Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice
Abstract
:1. Introduction
- –
- Endocardium: endocarditis, valvular diseases, thrombi;
- –
- Myocardium: myocarditis, cardiomyopathy, rhythm and conduction disturbances, heart failure;
- –
- Pericardium: pericarditis, pericardial effusion.
- –
- Coronary arteries: acute coronary syndrome, ischemic heart disease, vasculitis
2. Materials and Methods
3. Cardiopathy in Churg-Strauss Syndrome
3.1. Pathogenesis
3.2. Cardiac Clinical Findings
3.3. Cardiac Histology
3.4. Cardiac Immunohistochemistry and Immunofluorescence
3.5. Genetic and Blood Markers
4. Cardiopathy in Takayasu Disease
4.1. Pathogenesis
4.2. Cardiac Clinical Findings
4.3. Cardiac Histology
4.4. Cardiac Immunohistochemistry and Immunofluorescence
4.5. Genetic and Blood Markers
5. Cardiopathy in Polyarteritis Nodosa
5.1. Pathogenesis
5.2. Cardiac Clinical Findings
5.3. Cardiac Histology
5.4. Cardiac Immunohistochemistry and Immunofluorescence
5.5. Genetic and Blood Markers
6. Cardiopathy in Behçet’s Disease
6.1. Pathogenesis
- –
6.2. Cardiac Clinical Findings
6.3. Cardiac Histology
- –
- Contemporary involvement of both arteries and veins of all sizes in BD (venous in general more frequently affected than arteries);
- –
- No clearly reported increased risk of atherosclerosis compared to other vascular inflammatory diseases;
- –
- Unique tendency for aneurysm formation;
- –
- Usual absence of granulomatous inflammatory lesions in the vessel wall, with elastic fibers usually spared [115].
6.4. Cardiac Immunohistochemistry and Immunofluorescence
6.5. Genetic and Blood Finding
7. Cardiopathy in Kawasaki Disease
7.1. Pathogenesis
7.2. Cardiac Clinical Findings
7.3. Cardiac Histology
7.4. Cardiac Immunohistochemistry and Immunofluorescence
7.5. Genetic and Blood Markers
8. Cardiopathy in Systemic Lupus Erythematosus (SLE)
8.1. Pathogenesis
8.2. Cardiac Clinical Findings
8.3. Cardiac Histology
8.4. Cardiac Immunohistochemistry and Immunofluorescence
8.5. Genetic and Blood Markers
9. Cardiopathy in Rheumatoid Arthritis
9.1. Pathogenesis
9.2. Cardiac Clinical Findings
9.3. Cardiac Histology
9.4. Cardiac Immunohistochemistry and Immunofluorescence
9.5. Genetic and Blood Markers
10. Cardiopathy in Systemic Sclerosis
10.1. Pathogenesis
10.2. Cardiac Clinical Findings
10.3. Cardiac Histology
10.4. Cardiac Immunohistochemistry and Immunofluorescence
10.5. Genetic and Blood Markers
11. Cardiopathy in Sjogren Syndrome
11.1. Pathogenesis
11.2. Cardiac Clinical Findings
11.3. Cardiac Histology
11.4. Cardiac Immunohistochemistry and Immunofluorescence
11.5. Genetic and Blood Markers
12. Cardiopathy in Polymyositis and Dermatomyositis
12.1. Pathogenesis
12.2. Cardiac Clinical Findings
12.3. Cardiac Histology
12.4. Cardiac Immunohistochemistry and Immunofluorescence
12.5. Genetic and Blood Markers
13. Cardiopathy in Acute Rheumatic Fever
13.1. Pathogenesis
13.2. Cardiac Clinical Findings
13.3. Cardiac Histology
13.4. Cardiac Immunohistochemistry and Immunofluorescence
13.5. Genetic and Blood Markers
14. Cardiopathy in Sarcoidosis
14.1. Pathogenesis
14.2. Cardiac Clinical Findings
14.3. Cardiac Histology
14.4. Cardiac Immunohistochemistry and Immunofluorescence
14.5. Genetic and Blood Markers
15. Mis-C COVID Related Cardiopathy
15.1. Pathogenesis
15.2. Cardiac Clinical Findings
15.3. Cardiac Histology
15.4. Cardiac Immunohistochemistry and Immunofluorescence
15.5. Genetic and Blood Markers
16. Coxsackieviruses B1-B5 Cardiopathy
16.1. Pathogenesis
16.2. Cardiac Clinical Findings
16.3. Cardiac Histology
16.4. Cardiac Immunohistochemistry and Immunofluorescence
16.5. Genetic Findings and Blood Markers
17. Epstein-Barr Virus Cardiopathy
17.1. Pathogenesis
17.2. Cardiac Clinical Findings
17.3. Cardiac Histology
17.4. Cardiac Immunohistochemistry and Immunofluorescence
17.5. Genetic and Blood Markers
- MAGT1, ITK, RASGRP1, CTPS1, CD27/CD70, TNSRSF9, CARMIL2, are associated with anomalous proliferation of CD8+ cells.
- SH2D1A, MAGT1, CD27/CD70, TNSRSF9, RASGRP1, CARMIL2, are associated with anomalous activation of cytotoxic pathways in CD8+ T cells, NK cells in response to Ab-presenting B cells.
- DOCK8, STK4, CORO1A, CARMIL2, PIK3CD-GOF, defect in cytoskeletal rearrangement in EBV infected cells, CD8+ T cells and NK cells.
- DOCK8, STK4, CORO1A, PIK3CD-GOF, are linked with loss of naïve CD8+ T cells.
18. Herpes Simplex Cardiopathy
18.1. Pathogenesis
18.2. Cardiac Clinical Findings
18.3. Cardiac Histology
18.4. Cardiac Immunohistochemistry and Immunofluorescence
18.5. Genetic and Blood Markers
19. COVID-19 Induced Cardiopathy
19.1. Pathogenesis
19.2. Cardiac Clinical Findings
19.3. Cardiac Histology
19.4. Cardiac Immunohistochemistry and Immunofluorescence
19.5. Genetic Findings and Blood Markers
20. Varicella Zoster Virus Cardiopathy
20.1. Pathogenesis
20.2. Cardiac Clinical Findings
20.3. Cardiac Histology
- Disrupted internal elastic lamina;
- Thickened intima, whose myofibroblasts usually produce Alpha-smooth muscle actin that could potentially contribute to the narrowing of vessels lumen and development of ischemia;
- Loss of vessel wall integrity [260].
20.4. Cardiac Immunohistochemistry and Immunofluorescence
20.5. Genetic and Blood Markers
21. HIV Related Cardiopathy
21.1. Pathogenesis
- –
- Stage I—Only viral RNA can be found;
- –
- Stage II—Positivity for p24 antigen;
- –
- Stage III—Development of Anti-HIV—IgM;
- –
- Stage IV—Undetermined Western Blot analysis;
- –
- Stage V—Reactive Western Blot.
21.2. Cardiac Clinical Findings
21.3. Cardiac Histology
21.4. Cardiac Immunohistochemistry and Immunofluorescence
21.5. Genetic and Blood Markers
22. Discussion
23. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veilleux, S.P.; O’Connor, K.; Couture, C.; Pagé, S.; Voisine, P.; Poirier, P.; Dubois, M.; Sénéchal, M. What the Cardiologist Should Know About Cardiac Involvement in Behçet Disease. Can. J. Cardiol. 2015, 31, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid Arthritis Section of the American College of Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics. Multisystem Inflammatory Syndrome in Children (MIS-C) Interim Guidance; American Academy of Pediatrics: Elk Grove, IL, USA, 2020. [Google Scholar]
- Knockaert, D.C. Cardiac involvement in systemic inflammatory diseases. Eur. Heart J. 2007, 15, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, S.; Dimitroulas, T.; Sfikakis, P.P.; Kitas, G.D. Heart involvement in rheumatoid arthritis: Multimodality imaging and the emerging role of cardiac magnetic resonance. Semin. Arthritis Rheum. 2013, 43, 314–324. [Google Scholar] [CrossRef]
- Pan, S.Y.; Tian, H.M.; Zhu, Y.; Gu, W.J.; Zou, H.; Wu, X.Q.; Cheng, R.J.; Yang, Z. Cardiac damage in autoimmune diseases: Target organ involvement that cannot be ignored. Front. Immunol. 2022, 13, 1056400. [Google Scholar] [CrossRef]
- Prasad, M.; Hermann, J.; Gabriel, S.E.; Weyand, C.M.; Mulvagh, S.; Mankad, R.; Oh, J.K.; Matteson, E.L.; Lerman, A. Cardiorheumatology: Cardiac involvement in systemic rheumatic disease. Nat. Rev. Cardiol. 2015, 12, 168–176. [Google Scholar] [CrossRef]
- Gawałko, M.; Balsam, P.; Lodziński, P.; Grabowski, M.; Krzowski, B.; Opolski, G.; Kosiuk, J. Cardiac Arrhythmias in Autoimmune Diseases. Circ. J. 2020, 84, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Comarmond, C.; Cacoub, P. Myocarditis in auto-immune or auto-inflammatory diseases. Autoimmun. Rev. 2017, 16, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Agard, C.; Rendu, E.; Leguern, V.; Ponge, T.; Masseau, A.; Barrier, J.; Trochu, J.; Hamidou, M.; Guillevin, L. Churg-Strauss syndrome revealed by granulomatous acute pericarditis: Two case reports and a review of the literature. Semin. Arthritis Rheum. 2007, 36, 386–391. [Google Scholar] [CrossRef]
- Masi, A.T.; Hunder, G.G.; Lie, J.T.; Michel, B.A.; Bloch, D.A.; Arend, W.P.; Calabrese, L.H.; Edworthy, S.M.; Fauci, A.S.; Leavitt, R.Y. The American College of Rheumatology 1990 criteria for the classification of Churg-Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum. 1990, 33, 1094–1100. [Google Scholar] [CrossRef]
- Hellmich, B.; Ehlers, S.; Csernok, E.; Gross, W.L. Update on the pathogenesis of Churg-Strauss syndrome. Clin. Exp. Rheumatol. 2003, 21, S69–S77. [Google Scholar]
- Zwerina, J.; Axmann, R.; Jatzwauk, M.; Sahinbegovic, E.; Polzer, K.; Schett, G. Pathogenesis of Churg-Strauss syndrome: Recent insights. Autoimmunity 2009, 42, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Mitsuyama, H.; Matsuyama, W.; Watanabe, M.; Shirahama, Y.; Higashimoto, I.; Wada, T.; Osame, M.; Arimura, K. Increased expression of TRAIL receptor 3 on eosinophils in Churg-Strauss syndrome. Arthritis Rheum. 2007, 56, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, W.; Yamamoto, M.; Higashimoto, I.; Oonakahara, K.; Watanabe, M.; Machida, K.; Yoshimura, T.; Eiraku, N.; Kawabata, M.; Osame, M.; et al. TNF-related apoptosis-inducing ligand is involved in neutropenia of systemic lupus erythematosus. Blood 2004, 104, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, S.; Holle, J.U.; Epplen, J.T. Recent progress in the genetics of Wegener’s granulomatosis and Churg-Strauss syndrome. Curr. Opin. Rheumatol. 2010, 22, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Guillevin, L.; Pagnoux, C.; Mouthon, L. Churg-strauss syndrome. Semin. Respir. Crit. Care Med. 2004, 25, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Sato, Y.; Matsumoto, T.; Naiki, N.; Horie, M. Churg-Strauss syndrome presenting with massive pericardial effusion. Heart Vessel. 2007, 22, 128–130. [Google Scholar] [CrossRef]
- Neumann, T.; Manger, B.; Schmid, M.; Kroegel, C.; Hansch, A.; Kaiser, W.A.; Reinhardt, D.; Wolf, G.; Hein, G.; Mall, G.; et al. Cardiac involvement in Churg-Strauss syndrome: Impact of endomyocarditis. Medicine 2009, 88, 236–243. [Google Scholar] [CrossRef]
- Wassmuth, R.; Göbel, U.; Natusch, A.; Schneider, W.; Kettritz, R.; Dietz, R.; Luft, F.C.; Schulz-Menger, J. Cardiovascular magnetic resonance imaging detects cardiac involvement in Churg-Strauss syndrome. J. Card. Fail. 2008, 14, 856–860. [Google Scholar] [CrossRef]
- Morgan, J.M.; Raposo, L.; Gibson, D.G. Cardiac involvement in Churg-Strauss syndrome shown by echocardiography. Br. Heart J. 1989, 62, 462–466. [Google Scholar] [CrossRef] [Green Version]
