3% | ||
Node involvement (yes vs. no) | n = 16 | n = 10 |
1.9439 [1.6235; 2.3276]; p < 0.0001; I2 = 87.6% | 1.6174 [1.4560; 1.7968]; p < 0.0001; I2 = 46.6% | |
Pathologic differentiation (moderate vs. high) | n = 6 | |
1.2820 [1.0659; 1.5419]; p < 0.0001; I2 = 51.3% | ||
Pathologic differentiation (poor vs. high) | n = 9 | n = 3 |
1.6951 [1.5394; 1.8665]; p < 0.0001; I2 = 43.2% | 1.5336 [0.7875; 2.9864]; p = 0.2086; I2 = 90.1% | |
Treatment modality (primary chemoradiotherapy vs. total laryngectomy) | n = 10 | |
1.4004 [1.1639; 1.6850]; p = 0.0004; I2 = 90.6% | ||
Treatment modality (primary radiotherapy vs. total laryngectomy) | n = 8 | |
1.5418 [1.1531; 2.0616]; p = 0.0035; I2 = 91.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Kim, S.W.; Han, J.S.; Kim, G.-J.; Basurrah, M.A.; Hwang, S.H. The Prognostic Utilities of Various Risk Factors for Laryngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Medicina 2023, 59, 497. https://doi.org/10.3390/medicina59030497
Kim DH, Kim SW, Han JS, Kim G-J, Basurrah MA, Hwang SH. The Prognostic Utilities of Various Risk Factors for Laryngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Medicina. 2023; 59(3):497. https://doi.org/10.3390/medicina59030497
Chicago/Turabian StyleKim, Do Hyun, Sung Won Kim, Jae Sang Han, Geun-Jeon Kim, Mohammed Abdullah Basurrah, and Se Hwan Hwang. 2023. "The Prognostic Utilities of Various Risk Factors for Laryngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis" Medicina 59, no. 3: 497. https://doi.org/10.3390/medicina59030497
APA StyleKim, D. H., Kim, S. W., Han, J. S., Kim, G. -J., Basurrah, M. A., & Hwang, S. H. (2023). The Prognostic Utilities of Various Risk Factors for Laryngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Medicina, 59(3), 497. https://doi.org/10.3390/medicina59030497