Electrolytes Play a Role in Detecting Cisplatin-Induced Kidney Complications and May Even Prevent Them—Retrospective Analysis
Abstract
:1. Introduction
2. Statistical Analysis
3. Method
4. Results
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef] [PubMed]
- Oh, G.S.; Kim, H.J.; Shen, A.; Lee, S.B.; Khadka, D.; Pandit, A.; So, H.S. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolyte Blood Press. 2014, 12, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Phung, H.M.; Lee, S.; Hwang, J.H.; Kang, K.S. Preventive effect of muscone against cisplatin nephrotoxicity in llc-pk1 cells. Biomolecules 2020, 10, 1444. [Google Scholar] [CrossRef] [PubMed]
- Esfahani Monfared, Z.; Khosravi, A.; Safavi Naini, A.; Radmand, G.; Khodadad, K. Analysis of cisplatin-induced ototoxicity risk factors in iranian patients with solid tumors: A cohort, prospective and single institute study. Asian Pac. J. Cancer Prev. 2017, 18, 753–758. [Google Scholar]
- Fosså, S.; Aass, N.; Winderen, M.; Börmer, O.; Olsen, D. Long-term renal function after treatment for malignant germ-cell tumours. Ann. Oncol. 2002, 13, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Shord, S.S.; Thompson, D.M.; Krempl, G.A.; Hanigan, M.H. Effect of concurrent medications on cisplatin-induced nephrotoxicity in patients with head and neck cancer. Anti-Cancer Drugs 2006, 17, 207–215. [Google Scholar] [CrossRef]
- Sánchez-González, P.D.; López-Hernández, F.J.; López-Novoa, J.M.; Morales, A.I. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit. Rev. Toxicol. 2011, 41, 803–821. [Google Scholar] [CrossRef]
- Zhang, A.M.; Fan, Y.; Wang, X.X.; Xie, Q.C.; Sun, J.G.; Chen, Z.T.; Zhu, B. Increased treatment-related mortality with additional cisplatin-based chemotherapy in patients with nasopharyngeal carcinoma treated with standard radiotherapy. Radiother. Oncol. 2012, 104, 279–285. [Google Scholar] [CrossRef]
- Van Herpen, C.M.L.; Mauer, M.E.; Mesia, R.; Degardin, M.; Jelic, S.; Coens, C.; Betka, J.; Bernier, J.; Remenar, E.; Stewart, J.S.; et al. Short-term health-related quality of life and symptom control with docetaxel, cisplatin, 5-fluorouracil and cisplatin (tpf), 5-fluorouracil (pf) for induction in unresectable locoregionally advanced head and neck cancer patients (eortc 24971/tax 323). Br. J. Cancer 2010, 103, 1173–1181. [Google Scholar] [CrossRef]
- El Charif, O.; Mapes, B.; Trendowski, M.R.; Wheeler, H.E.; Wing, C.; Dinh, P.C.; Frisina, R.D.; Feldman, D.R.; Hamilton, R.J.; Vaughn, D.J.; et al. Clinical and genome-wide analysis of cisplatin-induced tinnitus implicates novel ototoxic mechanisms. Clin. Cancer Res. 2019, 25, 4104. [Google Scholar] [CrossRef]
- Brock, P.; Rajput, K.; Edwards, L.; Meijer, A.; Simpkin, P.; Hoetink, A.; Kruger, M.; Sullivan, M.; van den Heuvel-Eibrink, M. Cisplatin ototoxicity in children. In Hearing Loss-From Multidisciplinary Teamwork to Public Health; IntechOpen: London, UK, 2021. [Google Scholar]
- Minasian, L.M.; Frazier, A.L.; Sung, L.; O’Mara, A.; Kelaghan, J.; Chang, K.W.; Krailo, M.; Pollock, B.H.; Reaman, G.; Freyer, D.R. Prevention of cisplatin-induced hearing loss in children: Informing the design of future clinical trials. Cancer Med. 2018, 7, 2951–2959. [Google Scholar] [CrossRef] [PubMed]