- Miszalski-Jamka, T.; Szczeklik, W.; Sokołowska, B.; Karwat, K.; Belzak, K.; Mazur, W.; Kereiakes, D.J.; Musiał, J. Standard and feature tracking magnetic resonance evidence of myocardial involvement in Churg-Strauss syndrome and granulomatosis with polyangiitis (Wegener’s) in patients with normal electrocardiograms and transthoracic echocardiography. Int. J. Cardiovasc. Imaging 2013, 29, 843–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dendramis, G.; Paleologo, C.; Piraino, D.; Arrotti, S.; Assennato, P. Coronary involvement in Churg-Strauss syndrome. Indian Heart J. 2015, 67, 586–588. [Google Scholar] [CrossRef] [PubMed]
- Szczeklik, W.; Sokolowska, B.; Mastalerz, L.; Miszalski-Jamka, T.; Musial, J. Heart involvement detected by magnetic resonance in a patient with Churg–Strauss syndrome, mimicking severe asthma exacerbation. Allergy 2010, 65, 1063–1064. [Google Scholar] [CrossRef] [PubMed]
- Doyen, D.; Buscot, M.; Eker, A.; Dellamonica, J. Endomyocardial fibrosis complicating primary hypereosinophilic syndrome. Intensiv. Care Med. 2018, 44, 2294–2295. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, K.; Balla, S.; Alpert, M.A. Non-infectious aortic and mitral valve vegetations in a patient with eosinophilic granulomatosis with polyangiitis. BMJ Case Rep. 2019, 12, e225947. [Google Scholar] [CrossRef]
- Jeong, H.C.; Kim, K.H.; Cho, J.Y.; Song, J.E.; Yoon, H.J.; Seon, H.J.; Ahn, Y.; Jeong, M.H.; Cho, J.G.; Park, J.C. Cardiac involvement of churg-strauss syndrome as a reversible cause of dilated cardiomyopathy. J. Cardiovasc. Ultrasound. 2015, 23, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Budanova, M.; Mitrofanova, L.; Kozlenok, A.; Ryzhkova, D.; Maslyanskiy, A.; Moiseeva, O. Ventricular tachycardia as the first manifestation of Churg-Strauss syndrome. J. Cardiol. Cases 2016, 15, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Tabb, E.S.; Duncan, L.M.; Nazarian, R.M. Eosinophilic granulomatosis with polyangiitis: Cutaneous clinical and histopathologic differential diagnosis. J. Cutan. Pathol. 2021, 48, 1379–1386. [Google Scholar] [CrossRef]
- Nakayama, T.; Murai, S.; Ohte, N. Dilated Cardiomyopathy with Eosinophilic Granulomatosis with Polyangiitis in Which Active Myocardial Inflammation Was Only Detected by Endomyocardial Biopsy. Intern. Med. 2018, 57, 2675–2679. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Zhang, W.; Zhao, W.; Qin, L.; Pei, F.; Zheng, Y. Loeffler endocarditis as a rare cause of heart failure with preserved ejection fraction: A case report and review of literature. Medicine 2018, 97, e0079. [Google Scholar] [CrossRef]
- Barmak, M.; Scatularo, C.E.; Giraldo, A.; Pellegrini, A. Miocarditis eosinofílica por enfermedad de Churg-Strauss: Reporte de un caso [Eosinophilic myocarditis in Churg-Strauss disease: Case report]. Arch. Cardiol. Mex. 2022, 92, 147–149. [Google Scholar] [PubMed]
- Wagner, A.D.; Meyer, G.P.; Rihl, M.; Rathmann, A.; Wittkop, U.; Zeidler, H.; Haller, H.; Lotz, J. Acute coronary syndrome associated with Churg-Strauss syndrome. Vasc. Health Risk Manag. 2007, 3, 775–779. [Google Scholar] [PubMed]
- Terasaki, F.; Hayashi, T.; Hirota, Y.; Okabe, M.; Suwa, M.; Deguchi, H.; Kitaura, Y.; Kawamura, K. Evolution to dilated cardiomyopathy from acute eosinophilic pancarditis in Churg-Strauss syndrome. Heart Vessel. 1997, 12, 43–48. [Google Scholar] [CrossRef]
- Polzer, K.; Karonitsch, T.; Neumann, T.; Eger, G.; Haberler, C.; Soleiman, A.; Hellmich, B.; Csernok, E.; Distler, J.; Manger, B.; et al. Eotaxin-3 is involved in Churg-Strauss syndrome: A serum marker closely correlating with disease activity. Rheumatology 2008, 47, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoppet, M.; Pankuweit, S.; Maisch, B. CD83+ dendritic cells in inflammatory infiltrates of Churg-Strauss myocarditis. Arch. Pathol. Lab. Med. 2003, 127, 98–101. [Google Scholar] [CrossRef]
- Chakraborty, R.K.; Aeddula, N.R. Churg Strauss Syndrome; StatPearls Publishing LLC: Tampa, FL, USA, 2022. [Google Scholar]
- Yılmaz, I.; Tutar, N.; Şimşek, Z.Ö.; Oymak, F.S.; Gülmez, I. Clinical and Serological Features of Eosinophilic and Vasculitic Phases of Eosinophilic Granulomatosis with Poliangiitis: A Case Series of 15 Patients. Turk. Thorac. J. 2017, 18, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Gross, W.L.; Schnabel, A.; Trabandt, A. New perspectives in pulmonary angiitis: From pulmonary angiitis and granulomatosis to ANCA associated vasculitis. Sarcoidosis Vasc. Diffus. Lung Dis. 2000, 17, 33–52. [Google Scholar]
- Vaglio, A.; Strehl, J.D.; Manger, B.; Maritati, F.; Alberici, F.; Beyer, C.; Rech, J.; Sinico, R.A.; Bonatti, F.; Battistelli, L.; et al. IgG4 immune response in Churg-Strauss syndrome. Ann. Rheum. Dis. 2012, 71, 390–393. [Google Scholar] [CrossRef]
- Hellmich, B.; Csernok, E.; Gross, W.L. Proinflammatory cytokines and autoimmunity in Churg-Strauss syndrome. Ann. N. Y. Acad. Sci. 2005, 1051, 121–131. [Google Scholar] [CrossRef]
- Dallos, T.; Heiland, G.R.; Strehl, J.; Karonitsch, T.; Gross, W.L.; Moosig, F.; Holl-Ulrich, C.; Distler, J.H.; Manger, B.; Schett, G.; et al. CCL17/thymus and activation-related chemokine in Churg-Strauss syndrome. Arthritis Rheum. 2010, 62, 3496–3503. [Google Scholar] [CrossRef]
- Seyahi, E.; Ugurlu, S.; Cumali, R.; Balci, H.; Seyahi, N.; Yurdakul, S.; Yazici, H. Atherosclerosis in Takayasu arteritis. Ann. Rheum. Dis. 2006, 65, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Tanaka, K.; Kamiya, C.; Iwanaga, N.; Yoshimatsu, J. Analysis of pregnancies in women with Takayasu arteritis: Complication of Takayasu arteritis involving obstetric or cardiovascular events. J. Obstet. Gynaecol. Res. 2014, 40, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- Setty, H.S.; Rao, M.; Srinivas, K.H.; Srinivas, B.C.; Usha, M.K.; Jayaranganath, M.; Patil, S.S.; Manjunath, C.N. Clinical, angiographic profile and percutaneous endovascular management of Takayasu’s arteritis—A single centre experience. Int. J. Cardiol. 2016, 220, 924–928. [Google Scholar] [CrossRef] [PubMed]
- Kerr, G.S.; Hallahan, C.W.; Giordano, J.; Leavitt, R.Y.; Fauci, A.S.; Rottem, M.; Hoffman, G.S. Takayasu arteritis. Ann. Intern. Med. 1994, 120, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.E.; Espinola-Zavaleta, N.; Ramirez-Quito, O.; Reyes, P.A. Echocardiographic follow-up of patients with Takayasu’s arteritis: Five-year survival. Echocardiography 2006, 23, 353–360. [Google Scholar] [CrossRef]
- Hata, A.; Noda, M.; Moriwaki, R.; Numano, F. Angiographic findings of Takayasu arteritis: New classification. Int. J. Cardiol. 1996, 54, 155–163. [Google Scholar] [CrossRef] [PubMed]
- EEndo, M.; Tomizawa, Y.; Nishida, H.; Aomi, S.; Nakazawa, M.; Tsurumi, Y.; Kawana, M.; Kasanuki, H. Angiographic findings and surgical treatments of coronary artery involvement in Takayasu arteritis. J. Thorac. Cardiovasc. Surg. 2003, 125, 570–577. [Google Scholar] [CrossRef] [Green Version]
- Lie, J.T. Illustrated histopathologic classification criteria for selected vasculitis syndromes. American College of Rheumatology Subcommittee on Classification of Vasculitis. Arthritis Rheum. 1990, 33, 1074–1087. [Google Scholar] [CrossRef]
- Talwar, K.K.; Krishnan, K.; Chopra, P.; Sharma, S.; Shrivastava, S.; Wasir, H.S.; Rajani, M.; Tandon, R. Cardiac involvement in nonspecific aortoarteritis (Takayasu’s arteritis). Am. Heart J. 1991, 122, 1670. [Google Scholar] [CrossRef]
- Inder, S.J.; Bobryshev, Y.V.; Cherian, S.M.; Wang, A.Y.; Lord, R.S.A.; Masuda, K.; Yutani, C. Immunophenotypic analysis of the aortic wall in Takayasu’s arteritis: Involvement of lymphocytes, dendritic cells and granulocytes in immuno-inflammatory reactions. Cardiovasc. Surg. 2000, 8, 148. [Google Scholar] [CrossRef]
- Hidaka, N.; Yamanaka, Y.; Fujita, Y.; Fukushima, K.; Wake, N. Clinical manifestations of pregnancy in patients with Takayasu arteritis: Experience from a single tertiary center. Arch. Gynecol. Obstet. 2012, 285, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Renauer, P.; Sawalha, A.H. The genetics of Takayasu arteritis. Presse Médicale 2017, 46, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Isohisa, I.; Numano, F.; Maezawa, H.; Sasazuki, T. HLA-Bw52 in Takayasu disease. Tissue Antigens 1978, 12, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Arita, Y.; Nakaoka, Y.; Otsuki, M.; Higuchi, K.; Hashimoto-Kataoka, T.; Yasui, T.; Masaki, T.; Ohtani, T.; Kishimoto, T.; Yamauchi-Takiharo, K.; et al. Cytokine storm after cessation of tocilizumab in a patient with refractory Takayasu arteritis. Int. J. Cardiol. 2015, 187, 319–321. [Google Scholar] [CrossRef]
- Mahr, A.; Guillevin, L.; Poissonnet, M.; Aymé, S. Prevalences of polyarteritis nodosa, microscopic polyangiitis, Wegener’s granulomatosis, and Churg-Strauss syndrome in a French urban multiethnic population in 2000: A capture-recapture estimate. Arthritis Rheum. 2004, 51, 92–99. [Google Scholar] [CrossRef]
- Chung, D.C.; Choi, J.E.; Song, Y.K.; Lim, A.L.; Park, K.H.; Choi, Y.J. Polyarteritis nodosa complicated by chronic total occlusion accompanying aneurysms on all coronary arteries. Korean Circ. J. 2012, 42, 568–570. [Google Scholar] [CrossRef] [Green Version]
- Chimenti, C.; Alfarano, M.; Toto, F.; Fanisio, F.; Verardo, R.; Galea, N.; Agati, L.; Frustaci, A. Myocarditis and intramural coronary vasculitis in polyarteritis nodosa: An unusual treatable form of heart failure. ESC Heart Fail. 2020, 7, 4357–4360. [Google Scholar] [CrossRef]
- Pagnoux, C.; Seror, R.; Henegar, C.; Mahr, A.; Cohen, P.; Le Guern, V.; Bienvenu, B.; Mouthon, L.; Guillevin, L.; French Vasculitis Study Group. Clinical features and outcomes in 348 patients with polyarteritis nodosa: A systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group Database. Arthritis Rheum. 2010, 62, 616–626. [Google Scholar] [CrossRef]
- Howard, T.; Ahmad, K.; Swanson, J.A.; Misra, S. Polyarteritis nodosa. Technol. Vasc. Interv. Radiol. 2014, 17, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Przybojewski, J.Z. Polyarteritis nodosa in the adult. Report of a case with repeated myocardial infarction and a review of cardiac involvement. S. Afr. Med. J. 1981, 60, 512–518. [Google Scholar]
- Harada, Y.; Suzuki, T.; Shinagawa, T.; Yoshimoto, T. Cardiac arrest in a patient with polyarteritis nodosa. Intern. Med. 2013, 52, 2759–2763. [Google Scholar] [CrossRef] [PubMed]
- Miklozek, C.L.; Crumpacker, C.S.; Royal, H.D.; Come, P.C.; Sullivan, J.L.; Abelman, W.H. Myocarditis presenting as acute myocardial infarction. Am. Heart J. 1987, 115, 768–776. [Google Scholar] [CrossRef]
- Rajani, R.M.; Dalvi, B.V.; D’Silva, S.A.; Lokhandwala, Y.Y.; Kale, P.A. Acute myocardial infarction with normal coronary arteries in a case of polyarteritis nodosa: Possible role of coronary artery spasm. Postgrad. Med. J. 1991, 67, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.; Von Spiczak, J.; Ruschitzka, F.; Distler, O.; Manka, R.; Alkadhi, H. Cardiac manifestation of polyarteritis nodosa. Eur. Heart J. 2018, 39, 2603. [Google Scholar] [CrossRef]
- Plastiras, S.C.; Moutsopoulos, H.M. Arrhythmias and Conduction Disturbances in Autoimmune Rheumatic Disorders. Arrhythm Electrophysiol. Rev. 2021, 10, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Schrader, M.L.; Hochman, J.S.; Bulkley, B.H. The heart in polyarteritis nodosa: A clinicopathologic study. Am. Heart J. 1985, 109, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Guillevin, L.; DU, L.T.H.; Godeau, P.; Jais, P.; Wechsler, B. Clinical findings and prognosis of polyarteritis nodosa and Churg-Strauss angiitis: A study in 165 patients. Br. J. Rheumatol. 1988, 27, 258–264. [Google Scholar] [CrossRef]
- Watanabe, Y.; Sakamoto, K.; Matsukage, S.; Ogimoto, A. Heart failure in a patient with polyarteritis nodosa. Eur. Heart J. 2020, 4, 1–2. [Google Scholar] [CrossRef]
- Landing, B.H.; Larson, E.J. Are infantile periarteritis nodosa with coronary artery involvement and fatal mucocutaneous lymph node syndrome the same? Comparison of 20 patients from North America with patients from Hawaii and Japan. Pediatrics 1977, 59, 651–662. [Google Scholar] [CrossRef]
- Holt, S.; Jackson, P. Ruptured coronary aneurysm and valvulitis in an infant with polyarteritis nodosa. J. Pathol. 1975, 117, 83–87. [Google Scholar] [CrossRef]
- Cid, M.C.; Grau, J.M.; Casademont, J.; Campo, E.; Coll-Vinent, B.; López-Soto, A.; Ingelmo, M.; Urbano-Márquez, A. Immunohistochemical characterization of inflammatory cells and immunologic activation markers in muscle and nerve biopsy specimens from patients with systemic polyarteritis nodosa. Arthritis Rheum. 1994, 37, 1055–1061. [Google Scholar] [CrossRef]
- Kikuchi, K.; Hoashi, T.; Kanazawa, S.; Tamaki, K. Angiogenic cytokines in serum and cutaneous lesions of patients with polyarteritis nodosa. J. Am. Acad. Dermatol. 2005, 53, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.; Marcolongo, R.; Jahns, R.; Fu, M.; Felix, S.B.; Iliceto, S. Immune-mediated and autoimmune myocarditis: Clinical presentation, diagnosis and management. Heart Fail Rev. 2013, 18, 715–732. [Google Scholar] [CrossRef] [PubMed]
- Takeishi, M.; Mimori, A.; Adachi, D.; Suzuki, T. [A case of adult polyarteritis nodosa associated with fulminant group A streptococcal infection]. Ryumachi 2002, 42, 682–686. [Google Scholar] [PubMed]
- Kalayciyan, A.; Zouboulis, C. An update on Behçet’s disease. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 1–10. [Google Scholar] [CrossRef]
- Ebert, E.C. Gastrointestinal manifestations of Behçet’s disease. Dig. Dis. Sci. 2009, 54, 201–207. [Google Scholar] [CrossRef]
- Nair, J.R.; Moots, R.J. Behcet’s disease. Clin. Med. 2017, 17, 71–77. [Google Scholar] [CrossRef]
- Nguyen, A.; Upadhyay, S.; Javaid, M.A.; Qureshi, A.M.; Haseeb, S.; Javed, N.; Cormier, C.; Farooq, A.; Sheikh, A.B. Behcet’s Disease: An In-Depth Review about Pathogenesis, Gastrointestinal Manifestations, and Management. Inflamm. Intestig. Dis. 2021, 6, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Yazici, H.; Ugurlu, S.; Seyahi, E. Behçet syndrome: Is it one condition? Clin. Rev. Allergy Immunol. 2012, 43, 275–280. [Google Scholar] [CrossRef]
- Bettiol, A.; Prisco, D.; Emmi, G. Behçet: The syndrome. Rheumatology 2020, 1, 59. [Google Scholar] [CrossRef]
- Krause, I.; Yankevich, A.; Fraser, A.; Rosner, I.; Mader, R.; Zisman, D.; Boulman, N.; Rozenbaum, M.; Weinberger, A. Prevalence and clinical aspects of Behcet’s disease in the north of Israel. Clin. Rheumatol. 2007, 26, 555–560. [Google Scholar] [CrossRef]
- Davatchi, F.; Shahram, F.; Chams-Davatchi, C.; Shams, H.; Nadji, A.; Akhlaghi, M.; Faezi, T.; Ghodsi, Z.; Larimi, R.; Ashofteh, F.; et al. Behcet’s disease in Iran: Analysis of 6500 cases. Int. J. Rheum. Dis. 2010, 13, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.h.C.; Kötter, I.; Djawari, D.; Krause, L.; Pleyer, U.; Stadler, R.; Kirch, W.; Wollina, U.; Kohl, P.K.; Keitel, W.; et al. Current epidemiological data from the German Registry of Adamantiades-Behçet’s disease. Adv. Exp. Med. Biol. 2003, 528, 43–48. [Google Scholar] [PubMed]
- International Team for the Revision of the International Criteria for Behçet’s Disease (ITR-ICBD). The International Criteria for Behçet’s Disease (ICBD): A collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 338–347. [Google Scholar] [CrossRef]
- Mattioli, I.; Bettiol, A.; Saruhan-Direskeneli, G.; Direskeneli, H.; Emmi, G. Pathogenesis of Behçet’s Syndrome: Genetic, Environmental and Immunological Factors. Front. Med. 2021, 8, 713052. [Google Scholar] [CrossRef]
- Gul, A.; Ohno, S. HLA-B*51 and Behçet Disease. Ocul. Immunol. Inflamm. 2012, 20, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Yang, Z.; Du, L.; Jiang, Z.; Shu, Q.; Chen, Y.; Li, F.; Zhou, Q.; Ohno, S.; Chen, R.; et al. Identification of a susceptibility locus in STAT4 for Behçet’s disease in Han Chinese in a genome-wide association study. Arthritis Rheum. 2012, 64, 4104–4113. [Google Scholar] [CrossRef] [PubMed]
- Farouk, H.; Zayed, H.S.; El-Chilali, K. Cardiac findings in patients with Behçet’s disease: Facts and controversies. Anato. J. Cardiol. 2016, 16, 529–533. [Google Scholar] [CrossRef]
- Poppas, A.; Coady, M. Echocardiographic findings and cardiac surgical implications of aortitis and valvulitis in Behçet’s disease. J. Am. Soc. Echocardiogr. 2009, 22, 1275–1278. [Google Scholar] [CrossRef]
- Ehrlich, G.E. Vasculitis in Behcet’s disease. Int. Rev. Immunol. 1997, 14, 81–88. [Google Scholar] [CrossRef]
- Charteris, D.G.; Champ, C.; Rosenthal, A.R.; Lightman, S.L. Behçet’s disease: Activated T lymphocytes in retinal perivasculitis. Br. J. Ophthalmol. 1992, 76, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Borhani Haghighi, A.; Sharifzad, H.R.; Matin, S.; Rezaee, S. The pathological presentations of neuro-Behçet disease: A case report and review of the literature. Neurologist 2007, 13, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Koşar, A.; Oztürk, M.; Haznedaroğlu, I.C.; Karaaslan, Y. Hemostatic parameters in Behçet’s disease: A reappraisal. Rheumatol. Int. 2002, 22, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Barçin, C.; Iyisoy, A.; Kurşaklioğlu, H.; Demirtaş, E. A giant left main coronary artery aneurysm in a patient with Behçet’s Disease. Anadolu Kardiyol. Derg. 2004, 4, 193. [Google Scholar]
- Oğuzhan, A.; Gül, A.; Aşik, R.; Inanç, T.; Ozdoğru, I.; Topsakal, R.; Eryol, N.K. Multiple vascular aneurysms in Behcet’s disease. Anadolu Kardiyol. Derg. 2005, 5, 154. [Google Scholar]
- Lee, S.; Lee, C.Y.; Yoo, K.J. Acute myocardial infarction due to an unruptured sinus of Valsalva aneurysm in a patient with Behçet’s syndrome. Yonsei Med. J. 2007, 48, 883–885. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hori, H.; Fukunaga, S.; Tayama, E.; Aoyagi, S. Aortic root replacement in Behçet disease. Asian Cardiovasc. Thorac. Ann. 2007, 15, 521–523. [Google Scholar] [CrossRef]
- Bletry, O.; Mohattane, A.; Wechsler, B.; Beaufils, P.; Valère, P.; Petit, J.; Gourgon, R.; Grosgogeat, Y.; Godeau, P. Atteinte cardiaque de la maladie de Behçet. Douze observations [Cardiac involvement in Behçet’sdisease. 12 cases]. Presse Med. 1988, 17, 2388–2391. [Google Scholar]
- Desbois, A.C.; Wechsler, B.; Cluzel, P.; Helft, G.; Boutin, D.; Piette, J.C.; Cacoub, P.; Saadoun, D. Atteintes cardiovasculaires de la maladie de Behçet [Cardiovascular involvement in Behçet’s disease]. Rev. Med. Interne 2014, 35, 103–111. [Google Scholar] [CrossRef]
- Kwon, C.M.; Lee, S.H.; Kim, J.H.; Lee, K.H.; Kim, H.D.; Hong, Y.H.; Lee, C.K. A case of Behçet’s disease with pericarditis, thrombotic thrombocytopenic purpura, deep vein thrombosis and coronary artery pseudo aneurysm. Korean J. Intern. Med. 2006, 21, 50–56. [Google Scholar] [CrossRef]
- Okcun, B.; Baran, T.; Babalik, E.; Kücükoglu, S. Multichamber masses and constrictive pericarditis in Behçet’s disease. Clin. Exp. Rheumatol. 2003, 21, 55. [Google Scholar]
- Aouba, A.; Nebie, L.; Fabiani, J.N.; Bruneval, P.; Patri, B.; De Bandt, M. Tricuspid aseptic endocarditis revealing right endomyocardial fibrosis during an unrecognized Behçet’s disease. A case report. Presse Med. 2004, 33, 1367–1369. [Google Scholar] [CrossRef]
- Soulami, S.; Nour-Eddine, M.; Azzouzi, L.; Bennis, A.; Chraibi, N. Fibrose endomyocardique du coeurdroit au cours de la maladie de Behçet [Endomyocardial fibrosis of the right heart in Behçet disease]. Arch. Mal. Coeur. Vaiss. 1996, 89, 917–921. [Google Scholar] [PubMed]
- Belmadani, K.; Dahreddine, A.; Benyass, A.; Hda, A.; Boukili, M.A.; Ohayon, V.; Archane, M.I.; Pavie, A.; Gandjbakhch, I. Fibrose endomyocardique au cours de la maladie de Behçet: Un cas à forme pseudo-tumorale [Endomyocardial fibrosis in Behcet’s disease: A case report of a pseudo-tumoral form]. Arch. Mal. Coeur. Vaiss. 2001, 94, 282–286. [Google Scholar] [PubMed]
- Sezen, Y.; Buyukhatipoglu, H.; Kucukdurmaz, Z.; Geyik, R. Cardiovascular involvement in Behçet’sdisease. Clin. Rheumatol. 2010, 29, 7–12. [Google Scholar] [CrossRef]
- Geri, G.; Wechsler, B.; Thi Huong, D.L.; Isnard, R.; Piette, J.C.; Amoura, Z.; Resche-Rigon, M.; Cacoub, P.; Saadoun, D. Spectrum of cardiac lesions in Behçet disease: A series of 52 patients and review of the literature. Medicine 2012, 91, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Darie, C.; Knezinsky, M.; Demolombe-Rague, S.; Pinède, L.; Périnetti, M.; Ninet, J.F.; Ninet, J. Pseudotumeurcardiaque révélant une maladie de Behçet [Cardiac pseudotumor revealing Behçet’s disease]. Rev. Med. Interne. 2005, 26, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Fekih, M.; Fennira, S.; Ghodbane, L.; Zaouali, R.M. Le thrombus intra-cardiaque: Une complication rare au cours de la maladie de Behcet [Intracardiac thrombosis: Unusual complication of Behcet’s disease]. Tunis Med. 2004, 82, 785–790. [Google Scholar]