- De Man, F.M.; Veerman, G.M.; Oomen-de Hoop, E.; Deenen, M.J.; Meulendijks, D.; Mandigers, C.M.; Soesan, M.; Schellens, J.H.; van Meerten, E.; van Gelder, T. Comparison of toxicity and effectiveness between fixed-dose and body surface area-based dose capecitabine. Ther. Adv. Med. Oncol. 2019, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Malyszko, J.; Tesarova, P.; Capasso, G.; Capasso, A. The link between kidney disease and cancer: Complications and treatment. Lancet 2020, 396, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Almakhatreh, M.; Hafez, E.; Tousson, E.; Masoud, A. Biochemical and molecular studies on the role of rosemary (Rosmarinus officinalis) extract in reducing liver and kidney toxicity due to etoposide in male rats. Asian J. Res. Med. Pharm. Sci. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Z.-W.; Tew, K.D.; Townsend, D.M. Cisplatin chemotherapy and renal function. Adv. Cancer Res. 2021, 152, 305–327. [Google Scholar]
- Casanova, A.G.; Hernández-Sánchez, M.T.; López-Hernández, F.J.; Martínez-Salgado, C.; Prieto, M.; Vicente-Vicente, L.; Morales, A.I. Systematic review and meta-analysis of the efficacy of clinically tested protectants of cisplatin nephrotoxicity. Eur. J. Clin. Pharmacol. 2020, 76, 23–33. [Google Scholar] [CrossRef]
- Lajer, H.; Daugaard, G. Cisplatin and hypomagnesemia. Cancer Treat. Rev. 1999, 25, 47–58. [Google Scholar] [CrossRef]
- Cornelison, T.L.; Reed, E. Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol. Oncol. 1993, 50, 147–158. [Google Scholar] [CrossRef]
- Manohar, S.; Leung, N. Cisplatin nephrotoxicity: A review of the literature. J. Nephrol. 2018, 31, 15–25. [Google Scholar] [CrossRef]
- Lam, M.; Adelstein, D.J. Hypomagnesemia and renal magnesium wasting in patients treated with cisplatin. Am. J. Kidney Dis. 1986, 8, 164–169. [Google Scholar] [CrossRef]
- Blachley, J.D.; Hill, J.B. Renal and electrolyte disturbances associated with cisplatin. Ann. Intern. Med. 1981, 95, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, T.; Latta, S.; Jallad, B.; Kheir, F.; Alhosaini, M.N.; Patel, A. Cisplatin-induced renal salt wasting syndrome. South Med. J. 2010, 103, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: A review. Am. J. Med. Sci. 2007, 334, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of cisplatin nephrotoxicity. Toxins 2010, 2, 2490–2518. [Google Scholar] [CrossRef] [PubMed]
- Loren, P.; Saavedra, N.; Saavedra, K.; Zambrano, T.; Moriel, P.; Salazar, L.A. Epigenetic mechanisms involved in cisplatin-induced nephrotoxicity: An update. Pharmaceuticals 2021, 14, 491. [Google Scholar] [CrossRef] [PubMed]
- Pabla, N.; Murphy, R.F.; Liu, K.; Dong, Z. The copper transporter ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am. J. Physiol. Ren. Physiol. 2009, 296, F505–F511. [Google Scholar] [CrossRef]
- Filipski, K.K.; Mathijssen, R.H.; Mikkelsen, T.S.; Schinkel, A.H.; Sparreboom, A. Contribution of organic cation transporter 2 (oct2) to cisplatin-induced nephrotoxicity. Clin Pharm. 2009, 86, 396–402. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Bashir, S.H.; Ali Shah, A.; Sajjad, Z.; Ahmed, N.; Jooma, R.; Enam, S.A. Diagnostic mr imaging features of craniocerebral aspergillosis of sino-nasal origin in immunocompetent patients. Acta Neurochir. 2006, 148, 155–166, discussion 166. [Google Scholar] [CrossRef]
- Townsend, D.M.; Deng, M.; Zhang, L.; Lapus, M.G.; Hanigan, M.H. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol 2003, 14, 1–10. [Google Scholar] [CrossRef]
- Kawai, Y.; Nakao, T.; Kunimura, N.; Kohda, Y.; Gemba, M. Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. J. Pharm. Sci. 2006, 100, 65–72. [Google Scholar] [CrossRef]