- Wechsler, B.; Du, L.T.; Kieffer, E. Manifestations cardio-vasculaires de la maladie de Behçet [Cardiovascular manifestations of Behçet’s disease]. Ann. Med. Interne. 1999, 150, 542–554. [Google Scholar]
- Kaatz, M.; Görnig, M.; Bocker, T.; Zouboulis, C.C.; Wollina, U. Spätmanifestation eines Morbus Adamantiades-Behçet mit kardialer Beteiligung und letalem Ausgang [Late manifestation of a fatal Behçet’s disease with cardiac involvement and lethal outcome]. Dtsch Med. Wochenschr. 1998, 123, 217–222. [Google Scholar] [CrossRef]
- Dogan, S.M.; Birdane, A.; Korkmaz, C.; Ata, N.; Timuralp, B. Right ventricular thrombus with Behçet’ssyndrome: Successful treatment with warfarin and immunosuppressive agents. Tex. Heart Inst. J. 2007, 34, 360–362. [Google Scholar]
- Demirelli, S.; Degirmenci, H.; Bilen, H.; Ermis, E.; Duman, H.; Arisoy, A.; Bakirci, E.M.; Ipek, E.; Askin, L. Left ventricular mechanics in Behcet’s disease: A speckle tracking echocardiographic study. Bosn. J. Basic Med. Sci. 2014, 14, 160–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmi, G.; Bettiol, A.; Silvestri, E.; Di Scala, G.; Becatti, M.; Fiorillo, C.; Prisco, D. Vascular Behçet’s syndrome: An update. Intern. Emerg. Med. 2019, 14, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Yazici, C.; Köse, K.; Caliş, M.; DemIr, M.; Kirnap, M.; Ateş, F. Increased advanced oxidation protein products in Behçet’s disease: A new activity marker? Br. J. Dermatol. 2004, 151, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Kaya, T.İ. Genetics of Behçet’s Disease. Patholog. Res. Int. 2012, 2012, 912589. [Google Scholar] [CrossRef] [PubMed]
- Davatchi, F. Behcet’s disease. Int. J. Rheum. Dis. 2014, 17, 355–357. [Google Scholar] [CrossRef]
- Cheng, L.; Li, L.; Liu, C.; Yan, S.; Chen, H.; Li, H.; Zhang, F.; Chen, H.; Li, Y. Variation of red blood cell parameters in Behcet’s disease: Association with disease severity and vascular involvement. Clin. Rheumatol. 2021, 40, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Vignesh, P.; Burgner, D. The epidemiology of Kawasaki disease: A global update. Arch. Dis. Child. 2015, 100, 1084–1088. [Google Scholar] [CrossRef]
- Agarwal, S.; Agrawal, D.K. Kawasaki disease: Etiopathogenesis and novel treatment strategies. Expert. Rev. Clin. Immunol. 2017, 13, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Rife, E.; Gedalia, A. Kawasaki Disease: An Update. Curr. Rheumatol. Rep. 2020, 22, 75. [Google Scholar] [CrossRef] [PubMed]
- Alphonse, M.P.; Duong, T.T.; Shumitzu, C.; Hoang, T.L.; McCrindle, B.W.; Franco, A.; Schurmans, S.; Philpott, D.J.; Hibberd, M.L.; Burns, J.; et al. Inositol-Triphosphate 3-Kinase C Mediates Inflammasome Activation and Treatment Response in Kawasaki Disease. J. Immunol. 2016, 197, 3481–3489. [Google Scholar] [CrossRef] [Green Version]
- Swanson, K.V.; Deng, M.; Ting, J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.; Geha, R.S.; Newburger, J.W.; Burns, J.C.; Fiers, W.; Lapierre, L.A.; Pober, J.S. Two monokines, interleukin 1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome. J. Exp. Med. 1986, 164, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, M.E.; Hicar, M.D. B Cells and Antibodies in Kawasaki Disease. Int. J. Mol. Sci. 2019, 20, 1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, A.; Touma, R.; Song, Y.; Shimizu, C.; Tremoulet, A.H.; Kanegaye, J.T.; Burns, J.C. Specificity of regulatory T cells that modulate vascular inflammation. Autoimmunity 2014, 47, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Onouchi, Y.; Ozaki, K.; Buns, J.C.; Shimizu, C.; Hamada, H.; Honda, T.; Terai, M.; Honda, A.; Takeuchi, T.; Shibuta, S.; et al. Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum. Mol. Genet. 2010, 19, 2898–2906. [Google Scholar] [CrossRef] [Green Version]
- Doi, M.; Takeda, T.; Sakurai, Y.; Kato, J.; Hayashi, T.; Fukuda, K.; Takase, T.; Shima, M. Altered immunoglobulin A and M levels associated with changes in BAFF and APRIL after administration of intravenous immunoglobulin to treat Kawasaki disease. J. Investig. Allergol. Clin. Immunol. 2010, 20, 413–418. [Google Scholar]
- Newburger, J.W.; Takahashi, M.; Gerber, M.A.; Gewitz, M.H.; Tani, L.Y.; Burns, J.C.; Shulman, S.T.; Bolger, A.F.; Ferrieri, P.; Baltimore, R.S.; et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 2004, 110, 2747–2771. [Google Scholar] [CrossRef] [Green Version]
- Yanagawa, H.; Nakamura, Y.; Yashiro, M.; Ojima, T.; Tanihara, S.; Oki, I.; Zhang, T. Results of the nationwide epidemiologic survey of Kawasaki disease in 1995 and 1996 in Japan. Pediatrics 1998, 102, E65. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Yanagawa, H.; Harada, K.; Kato, H.; Kawasaki, T. Mortality among persons with a history of Kawasaki disease in Japan: The fifth look. Arch. Pediatr. Adolesc. Med. 2002, 156, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, H.; Hamashima, Y. Pathology of the heart in Kawasaki disease. Pediatrics 1978, 61, 100–107. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Nakamura, Y.; Sutani, T.; Tsuchihashi, M.; Yamano, S.; Hashimoto, T.; Dohi, K.; Hiasa, Y.; Kawai, S.; Okada, R. Immunohistochemical study of the endomyocardial biopsy of systemic lupus erythematosus. J. Cardiol. 1995, 25, 181–188. [Google Scholar] [PubMed]
- Burns, J.C.; Glode, M.P.; Clarke, S.H.; Wiggins, J.J.r.; Hathaway, W.E. Coagulopathy and platelet activation in Kawasaki syndrome: Identification of patients at high risk for development of coronary artery aneurysms. J. Pediatr. 1984, 105, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.C.; Shike, H.; Gordon, J.B.; Malhotra, A.; Schoenwetter, M.; Kawasaki, T. Sequelae of Kawasaki disease in adolescents and young adults. J. Am. Coll. Cardiol. 1996, 28, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amano, S.; Hazama, F.; Hamashima, Y. Pathology of Kawasaki disease: I. pathology and morphogenesis of the vascular changes. Jpn. Circ. J. 1979, 43, 633–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajasekaran, K.; Duraiyarasan, S.; Adefuye, M.; Manjunatha, N.; Ganduri, V. Kawasaki Disease and Coronary Artery Involvement: A Narrative Review. Cureus 2022, 14, 28358. [Google Scholar] [CrossRef]
- Qian, B.; Huang, H.; Cheng, M.; Qin, T.; Chen, T.; Zhao, J. Mechanism of HMGB1-RAGE in Kawasaki disease with coronary artery injury. Eur. J. Med. Res. 2020, 25, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.L.; Lo, H.H.; Lei, C.; Ip, N.; Chen, J.; Law, B.Y. Current pharmacological intervention and development of targeting IVIG resistance in Kawasaki disease. Curr. Opin. Pharmacol. 2020, 54, 72–81. [Google Scholar] [CrossRef]
- Holman, R.C.; Christensen, K.Y.; Belay, E.D.; Steiner, C.A.; Effler, P.V.; Miyamura, J.; Forbes, S.; Schonberger, L.B.; Melish, M.R. Ethnic differences in the incidence of Kawasaki syndrome among children in Hawaii. Hawaii Med. J. 2010, 69, 194–197. [Google Scholar]
- Onouchi, Y.; Gunji, T.; Burns, J.C.; Shimizu, C.; Newburger, J.W.; Yashiro, M.; Nakamura, Y.; Yanagawa, H.; Wakui, K.; Fukushima, Y.; et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat. Genet. 2008, 40, 35–42. [Google Scholar] [CrossRef] [Green Version]
- D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R. Systemic lupus erythematosus. Lancet 2007, 369, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Tsokos, G.C. Systemic lupus erythematosus. N. Engl. J. Med. 2011, 365, 2110–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, N.R.; Bernstein, L.E. Cardiac manifestations of systemic lupus erythematosus. Curr. Rheumatol. Rep. 2018, 20, 76. [Google Scholar]
- Kuhn, A.; Landmann, A.; Feghali-Bostwick, C. Autoantibodies to heat shock proteins in autoimmune diseases. Curr. Opin. Rheumatol. 2018, 30, 67–75. [Google Scholar]
- López, P.; Rodríguez-Carrio, J.; Martínez-Zapico, A.; Pérez-Álvarez, Á.I.; Suárez-Díaz, S.; Mozo, L.; Benavente, L.; Caminal-Montero, L.; Suárez, A. Low-density granulocytes and monocytes as biomarkers of cardiovascular risk in systemic lupus erythematosus. Rheumatology 2020, 59, 1752–1764. [Google Scholar] [CrossRef]
- Lee-Kirsch, M.A.; Gong, M.; Schulz, H.; Rüschendorf, F.; Stein, A.; Pfeiffer, C.; Ballarini, A.; Gahr, M.; Hubner, N.; Linné, M. Familial lupus and associated antiphospholipid syndrome. J. Autoimmun. 2009, 33, 239–244. [Google Scholar]
- Jacobson, D.L.; Gange, S.J.; Rose, N.R.; Graham, N.M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 1997, 84, 223–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 2014, 423, 356–361. [Google Scholar] [CrossRef]
- Giles, J.T.; Szklo, M. Cardiovascular disease in rheumatoid arthritis, current perspectives on assessing and mitigating risk in clinical practice. Best Pract. Res. Clin. Rheumatol. 2012, 26, 485–506. [Google Scholar] [CrossRef]
- Moritz, F.; Wagner, U.; Distler, O.; Seidel, W.; Gay, S.; Häntzschel, H. Kardiovaskuläre Manifestationen bei Rheumatoider Arthritis [Cardiovascular manifestations in rheumatoid arthritis]. Z Rheumatol. 2005, 64, 222–228. [Google Scholar] [CrossRef]
- Giles, J.T.; Fert-Bober, J.; Park, J.K.; Bingham, C.O., 3rd; Andrade, F.; Fox-Talbot, K.; Pappas, D.; Rosen, A.; van Eyk, J.; Bathon, J.M.; et al. Myocardial citrullination in rheumatoid arthritis, a correlative histopathologic study. Arthritis Res. Ther. 2012, 14, R39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Helm-van Mil, A.; Huizinga, H.; de Vries, R.R.T.W. Genetics of rheumatoid arthritis, what have we learned? Immunogenetics 2005, 57, 403–414. [Google Scholar]
- Mammen, A.L. Dermatomyositis and polymyositis, Clinical presentation.; autoantibodies.; and pathogenesis. Ann. N. Y. Acad. Sci. 2018, 1184, 31–44. [Google Scholar]
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef]
- Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers 2015, 1, 15002. [Google Scholar]
- Shah, A.A.; Wigley, F.M. My approach to the treatment of scleroderma. Mayo Clin. Proc. 2013, 88, 377–393, PMCID:PMC3666163. [Google Scholar] [CrossRef] [PubMed]
- Desai, C.; Lee, S.; Shah, S.J. Systemic sclerosis and the heart, current diagnosis and management. Curr. Opin. Rheumatol. 2017, 29, 545–554. [Google Scholar]
- Mueller, K.A.; Mueller, I.I.; Eppler, D.; Zuern, C.S.; Seizer, P.; Kramer, U.; Koetter, I.; Roecken, M.; Kandolf, R.; Gawaz, M.; et al. Clinical and histopathological features of patients with systemic sclerosis undergoing endomyocardial biopsy. PLoS ONE 2015, 10, e0126707. [Google Scholar] [CrossRef]
- Allanore, Y.; Wipff, J.; Kahan, A.; Boileau, C. Genetic basis for systemic sclerosis. Jt. Bone Spine 2007, 74, 577–583. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Brito-Zerón, P.; Seror, R.; Bootsma, H. Sjögren syndrome. Nat. Rev. Dis. Primers 2014, 2, 14047. [Google Scholar]
- Mavragani, C.P.; Crow, M.K. Activation of the type I interferon pathway in primary Sjogren Syndrome. J. Autoimmun. 2014, 51, 43–50. [Google Scholar]
- Fox, R.I. Sjögren Syndrome. Lancet 2005, 366, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Brito-Zerón, P.; Acar-Denizli, N.; Zeher, M.; Rasmussen, A.; Seror, R.; Theander, E.; Li, X.; Baldini, C.; Gottenberg, J.E.; Danda, D.; et al. Influence of geolocation and ethnicity on the phenotypic expression of primary Sjögren’s syndrome at diagnosis in 8310 patients, a cross-sectional study from the Big Data Sjögren Project Consortium. Ann. Rheum. Dis. 2017, 76, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Daniels, T.E. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren Syndrome, a consensus and data-driven methodology involving three international patient cohorts. Ann. Rheum. Dis. 2016, 69, 35–45. [Google Scholar]
- Dalakas, M.C. Inflammatory muscle diseases. N. Engl. J. Med. 2015, 372, 1734–1747. [Google Scholar] [CrossRef] [Green Version]
- Selva-O’Callaghan, A.; Pinal-Fernandez, I. Diagnosis and classification of idiopathic inflammatory myopathies. J. Autoimmun. 2018, 95, 39–51. [Google Scholar]
- Lundberg, I.E.; Miller, F.W. T cells in myositis. Arthritis Res. Ther. 2016, 18, 244. [Google Scholar]
- Ghazi, P.; Feldman, B.M. Cardiac manifestations of juvenile dermatomyositis and polymyositis, a systematic review. Rheumatol. Int. 2018, 1387–1393. [Google Scholar]
- Ralph, A.P.; Noonan, S.; Wade, V.; Currie, B.J. The 2020 Australian guideline for prevention, diagnosis and management of acute rheumatic fever and rheumatic heart disease. Med. J. Aust. 2021, 214, 220–227. [Google Scholar] [CrossRef]
- Lahiri, S.; Sanyahumbi, A. Acute Rheumatic Fever. Pediatr. Rev. 2021, 42, 221–232. [Google Scholar] [CrossRef]
- Arvind, B.; Ramakrishnan, S. Rheumatic Fever and Rheumatic Heart Disease in Children. Indian J. Pediatr. 2020, 87, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Holloway, A.R. Acute Rheumatic Fever. Pediatr. Ann. 2022, 51, e457–e460. [Google Scholar] [CrossRef] [PubMed]
- Veasy, L.G.; Tani, L.Y.; Hill, H.R. Persistence of acute rheumatic fever in the intermountain area of the United States. J. Pediatr. 1994, 124, 9–16. [Google Scholar] [CrossRef]
- Arora, R.; Subramanyam, G.; Khalilullah, M.; Gupta, M.P. Clinical profile of rheumatic fever and rheumatic heart disease: A study of 2,500 cases. Indian Heart J. 1998, 33, 264–269. [Google Scholar]
- Klatt, E.C.; Kumar, V. Le Basi Patologiche Delle Malattie; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Iannuzzi, M.C.; Rybicki, B.A.; Teirstein, A.S. Sarcoidosis. N. Engl. J. Med. 2007, 357, 2153–2165. [Google Scholar] [CrossRef]
- James, D.G. A century of sarcoidosis. J. Clin. Med. 2019, 311–315. [Google Scholar]
- Birnie, D.H.; Nery, P.B.; Ha, A.C. Cardiac sarcoidosis. J. Am. Coll. Cardiol. 2016, 68, 411–421. [Google Scholar] [CrossRef]
- Kato, S.; Sakai, Y.; Okabe, A.; Kawashima, Y.; Kuwahara, K.; Shiogama, K.; Abe, M.; Ito, H.; Morimoto, S. Histology of Cardiac Sarcoidosis with Novel Considerations Arranged upon a Pathologic Basis. J. Clin. Med. 2022, 11, 251. [Google Scholar] [CrossRef]
- Jukka, L.; Valtteri, U.; Pauli, P.; Mikko, I.M.; Markku, K. Cardiac sarcoidosis: Phenotypes, diagnosis, treatment, and prognosis. Eur. Heart J. 2023, 44, 1495–1510. [Google Scholar]
- Valeyre, D.; Prasse, A.; Nunes, H.; Uzunhan, Y. Sarcoidosis. Lancet 2014, 383, 1155–1167. [Google Scholar] [CrossRef]
- Baughman, R.P.; Lower, E.E. Diagnostic tools in sarcoidosis. Semin. Respir. Crit. Care Med. 2016, 80–385. [Google Scholar]
- Kaushik, S.; Aydin, S.I.; Derespina, K.R. Multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2 infection, a multi-institutional study from New York City. J. Pediatr. 2020, 224, 24–29. [Google Scholar] [CrossRef]
- Simon Junior, H.; Sakano, T.M.S.; Rodrigues, R.M.; Eisencraft, A.P.; Carvalho, V.E.L.; Schvartsman, C. Multisystem inflammatory syndrome associated with COVID-19 from the pediatric emergency physician’s point of view. J. Pediatr. 2021, 97, 140–159. [Google Scholar] [CrossRef] [PubMed]
- Algarni, A.S.; Alamri, N.M.; Khayat, N.Z.; Alabdali, R.A.; Alsubhi, R.S.; Alghamdi, S.H. Clinical practice guidelines in multisystem inflammatory syndrome (MIS-C) related to COVID-19, a critical review and recommendations. World J. Pediatr. 2022, 18, 83–90. [Google Scholar] [CrossRef] [PubMed]
- CDC COVID-19 Response Team. Coronavirus disease 2019 in children—United States, February 12–April 2 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Sperotto, F.; Friedman, K.G.; Son, M.B.F.; VanderPluym, C.J.; Newburger, J.W.; Dionne, A. Cardiac manifestations in SARS-CoV-2 associated multisystem inflammatory syndrome in children, acomprehensive review and proposed clinical approach. Eur. J. Pediatr. 2021, 180, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Bunyavanich, S.; Do, A.; Vicencio, A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA 2020, 323, 2427–2429. [Google Scholar] [CrossRef]
- Rawat, M.; Chandrasekharan, P.; Hicar, M.D.; Lakshminrusimha, S. COVID-19 in newborns and infants-low risk of severe disease, Silver lining or dark cloud? Am. J. Perinatol. 2020, 37, 845–849. [Google Scholar] [CrossRef]
- Fujimaru, T.; Ito, S.; Masuda, H.; Oana, S.; Kamei, K.; Ishiguro, A.; Kato, H.; Abe, J. Decreased levels of inflammatory cytokines in immunoglobulin-resistant Kawasaki disease after plasma exchange. Cytokine 2014, 70, 156–160. [Google Scholar] [CrossRef]
- Nakra, N.A.; Blumberg, D.A.; Herrera-Guerra, A.; Lakshminrusimha, S. Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection, Review of Clinical Presentation, Hypothetical Pathogenesis, and Proposed Management. Children 2020, 7, 69. [Google Scholar] [CrossRef]
- Licciardi, F.; Pruccoli, G.; Denina, M.; Parodi, E. SARS-CoV-2–induced Kawasaki-like hyperinflammatory syndrome, a novel COVID phenotype in children. Pediatrics 2020, 146, e20201711. [Google Scholar] [CrossRef]
- Deza Leon, M.P.; Redzepi, A.; McGrath, M. COVID-19–associated pediatric multisystem inflammatory syndrome. J. Pediatr. Infect. 2020, 69, 1074–1080. [Google Scholar] [CrossRef]
- World Health Organization. Multisystem inflammatory syndrome in children and adolescents with COVID-19. Sci. Brief 2020. [Google Scholar]
- Toubiana, J.; Poirault, C.; Corsia, A. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France, prospective observational study. Br. Med. J. 2020, 369, m2094. [Google Scholar] [CrossRef] [PubMed]
- Belhadjer, Z.; Méot, M.; Bajolle, F.; Khraiche, D.; Legendre, A.; Abakka, S.; Auriau, J.; Grimaud, M.; Oualha, M.; Beghetti, M.; et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation 2020, 142, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Grimaud, M.; Starck, J.; Levy, M. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann. Intensive Care. 2020, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Cheung, E.W.; Zachariah, P.; Gorelik, M.; Boneparth, A.; Kernie, S.G.; Orange, J.S.; Milner, J.D. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York city. JAMA J. Am. Med. Assoc. 2020, 324, 8–10. [Google Scholar] [CrossRef]
- Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020, 395, 1607–1608. [Google Scholar] [CrossRef]
- Jenson, H.B.; Gauntt, C.J.; Easley, K.A.; Pitt, J.; Lipshultz, S.E.; McIntosh, K.; Shearer, W.T. Pediatric Pulmonary and Cardiovascular Complication of HIV-1 Infection Study Group. Evaluation of coxsackievirus infection in children with human immunodeficiency virus type 1-associated cardiomyopathy. J. Infect. Dis. 2002, 185, 1798–1802. [Google Scholar] [CrossRef]
- Dolhnikoff, M.; Ferreira Ferranti, J.; de Almeida Monteiro, R.A.; Duarte-Neto, A.N.; Soares Gomes-Gouvêa, M.; Viu Degaspare, N.; Figueiredo Delgado, A.; Montanari Fiorita, C.; Nunes Leal, G.; Rodrigues, R.M.; et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc. Health 2020, 4, 790–794. [Google Scholar] [CrossRef]
- Sacco, K.; Castagnoli, R.; Vakkilainen, S.; Liu, C.; Delmonte, O.M.; Oguz, C.; Kaplan, I.M.; Alehashemi, S.; Burbelo, P.D.; Bhuyan, F.; et al. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat. Med. 2022, 28, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Gruber, C.N.; Patel, R.S.; Trachtman, R.; Lepow, L.; Amanat, F.; Krammer, F.; Wilson, K.M.; Onel, K.; Geanon, D.; Tuballes, K.; et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell 2020, 183, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Platt, C.D.; Habiballah, S.; Nguyen, A.A.; Elkins, M.; Weeks, S.; Peters, Z.; Day-Lewis, M.; Novak, T.; Armant, M.; et al. Mechanisms underlying genetic susceptibility to multisystem inflammatory syndrome in children (MIS-C). J. Allergy Clin. Immunol. 2021, 148, 732–738.e1, PMCID:PMC8252701. [Google Scholar] [CrossRef] [PubMed]
- Archard, L.C.; Richardson, P.J.; Olsen, E.G.; Dubowitz, V.; Sewry, C.; Bowles, N.E. The role of Coxsackie B viruses in the pathogenesis of myocarditis, dilated cardiomyopathy and inflammatory muscle disease. Biochem. Soc. Symp. 1987, 53, 51–62. [Google Scholar]
- Spotnitz, M.D.; Lesch, M. Idiopathic dilated cardiomyopathy as a late complication of healed viral (Coxsackie B virus) myocarditis, historical analysis.; review of the literature.; and a postulated unifying hypothesis. Prog. Cardiovasc. Dis. 2006, 49, 42–57. [Google Scholar] [CrossRef]
- Henke, A.; Jarasch, N.; Martin, U.; Zell, R.; Wutzler, P. Characterization of the protective capability of a recombinant coxsackievirus B3 variant expressing interferon-gamma. Viral. Immunol. 2008, 21, 38–48. [Google Scholar] [CrossRef]
- Selinka, H.C.; Wolde, A.; Sauter, M.; Kandolf, R.; Klingel, K. Virus-receptor interactions of coxsackie B viruses and their putative influence on cardiotropism. Med. Microbiol. Immunol. 2004, 193, 127–131. [Google Scholar] [CrossRef]