- Cheng, L.; Bao, S.; Rich, J.N. Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem. Pharmacol. 2010, 80, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.; Ray, P. Cisplatin triggers cancer stem cell enrichment in platinum-resistant cells through nf-κb-tnfα-pik3ca loop. J. Exp. Clin. Cancer Res. 2017, 36, 164. [Google Scholar] [CrossRef] [PubMed]
- Crona, D.J.; Faso, A.; Nishijima, T.F.; McGraw, K.A.; Galsky, M.D.; Milowsky, M.I. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 2017, 22, 609–619. [Google Scholar] [CrossRef]
- Faig, J.; Haughton, M.; Taylor, R.C.; D’Agostino Jr, R.B.; Whelen, M.J.; Rodriguez, K.A.P.; Bonomi, M.; Murea, M.; Porosnicu, M. Retrospective analysis of cisplatin nephrotoxicity in patients with head and neck cancer receiving outpatient treatment with concurrent high-dose cisplatin and radiotherapy. Am. J. Clin. Oncol. 2018, 41, 432. [Google Scholar] [CrossRef]
- Minzi, O.; Lyimo, T.E.; Furia, F.F.; Marealle, A.I.; Kilonzi, M.; Bwire, G.M.; Malichewe, C. Electrolytes supplementation can decrease the risk of nephrotoxicity in patients with solid tumors undergoing chemotherapy with cisplatin. BMC Pharmacol. Toxicol. 2020, 21, 69. [Google Scholar] [CrossRef] [PubMed]
- Volarevic, V.; Djokovic, B.; Jankovic, M.G.; Harrell, C.R.; Fellabaum, C.; Djonov, V.; Arsenijevic, N. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 2019, 26, 25. [Google Scholar] [CrossRef]
- Ciarimboli, G.; Deuster, D.; Knief, A.; Sperling, M.; Holtkamp, M.; Edemir, B.; Pavenstädt, H.; Lanvers-Kaminsky, C.; am Zehnhoff-Dinnesen, A.; Schinkel, A.H. Organic cation transporter 2 mediates cisplatin-induced oto-and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 2010, 176, 1169–1180. [Google Scholar] [CrossRef]
- Hayati, F.; Hossainzadeh, M.; Shayanpour, S.; Abedi-Gheshlaghi, Z.; Mousavi, S.S.B. Prevention of cisplatin nephrotoxicity. J. Nephropharmacol. 2016, 5, 57. [Google Scholar]
- Brock, P.R.; Maibach, R.; Childs, M.; Rajput, K.; Roebuck, D.; Sullivan, M.J.; Laithier, V.; Ronghe, M.; Dall’Igna, P.; Hiyama, E.; et al. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N. Engl. J. Med. 2018, 378, 2376–2385. [Google Scholar] [CrossRef]
- Mercantepe, F.; Mercantepe, T.; Topcu, A.; Yilmaz, A.; Tumkaya, L. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn Schmiedebergs Arch Pharm. 2018, 391, 915–931. [Google Scholar] [CrossRef]
- Kemp, G.; Rose, P.; Lurain, J.; Berman, M.; Manetta, A.; Roullet, B.; Homesley, H.; Belpomme, D.; Glick, J. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: Results of a randomized control trial in patients with advanced ovarian cancer. J. Clin. Oncol. 1996, 14, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
No. | Characteristics | Patients No. (%) | |
---|---|---|---|
1 | Gender | Male | 124 (48.81%) |
Female | 130 (51.4%) | ||
2 | Nationality and Marital status | Saudi | 253 (100%) |
Single | 75 (29.6%) | ||
Married | 150 (59.3%) | ||
Divorced | 2 (0.8%) | ||
N.A. | 26 (10.3%) | ||
3 | Age (2–84 years) Median 46 years | Pediatric patients | 34 (13.4%) |
Adults | 220 (86.6%) | ||
4 | BMI | Overweight | 110 (43.3%) |
Normal weight | 144 (56.7%) | ||
5 | Cisplatin | Alone | 50 (19.7%) |
In combination | 204 (80.3%) |
No. | Cisplatin-Treated Tumors | Number of Cases | Total Percentage |
---|---|---|---|
1 | Testicular cancer | 13 | 5% |
2 | Lymphoma Hodgkin | 53 | 20% |
11 * | 4.3% | ||
3 | Breast cancer | 25 | 9.8% |
4 | Neuroblastoma | 15 | 5.8% |
5 | Medulloblastoma | 13 | 5% |
6 | Stomach cancer | 16 | 6.3% |
7 | Nasopharyngeal | 19 | 7.5% |
8 | Lung cancer | 12 | 4.7% |
9 | Others (<10 cases per cancer) seminoma, osteosarcoma, buccal esophageal cancer, bladder cancer, tongue cancer, renal cancer, lung cancer, external ear cancer, pancreatic cancer, gallbladder cancer, cervical cancers, neuroendocrine carcinoma, cholangiocarcinoma, hepatoblastoma, multiple myeloma, immature teratoma, choriocarcinoma, adenocarcinoma | 87 | 34.4% |
Metastasis | 119 * | 46.9% | |
Total | 253 | 100% |
No. | Medication Used with Cisplatin | Number of Cases | Total Percentage |
---|---|---|---|
1 | Gemcitabine | 45 | 17.8% |
2 | Etoposide | 85 | 33.6% |
3 | Cytarabine | 29 | 11.5% |
4 | Bleomycin | 9 | 3.6% |
5 | Capecitabine | 15 | 5.9% |
6 | Paclitaxel | 7 | 2.8% |
7 | Ifosfamide | 4 | 1.6% |
8 | Docetaxel | 14 | 5.5% |
9 | Cetuximab | 3 | 1.2% |
10 | Pemetrexed | 5 | 2% |
11 | Doxorubicin | 9 | 3.6% |
13 | Pemetrexed | 6 | 2.4% |
14 | Cyclophosphamide | 6 | 2.4% |
15 | Vincristine | 14 | 5.5% |
16 | Methylprednisolone | 2 | 0.8% |
17 | Lomustine | 4 | 1.6% |
18 | Rituximab | 14 | 5.5% |
19 | Epirubicin | 9 | 3.6% |
20 | Fluorouracil | 10 | 4% |
21 | Bortezomib | 3 | 1.2% |
22 | Crizotinib | 1 | 0.4% |
23 | Irinotecam | 2 | 0.8% |
24 | Trastuzumab | 1 | 0.4% |
25 | Antibiotics Cisplatin | 89 25 | 35.2% 9.8% |
No. | Parameters | Normal | Abnormal |
---|---|---|---|
1 | Sodium (Na) | 106 (41.9%) | 147 (58.1%) |
2 | Potassium (K) | 223 (88.1%) | 30 (11.9%) |
3 | Magnesium (Mg) | 175 (69.6%) | 78 (30.8%) |
4 | Calcium (Ca) | 147 (58.1%) | 106 (41.9%) |
5 | Kidney function
| 224 (88.5%) | 29 (11.5%) Toxicity |
N.A. | 9 (31%) 6 (20.7%) 19 (65.5%) 20 (69%) |
No. | Parameter | No | Yes |
---|---|---|---|
1 | Co-morbidity | 183 (72.3%) | 70 (27.7%) |
2 | Interaction with radiology | 202 (79.8%) | 51 (20.2%) |
3 | Tumor size > 5 cm | 163 (64.8) | 90 (35.6%) |
4 | Abnormal platelets
| 147 (58.1%) 213 (84.2%) 187 (73.9%) | 106 (41.9%) 40 (15.7%) 66 (26%) |
5 | Abnormal WBC
| 98 (38.7%) 210 (83%) 141 (55.7%) | 155 (61.3%) 43 (17%) 112 (44.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrfaei, B.M.; Almutairi, A.O.; Aljohani, A.A.; Alammar, H.; Asiri, A.; Bokhari, Y.; Aljaser, F.S.; Abudawood, M.; Halwani, M. Electrolytes Play a Role in Detecting Cisplatin-Induced Kidney Complications and May Even Prevent Them—Retrospective Analysis. Medicina 2023, 59, 890. https://doi.org/10.3390/medicina59050890
Alrfaei BM, Almutairi AO, Aljohani AA, Alammar H, Asiri A, Bokhari Y, Aljaser FS, Abudawood M, Halwani M. Electrolytes Play a Role in Detecting Cisplatin-Induced Kidney Complications and May Even Prevent Them—Retrospective Analysis. Medicina. 2023; 59(5):890. https://doi.org/10.3390/medicina59050890
Chicago/Turabian StyleAlrfaei, Bahauddeen M., Abdulaziz O. Almutairi, Alaa A. Aljohani, Hajar Alammar, Abdulaziz Asiri, Yahya Bokhari, Feda S. Aljaser, Manal Abudawood, and Majed Halwani. 2023. "Electrolytes Play a Role in Detecting Cisplatin-Induced Kidney Complications and May Even Prevent Them—Retrospective Analysis" Medicina 59, no. 5: 890. https://doi.org/10.3390/medicina59050890
APA StyleAlrfaei, B. M., Almutairi, A. O., Aljohani, A. A., Alammar, H., Asiri, A., Bokhari, Y., Aljaser, F. S., Abudawood, M., & Halwani, M. (2023). Electrolytes Play a Role in Detecting Cisplatin-Induced Kidney Complications and May Even Prevent Them—Retrospective Analysis. Medicina, 59(5), 890. https://doi.org/10.3390/medicina59050890