- Tam, P.E.; Messner, R.P. Genetic determinants of susceptibility to coxsackievirus B1-induced chronic inflammatory myopathy, effects of host background and major histocompatibility complex genes. J. Lab. Clin. Med. 1996, 128, 279–289. [Google Scholar] [CrossRef]
- Kramer, B.; Huber, M.; Kern, C.; Klingel, K.; Kandolf, R.; Selinka, H.C. Chinese hamster ovary cells are non-permissive towards infection with coxsackievirus B3 despite functional virus-receptor interactions. Virus Res. 1997, 48, 149–156. [Google Scholar] [CrossRef]
- Beggs, A.H. Dystrophinopathy, the expanding phenotype. Dystrophin abnormalities in X-linked dilated cardiomyopathy. Circulation 1997, 95, 2344–2347. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, J.; Dastvan, F.; Yanagawa, B.; Reidy, M.A.; Zhang, H.M. Ubiquitin-dependent proteolysis of cyclin D1 is associated with coxsackievirus-induced cell growth arrest. J. Virol. 2003, 77, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammock, C.E.; Halnon, N.J.; Skoczylas, J.; Blanchard, J.; Bohm, R.; Miller, C.J.; Lai, C.; Krogstad, P.A. Myocarditis, disseminated infection, and early viral persistence following experimental coxsackievirus B infection of cynomolgus monkeys. PLoS ONE 2013, 8, e74569. [Google Scholar] [CrossRef]
- Gaaloul, I.; Riabi, S.; Harrath, R.; Hunter, T.; Hamda, K.B.; Ghzala, A.B.; Huber, S.; Aouni, M. Coxsackievirus B detection in cases of miocarditis, myopericarditis, pericarditis and dilated cardiomyopathy in hospitalized patients. Mol. Med. Rep. 2014, 10, 2811–2818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, J.R.; Chumley, W.; Pittman, T.; Given, C.; Nuovo, G. Persistent Coxsackie B encephalitis, Report of a case and review of the literature. J. Neurovirol. 2006, 12, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Badrinath, A.; Bhatta, S.; Kloc, A. Persistent viral infections and their role in heart disease. Front. Microbiol. 2022, 13, 1030440. [Google Scholar] [CrossRef] [PubMed]
- Thorley-Lawson, D.A. EBV Persistence—Introducing the Virus. In Epstein Barr Virus Volume 1; Current Topics in Microbiology and Immunology; Springer: Cham, Switzerland, 2015; Volume 390, pp. 151–209. [Google Scholar] [CrossRef] [Green Version]
- Naughton, P.; Healy, M.; Enright, F.; Lucey, B. Infectious Mononucleosis, diagnosis and clinical interpretation. Br. J. Biomed. Sci. 2021, 78, 107–116. [Google Scholar] [CrossRef]
- Damania, B.; Kenney, S.C.; Raab-Traub, N. Epstein-Barr virus, Biology and clinical disease. Cell 2022, 185, 3652–3670. [Google Scholar] [CrossRef]
- Murray, P.G.; Young, L.S. An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood 2019, 134, 591–596. [Google Scholar] [CrossRef]
- Mijailovic, Z.; Canovic, P.; Gajovic, O.; Tomasevic, S. Myopericarditis during acute Epstein-Barr virus infection: A case report. Med. Pregl. 2006, 59, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, H.; Alam, M.; Ozbilgin, O.F. A rare case of Epstein-Barr virus-induced dilated cardiomyopathy. Heart Lung. 2011, 40, 81–87. [Google Scholar] [CrossRef]
- Weintraub, R.G.; Semsarian, C.; Macdonald, P. Dilated cardiomyopathy. Lancet 2017, 390, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Abelmann, W.H.; Lorell, B.H. The challenge of cardiomyopathy. J. Am. Coll. Cardiol. 1989, 13, 1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roubille, F.; Gahide, G.; Moore-Morris, T.; Granier, M.; Davy, J.M.; Vernhet, H.; Piot, C. Epstein Barr virus (EBV) and acute myopericarditis in an immunocompetent patient, first demonstrated case and discussion. Intern. Med. 2008, 47, 627–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chimenti, C.; Sale, P.; Verardo, R.; Cicalini, S.; Petrosillo, N.; Russo, M.A.; Fedele, F.; Frustaci, A. High prevalence of intramural coronary infection in patients with drug-resistant cardiac syndrome X, comparison with chronic stable angina and normal controls. Heart 2010, 96, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, C.; Verardo, R.; Grande, C.; Francone, M.; Frustaci, A. Infarct-like myocarditis with coronary vasculitis and aneurysm formation caused by Epstein-Barr virus infection. ESC Heart Fail. 2020, 7, 938–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangye, S.G. Genetic susceptibility to EBV infection, insights from inborn errors of immunity. Hum. Genet. 2020, 139, 885–901. [Google Scholar] [CrossRef] [PubMed]
- Whitley, R.J.; Roizman, B. Herpes simplex virus infections. Lancet 2001, 357, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Garland, S.M.; Steben, M. Genital herpes. Best Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 1098–1110. [Google Scholar] [CrossRef] [PubMed]
- Bowles, N.E.; Ni, J.; Kearney, D.L.; Pauschinger, M.; Schultheiss, H.-P.; McCarthy, R.; Hare, J.; Bricker, J.; Bowles, K.R.; Towbin, A.J. Detectionof viruses in myocardial tissues by polymerase chain reaction, evidence of adenovirus as a common cause of myocarditis in children and adults. J. Am. Coll. Cardiol. 2003, 42, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Kuhl, U.; Pauschinger, M.; Noutsias, M.; Seeberg, B.; Bock, T.; Lassner, D.; Poller, W.; Kandolf, R.; Schultheiss, H.-P. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 2005, 111, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Fatahzadeh, M.; Schwartz, R.A. Human herpes simplex virus infections, epidemiology, pathogenesis, symptomatology, diagnosis and management. J. Am. Acad. Dermatol. 2007, 57, 737–763. [Google Scholar] [CrossRef] [PubMed]
- Widener, R.W.; Whitley, R.J. Herpes simplex virus. Handb. Clin. Neurol. 2014, 123, 251–263. [Google Scholar]
- Yamamoto, T.; Kenzaka, T.; Matsumoto, M.; Nishio, R.; Kawasaki, S.; Akita, H. A case report of myocarditis combined with hepatitis caused by herpes simplex virus. BMC Cardiovasc. Disord. 2018, 18, 134. [Google Scholar] [CrossRef] [Green Version]
- Colombo, D.; Albore, M.; Del Nonno, F.; Bolino, G.; D’Ambrosio, M.; Salvi, A.; Cecannecchia, C.; Falasca, L. Fatal fulminant HSV-2 myocarditis, A complicated presentation. Int. J. Infect. Dis. 2022, 114, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Altin, J.G.; Sloan, E.K. The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biol. 1997, 75, 430–445. [Google Scholar] [CrossRef] [PubMed]
- Moraru, M.; Cisneros, E.; Gómez-Lozano, N.; de Pablo, R.; Portero, F.; Cañizares, M.; Vaquero, M.; Roustán, G.; Millán, I.; López-Botet, M.; et al. Host genetic factors in susceptibility to herpes simplex type 1 virus infection, contribution of polymorphic genes at the interface of innate and adaptive immunity. J. Immunol. 2012, 188, 4412–4420. [Google Scholar] [CrossRef] [Green Version]
- Ochani, R.; Asad, A.; Yasmin, F.; Shaikh, S.; Khalid, H.; Batra, S.; Sohail, M.R.; Mahmood, S.F.; Ochani, R.; Hussham Arshad, M.; et al. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez. Med. 2021, 29, 20–36. [Google Scholar]
- Mohamadian, M.; Chiti, H.; Shoghli, A.; Biglari, S.; Parsamanesh, N.; Esmaeilzadeh, A. COVID-19: Virology, biology and novel laboratory diagnosis. J. Gene Med. 2021, 23, e3303. [Google Scholar] [CrossRef]
- Patone, M.; Mei, X.W.; Handunnetthi, L.; Dixon, S.; Zaccardi, F.; Shankar-Hari, M.; Watkinson, P.; Khunti, K.; Harnden, A.; Coupland, C.A.C.; et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat. Med. 2022, 28, 410–422. [Google Scholar] [CrossRef]
- Castiello, T.; Georgiopoulos, G.; Finocchiaro, G.; Claudia, M.; Gianatti, A.; Delialis, D.; Aimo, A.; Prasad, S. COVID-19 and myocarditis: A systematic review and overview of current challenges. Heart Fail Rev. 2022, 27, 251–261. [Google Scholar] [CrossRef]
- Del Prete, A.; Conway, F.; Della Rocca, D.G.; Biondi-Zoccai, G.; De Felice, F.; Musto, C.; Picichè, M.; Martuscelli, E.; Natale, A.; Versaci, F. COVID-19, Acute Myocardial Injury, and Infarction. Card. Electrophysiol. Clin. 2022, 14, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Maiese, A.; Frati, P.; Del Duca, F.; Santoro, P.; Manetti, A.C.; La Russa, R.; Di Paolo, M.; Turillazzi, E.; Fineschi, V. Myocardial Pathology in COVID-19-Associated Cardiac Injury: A Systematic Review. Diagnostics 2021, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Almamlouk, R.; Kashour, T.; Obeidat, S.; Bois, M.C.; Maleszewski, J.J.; Omrani, O.A.; Tleyjeh, R.; Berbari, E.; Chakhachiro, Z.; Zein-Sabatto, B.; et al. COVID-19-Associated cardiac pathology at the postmortem evaluation: A collaborative systematic review. Clin. Microbiol. Infect. 2022, 28, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Mezache, L.; Nuovo, G.J.; Suster, D.; Tili, E.; Awad, H.; Radwański, P.B.; Veeraraghavan, R. Histologic, viral, and molecular correlates of heart disease in fatal COVID-19. Ann. Diagn. Pathol. 2022, 60, 151983. [Google Scholar] [CrossRef] [PubMed]
- Cappadona, C.; Rimoldi, V.; Paraboschi, E.M.; Asselta, R. Genetic susceptibility to severe COVID-19. Infect. Genet. Evol. 2023, 110, 105426. [Google Scholar] [CrossRef]
- Arvin, A.M. Varicella-zoster virus. Clin. Microbiol. Rev. 1996, 9, 361–381. [Google Scholar] [CrossRef]
- Levin, M.J.; Weinberg, A.; Schmid, D.S. Herpes Simplex Virus and Varicella-Zoster Virus. Microbiol. Spectr. 2016, 4, 3. [Google Scholar] [CrossRef]
- McCrary, M.L.; Severson, J.; Tyring, S.K. Varicella zoster virus. J. Am. Acad. Dermatol. 1999, 41, 1–14. [Google Scholar] [CrossRef]
- Gershon, A.A. Varicella-zoster virus infections. Pediatr. Rev. 2008, 5–10. [Google Scholar] [CrossRef]
- Zerboni, L.; Sen, N.; Oliver, S.L.; Arvin, A.M. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 2014, 12, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Singhal, R.; Jin, P.; Nassereddin, A.T.; Lopez, J.E.; Keeley, E.C. Varicella Zoster Virus-Induced Complete Heart Block. Am. J. Med. 2023, 136, e63–e64. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guan, Y.; Hou, L.; Huang, H.; Liu, H.; Li, C.; Zhu, Y.; Tao, X.; Wang, Q. The short-and long-term risk of stroke after herpes zoster, a meta-analysis. PLoS ONE 2016, 11, e0165203. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Li, H.X.; Yi, X.H.; Han, G.L.; Zong, Q.; Wang, M.X.; Peng, X.X. Risk of stroke in patients with herpes zoster, a systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2017, 26, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Uthman, I.; Taher, A.; Khalil, I. Hughes syndrome associated with varicella infection. Rheumatol. Int. 2001, 20, 167–168. [Google Scholar] [CrossRef]
- Erskine, N.; Tran, H.; Levin, L.; Ulbricht, C.; Fingeroth, J.; Kiefe, C.; Goldberg, R.J.; Singh, S. A systematic review and meta-analysis on herpes zoster and therisk of cardiac and cerebrovascular events. PLoS ONE 2017, 12, e0181565. [Google Scholar] [CrossRef] [Green Version]
- Cersosimo, A.; Riccardi, M.; Amore, L.; Cimino, G.; Arabia, G.; Metra, M.; Vizzardi, E. Varicella zoster virus and cardiovascular diseases. Monaldi. Arch. Chest Dis. 2022, 21, 93. [Google Scholar] [CrossRef]
- Nagel, M.A.; Traktinskiy, I.; Azarkh, Y.; DeMasters, B.K.; Hedley-Whyte, T.; Russman, A.; VanEgmond, E.M.; Stenmark, K.; Frid, M.; Mahalingam, R.; et al. Varicella zoster virus vasculopathy, analysis of virus-infected arteries. Neurology 2011, 77, 364–370. [Google Scholar] [CrossRef]
- Devinsky, O.; Cho, E.S.; Petito, C.K.; Price, R.W. Herpes zoster myelitis. Brain 1991, 114, 1181–1196. [Google Scholar] [CrossRef]
- Haug, A.; Mahalingam, R.; Cohrs, R.J.; Schmid, D.S.; Corboy, J.R.; Gilden, D. Recurrent polymorphonuclear pleocytosis with increased red blood cells caused by varicella zoster virus infection of the central nervous system, Case report and review of the literature. J. Neurol. Sci. 2010, 292, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Ferry, G.; Lonchampt, M.; Pennel, L.; de Nanteuil, G.; Canet, E.; Tucker, G.C. Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Lett. 1997, 402, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Nakanishi, I. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (‘gelatinase’) by human neutrophil elastase and cathepsin G. FEBS Lett. 1989, 249, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, P.G.E.; Mogensen, T.H.; Cohrs, R.J. Recent Issues in Varicella-Zoster Virus Latency. Viruses 2021, 13, 2018. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.L.; Zhou, M.; Arvin, A.M. Varicella-zoster virus, molecular controls of cell fusion-dependent pathogenesis. Biochem. Soc. Trans. 2020, 48, 2415–2435. [Google Scholar] [CrossRef] [PubMed]
- Donoiu, I.; Istrătoaie, O. Varicella-zoster myocarditis mimicking acute myocardial infarction. Curr. Health Sci. J. 2014, 40, 78–80. [Google Scholar] [PubMed]
- Turner, B.G.; Summers, M.F. Structural biology of HIV. J. Mol. Biol. 1999, 285, 1–32. [Google Scholar] [CrossRef]
- Eberle, J.; Gürtler, L. HIV types, groups, subtypes and recombinant forms: Errors in replication, selection pressure and quasispecies. Intervirology 2012, 55, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Obermeier, M.; Symons, J.; Wensing, A.M. HIV population genotypic tropism testing and its clinical significance. Curr. Opin. HIV Aids. 2012, 7, 470–477. [Google Scholar] [CrossRef]
- Melikyan, G.B. HIV entry, a game of hide-and-fuse? Curr. Opin. Virol. 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kandathil, A.J.; Ramalingam, S.; Kannangai, R.; David, S.; Sridharan, G. Molecular epidemiology of HIV. Indian J. Med. Res. 2005, 121, 333–344. [Google Scholar]
- Fanales-Belasio, E.; Raimondo, M.; Suligoi, B.; Buttò, S. HIV virology and pathogenetic mechanisms of infection: A brief overview. Ann. Ist. Super. Sanita 2010, 46, 5–14. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, Q.; Xiong, Y. HIV suppression by host restriction factors and viral immune evasion. Curr. Opin. Struct. Biol. 2015, 31, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, G.; Di Lorenzo, G.; Grisorio, B.; Barbarini, G. Incidence of dilated cardiomyopathy and detection of HIV in myocardial cells of HIV positive patients. N. Engl. J. Med. 1998, 339, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Lipshultz, S.E. Dilated cardiomyopathy in HIV-infected patients [Editorial]. N. Engl. J. Med. 1998, 339, 1153–1155. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, G.; Di Lorenzo, G.; Soldini, M.; Giancaspro, G.; Grisorio, B.; Pellicelli, A.; Barbarini, G. The intensity of myocardial expression of inducible nitric oxide synthase influences the clinical course of human immunodeficiency virus-associated cardiomyopathy. Circulation 1999, 100, 633–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbaro, G.; Di Lorenzo, G.; Soldini, M.; Giancaspro, G.; Grisorio, B.; Pellicelli, A.M.; D’Amati, G.; Barbarini, G.; GISCA. Clinical course of cardiomyopathy in HIV-infected patients with or without encephalopathy related to the myocardial expression of TNF-α and iNOS. AIDS 2000, 14, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Currie, P.F.; Goldman, J.H.; Caforio, A.L.P.; Jacob, A.J.; Baig, M.K.; Brettle, R.P.; Haven, A.J.; ABoon, N.; McKenna, W.J. Cardiac autoimmunity in HIV related heart muscle disease. Heart 1998, 79, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Beschorner, W.E.; Baughman, K.; Turnicky, R.P.; Hutchins, G.M.; Rowe, S.A.; Kavanaugh-McHugh, A.L.; Suresch, D.L.; Herskowitz, A. HIV-associat.ed myocarditis. Pathology and immunopathology. Am. J. Pathol. 1990, 137, 1365–1371. [Google Scholar]
- Moonim, M.T.; Alarcon, L.; Freeman, J.; Mahadeva, U.; van der Walt, J.D.; Lucas, S.B. Identifying HIV infection in diagnostic histopathology tissue samples--the role of HIV-1 p24 immunohistochemistry in identifying clinically unsuspected HIV infection: A 3-year analysis. Histopathology 2010, 56, 530–541. [Google Scholar] [CrossRef]
- Telenti, A.; Johnson, W.E. Host genes important to HIV replication and evolution. Cold Spring Harb. Perspect Med. 2012, 2, a007203. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.K.; Spector, S.A. Host genetic determinants of human immunodeficiency virus infection and disease progression in children. Pediatr. Res. 2009, 65 Pt 2, 55R–63R. [Google Scholar] [CrossRef] [Green Version]
- Paganelli, C.R.; Goco, N.J.; McClure, E.M.; Banke, K.K.; Blau, D.M.; Breiman, R.F.; Menéndez, C.; Rakislova, N.; Bassat, Q. The evolution of minimally invasive tissue sampling in postmortem examination: A narrative review. Glob. Health Action. 2020, 13, 1792682. [Google Scholar] [CrossRef]
- Makarov, I.; Svetlakov, A.V.; Sotin, A.; Shigeev, S.V.; Gusarov, A.A.; Smirenin, S.A.; Emelin, V.V.; Stragis, V.B.; Fetisov, V.A. The efficiency of the application of the modern computed technologies in the clinical practice and the prospects for the further use of the biomechanical 3D-models in forensic medicine. Sud. Med. Ekspert. 2018, 61, 58–64. [Google Scholar] [CrossRef]
- Fang, Y.T.; Lan, Q.; Xie, T.; Liu, Y.F.; Mei, S.Y.; Zhu, B.F. New Opportunities and Challenges for Forensic Medicine in the Era of Artificial Intelligence Technology. Fa Yi Xue Za Zhi 2020, 36, 77–85. [Google Scholar] [PubMed]
- Sukswai, N.; Khoury, J.D. Immunohistochemistry Innovations for Diagnosis and Tissue-Based Biomarker Detection. Curr. Hematol. Malig. Rep. 2019, 14, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.C.C.; Nerurkar, S.N.; Cai, H.Y.; Ng, H.H.M.; Wu, D.; Wee, Y.T.F.; Lim, J.C.T.; Yeong, J.; Lim, T.K.H. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 2020, 40, 135–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niewold, T.B.; Goulielmos, G.N.; Tikly, M.; Assassi, S. Autoimmune disease genetics. Clin. Dev. Immunol. 2012, 2012, 262858. [Google Scholar] [CrossRef]
- Padyukov, L. Genetics of rheumatoid arthritis. Semin. Immunopathol. 2022, 44, 47–62. [Google Scholar] [CrossRef]
- Miyao, M.; Kawai, C.; Kotani, H.; Minami, H.; Abiru, H.; Hamayasu, H.; Yamamoto, A.; Tamaki, K. Fatal Dieulafoy lesion with IgG4-related disease: An autopsy case report. Leg. Med. 2022, 57, 102059. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, V.; Modena, M.; Aimo, A.; Chiti, E.; Botto, N.; Vittorini, S.; Guidi, B.; Vergaro, G.; Barison, A.; Rossi, A.; et al. Molecular Autopsy of Sudden Cardiac Death in the Genomics Era. Diagnostics 2021, 11, 1378. [Google Scholar] [CrossRef]
- Visi, G.; Spina, F.; Del Duca, F.; Manetti, A.C.; Maiese, A.; La Russa, R.; Frati, P.; Fineschi, V. Autoptic Findings in Cases of Sudden Death Due to Kawasaki Disease. Diagnostics 2023, 13, 1831. [Google Scholar] [CrossRef]
- Scheimberg, I. The genetic autopsy. Curr. Opin. Pediatr. 2013, 25, 659–665. [Google Scholar] [CrossRef]
- Stefanski, A.L.; Tomiak, C.; Pleyer, U.; Dietrich, T.; Burmester, G.R.; Dörner, T. The Diagnosis and Treatment of Sjögren’s Syndrome. Dtsch. Arztebl. Int. 2017, 114, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Sible, I.J.; Bangen, K.J.; Blanken, A.E.; Ho, J.K.; Nation, D.A. Antemortem Visit-To-Visit Blood Pressure Variability Predicts Cerebrovascular Lesion Burden in Autopsy-Confirmed Alzheimer’s Disease. J. Alzheimers Dis. 2021, 83, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Chiti, E.; Paolo, M.D.; Turillazzi, E.; Rocchi, A. MicroRNAs in Hypertrophic, Arrhythmogenic and Dilated Cardiomyopathy. Diagnostics 2021, 11, 1720. [Google Scholar] [CrossRef] [PubMed]
- Maiese, A.; Scatena, A.; Costantino, A.; Di Paolo, M.; La Russa, R.; Turillazzi, E.; Frati, P.; Fineschi, V. MicroRNAs as Useful Tools to Estimate Time Since Death. A Systematic Review of Current Literature. Diagnostics 2021, 11, 64. [Google Scholar] [CrossRef]
- Manetti, A.C.; Maiese, A.; Paolo, M.D.; De Matteis, A.; La Russa, R.; Turillazzi, E.; Frati, P.; Fineschi, V. MicroRNAs and Sepsis-Induced Cardiac Dysfunction: A Systematic Review. Int. J. Mol. Sci. 2020, 22, 321. [Google Scholar] [CrossRef]
- Maiese, A.; Scatena, A.; Costantino, A.; Chiti, E.; Occhipinti, C.; La Russa, R.; Di Paolo, M.; Turillazzi, E.; Frati, P.; Fineschi, V. Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 9354. [Google Scholar] [CrossRef] [PubMed]
Connective Tissue Diseases | Vasculitis | Granulomatous Disease | Autoinflammatory Disease | Post-Infective |
---|---|---|---|---|
| Small vessels |
|
| Bacterial |
| Rheumatoid fever. | |||
Medium-sized vessels | Viral | |||
| SARS-CoV-2. | |||
Large vessels | ||||
|
Clinical Findings | Comment |
---|---|
Asthma | History of wheezing or diffuse high-pitched expiratory rhonchi |
Eosinophilia | Eosinophilia > 10% on differential white blood cell count |
Mono or polyneuropathy | Development of mononeuropathy, multiple mononeuropathy, or polyneuropathy attributable to systemic vasculitis |
Paranasal sinus abnormality | History of acute or chronic paranasal sinus pain or tenderness or radiographic opacification of paranasal sinuses |
Extravascular eosinophils | Extravascular areas |
Cardiac Clinical Findings | |
---|---|
Pathological forms |
|
Symptoms/Signs |
|
Evidence on Imaging |
|
Cardiac Clinical Findings | |
---|---|
Pathological forms |
|
System | Clinical Features | Signs/Symptoms |
---|---|---|
Constitutional |
| |
Renal |
|
|
Skin |
| |
Gastrointestinal tract |
|
|
Ocular |
|
|
Nervous system |
|
|
Structure | Clinical features | Frequency |
---|---|---|
Coronary artery |
| 30% |
Myocardium |
| 3% |
Conduction system |
| <1% |
Sign/Symptom | Points |
---|---|
Ocular lesions | 2 |
Genital aphthosis | 2 |
Skin lesions | 2 |
Neurological manifestations | 1 |
Vascular manifestations | 1 |
Positive pathergy test 1 | 1 |
Structure | Clinical Manifestations |
---|---|
Coronary vessels |
|
Endocardium |
|
Myocardium |
|
Pericardium |
|
Criteria | Clinical Features |
---|---|
Oral and lip lesions | Erythema and cracking of lips “Strawberry tongue” |
Conjunctivitis | Bilateral bulbar non exudative conjunctival injection |
Polymorphous rash | Maculopapular diffuse erythroderma or erythema multiforme-like. Actue pase: erythema and edema of the hands and feet. |
Extremity changes | Subacute pase: periungual desquamation. |
Lymphadenopathy | Acute, non-suppurative, cervical lymphadenopathy, tipically unilateral. |
Stage | Histological Features |
---|---|
Stage 1 Degeneration of endothelial cells | Hyperplastic and proliferative endothelial cells. Degeneration and desquamation endothelial cells. Fibrin mass including platelets and inflammatory cells form a minute parietal along the degenerated and desquamated endotheliial cells. |
Stage 2 Edemea and degeneration of the media | Inflammatory infiltration in the edematous, thickened intima. Vacuolization of the muscle cells. Edema of the media. |
Stage 3 Necrotizing panarteritis | All layers of the arterial wall extensively destroyed with numerous inflammatory infiltrations. Desquamation, degeneration and necrosis of the endothelial and muscle cells. Proliferation and swelling of collagen fibers. |
Stage 4 Granulation formation | Granulation tissue in the intima and Media. Fibrinoid material along the luminal surface or in the subendothelial space. |
Stage 5 Scar formation | Fibrous connective tissue in place of the intima and media. Proliferation of collagen and elastic fibers in the adventitia or perivascular area. Lumen stenotic or occluded. |
Stage 6 Aneurysm formation | Dilatation of the lumen and thinning of the vascular wall (aneurysm formation). The lumen of aneurysm often completely occluded by a trhombus Undistinguishable three laminar structures of the arterial wall. |
Low Risk Population | Moderate/High Risk Population | |
---|---|---|
Definition | Annual incidence of ARF < 2 per 1,000,000 school aged children or all age prevalence of RHD < 1 per 1000 | Those not fulfilling criteria for low risk |
Major manifestations | ||
| Polyarthritis | Polyarthritis and/or polyarthralgia Monoarthritis |
| Clinical and/or subclinical | Clinical and/or subclinical |
Chorea | Chorea | |
Erythema marginatum | Erythema marginatum | |
Subcutaneous nodules | Subcutaneous nodules | |
Minor manifestations | ||
| PR prolongation (age adjusted) | PR prolongation (age adjusted) |
| Polyarthralgia | Monoarthralgia |
| >38.5 °C | >38 °C |
| ESR > 60 mm in first hour and/or CRP > 3.0 mg/dL | ESR > 30 mm in first hour and/or CRP > 30 mg/dL |
Supporting evidence of antecedent GAS infection:
Recurrence: 2 major or 1 major plus 2 minor or 2 minors (in the presence of supporting evidence) |
Structure | Clinical Features | Frequency |
---|---|---|
Myocardium |
| 35–67% |
Coronary vessels |
| 6–24% |
Conduction system |
| 7–60% |
Vasculitis | |||||
---|---|---|---|---|---|
Cardiopathy | Autoptic Findings | Histology | Immunohistochemistry | Genetic | Blood Markers |
Churg-Strauss syndrome | Endocardium
| Eosinophilic infiltration, Necrotizing small vessel vasculitis, Perivascular neutrophilic infiltrates, Lymphocytes infiltration, Endomyocardial fibrosis | P-ANCA+/− CD3 + CD68 + CD83 + ECP Eosinophil protein-X Eotaxin-3 | HLA-DRB4 DNAM1s | ANCA+ ANCA− IL-2 - IL-4 - IL-5 - IL-13 - IL-14 - INF-a - INF-g - CK - Troponin I - Eotaxin 1 - Eotaxin 2 - Eotaxin 3 - CCL17/TARC - IgE - IgG - |
Takayasu arteritis | Endocardium
| Lymphoplasmacytic infiltration, Myocitolisis, Myocardial hypertrophy. | CD3 + S-100 + CD15 + | HLA-B*52 IL-12B FCGR2A/3A FCγR2A/3 IL12B IL6 RPS9/LILRB3 Intergenic locus on chromosome 21q22 | AACEA+ 86% AACEA− 9% IL-6 - IL-8 - IL-18 - Petraxin 3 - Serum amyloid A - HLA E - |
Polyarteritis nodosa | Myocardium
| Localized necrotizing arteritis, Mixed inflammatory infiltrate. | TLR-4, CD3 + CD4 + CD22 + | MEFV DADA2 | p-ANCA – ASO+ |
Benhcet’s disease | Endocardium
| Neutrophils infiltration, Leucocytoclastic formations. | MPO + CD3+ CD138+ | Unspecific HLA involvement. | AECA anti CTDP-1 ANA-, ANCA- Anti MPO antibodies |
Kawasaki disease | Myocardium
| Neutrophilic infiltration (first phase), Lymphocytic, eosinophil infiltration (second phase), Myofibroblast infiltration (third phase). | IVIG FCGR1a FCGR3A CCR2 S100A9 S100A12 adrenomedullin FCGR2A S100A9 S100A12 | ITPKC, CASP3, CD40, ORAI, ABCC4 | CD4 CD8 PCR ESR ALT AST Albumin Na+ K+ HDL-cholesterol |
Connective Tissue | |||||
Cardiopathy | Autoptic Findings | Histology | Immunohistochemistry | Genetic | Blood markers |
Systemic eritematous lupus | Endocardium
| Mononuclear cells infiltration in perivascular and interstitial tissues. | MHR nLHR High-density lipoproteins E-selectin | CD24v | ANTI-p AB, AECA Antibodies against paraoxonase 1; Anti-cardiolipin antibodies |
Rheumatoid artrithis | Myocardium
| Cardiac hypertrophy activated monocytes infiltration, macrophages infiltration, and T lymphocytes infiltration, myocardial and endothelial apoptosis, interstitial fibrosis and fibrotic bands. | TNFRI, anti-CCP, Citrullination, PAD1 in cytoplasmatic granules, PAD 2 in leukocytes, PAD 3 and PAD 4 in cardiomyocites | HLA-DRB1 01 HLA-DRB1 04 PTPN22 DRB1 ACPA | TNF-, - TNFRII messenger RNA - CD4 lymphocites - CD28 lymphocites - Anti-CD4 Ab - Anti-CD28 Ab IL-12 - |
Acute rheumatic fever (Rheumatic heart disease) | Endocardium
| Lymphocytic infiltration, Aschoff’s nodules, histiocytic aggregates, myocyte degeneration, interstitial degeneration, interstitial mononuclear cell infiltration. | HLA and IGH regions but still unclear | -Anti-streptococcum A antibodies | |
Sistemic sclerosis | Myocardium
| Activated T-Lymphocytes infiltration, macrophage infiltration, fibrosis (8–32%). | CD3+ CD68+ HLA II + SM-actin + | IRF4 IRF55 TNFAIP3 TNFSF4 PTPN22, BANK1, IL-21 gene | ANA + (95%) IL-6 - IL-12 - IL-23 - TNF-a - |
Sjogren syndrome | Endocardium
| Leukocytoclastic infiltration, macrophage infiltration, fibroblasts. | CD45 + anti-SSA/Ro Siglec-1 in macrophage in cardiac septal region | HLA-DR3 Id3 deficiency | anti-Ro/SSA - anti-La/SSB - C3, C4 - anti-phospholipid antibody -, triglycerides -, HDL -, (IL)-1β -, IL-6 - IL-2 - INF-g |
Polimiositis and Dermatomiositis | Endocardium
| Active myocarditis, focal myocardial fibrosis, vasculitis, intimal proliferation, medial sclerosis of vessels, lymphocytic infiltration, Conduction system fibrosis, myocardial fibrosis | CD59+ anti-Ro | MHC polymorfism, DNA methylation, Histone modification | Anti-Rho, CK-MB - anti-Mi2 - anti-MDA5 - anti-NXP2 - anti-TIF1 - anti-SAE - CTnT ITnT |
Granulomatous Inflammations | |||||
Cardiopathy | Autoptic Findings | Histology | Immunohistochemistry | Genetic | Blood markers |
Sarcoidosis | Myocardium
| Lymphocytes infiltration, fibrosis. | CD4+, CD8+ CD15+ CD20+ CD68 IL6− S100− Ki67− | HLA-DRB1*0301 | RF - ANA - |
Post-viral | |||||
Cardiopathy | Autoptic Findings | Histology | Immunohistochemistry | Genetic | Blood markers |
MIS-C post-COVID-19 | Myocardium
| Activated T-lymphocytes infiltration in myocardium, mononuclear infiltration fibrin microvascular thrombi, non-specific myocardial edema. | IL-1 +, IL-6 +, IL 17-1 +, CXCL-10. | SOCS1 haploinsufficiency, XIAP, CYBB | IgG against HKU1 Leucocytes -, Neutrophils -, PCR -, |
Post-COVID-19 cardiopathy | Myocardium
| Activated T-lymphocytes infiltration in myocardium, mononuclear infiltration, fibrin microvascular thrombi, non-specific myocardial edema, Necrosis. | IL 6+, CAM +, | Unknown | CK-MB -, CK -, Myoglobin -, Troponin -, NT-proBNP - |
Coxsackie virus B-3 myocarditis | Myocardium
| Lymphocytes (Th2, Th17) infiltration. | Unknown | Unknown | Unknown |
Epstein Barr cardiomyopathy | Endocardium
| Lymphocytic infiltrate. | IL-1 +, IL-6 +, IL-17 +. | unknown | EBV Vca IgM > 20 EBV Vca IgG > 20 EBV EA IgG > 10 Myocardial necrosis markers (Troponins) |
Herpes simplex cardiomyopathy | Myocardium
| Lymphocytic infiltrate. | IL-1 +, IL-6 +, CD3 +, CD 68 +. | KIR NKG2C CD16A CD32A | HSV-1, HSV-2 IgM+ - HSV-1, HSV-2 IgG+ - HHV6-HHV7 AB ----- |
Varicella zoster virus (VZV) | Myocardium
| Lymphocytic, macrophagic infiltrate in myocardium and conduction tissue. | IL-1+ IL-6+ IL-17+ | HLA-S, HCG4P5, ABHD16A | VZV IgM+ - VZV IgG+ - |
HIV related cardiomiopathy | Myocardium
| Macrophagic and neutrophilic infiltrate, low lymphocytic levels. | IL-1+ IL-6+ IL-8+ IL-12+ CD-4− | HLA-B57, HLA-B58, HLA-B27, HLA-Bw4 HLA-A11 CCR5-32 | P24 antigen - HIV1-HIV2 -IgM - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezzetti, E.; Costantino, A.; Leoni, M.; Pieretti, R.; Di Paolo, M.; Frati, P.; Maiese, A.; Fineschi, V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. Medicina 2023, 59, 1364. https://doi.org/10.3390/medicina59081364
Mezzetti E, Costantino A, Leoni M, Pieretti R, Di Paolo M, Frati P, Maiese A, Fineschi V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. Medicina. 2023; 59(8):1364. https://doi.org/10.3390/medicina59081364
Chicago/Turabian StyleMezzetti, Eleonora, Andrea Costantino, Matteo Leoni, Rebecca Pieretti, Marco Di Paolo, Paola Frati, Aniello Maiese, and Vittorio Fineschi. 2023. "Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice" Medicina 59, no. 8: 1364. https://doi.org/10.3390/medicina59081364
APA StyleMezzetti, E., Costantino, A., Leoni, M., Pieretti, R., Di Paolo, M., Frati, P., Maiese, A., & Fineschi, V. (2023). Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. Medicina, 59(8), 1364. https://doi.org/10.3390/medicina59081364