Diurnal Variation in and Optimal Time to Measure Holter-Based Late Potentials to Predict Lethal Arrhythmia after Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Ambulatory ECG Recordings
2.3. Measurement of Holter-Based LPs
2.4. Heart Rate Variability Analysis
2.5. Statistical Analyses
3. Results
3.1. Patient Demographics
3.2. Optimal Measurement Timing for Assessment of Holter-Based LPs
3.3. Factors Influencing Diurnal Variability of Holter-Based LPs
4. Discussion
4.1. Diurnal Variation in Holter-Based LPs
4.2. Optimal LP Measurement Timing for Predicting VT
4.3. Factors Influencing Holter-Based LP Values
4.4. Clinical Implications
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, J.A.; Winters, S.L.; Stewart, D.; Horowitz, S.; Milner, M.; Barreca, P. A new noninvasive index to predict sustained ventricular tachycardia and sudden death in the first year after myocardial infarction: Based on signal-averaged electrocardiogram, radionuclide ejection fraction and Holter monitoring. J. Am. Coll. Cardiol. 1987, 10, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Sakata, T.; Takami, M.; Kondo, N.; Tezuka, N.; Nakae, T.; Noro, M.; Enjoji, Y.; Abe, R.; Sugi, K.; et al. Combined assessment of T-wave alternans and late potentials used to predict arrhythmic events after myocardial infarction. A prospective study. J. Am. Coll. Cardiol. 2000, 35, 722–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, D.M.; Wong, K.L.; Simson, M.B. Prognostic value of an abnormal signal-averaged electrocardiogram in patients with nonischemic congestive cardiomyopathy. Circulation 1993, 87, 1083–1092. [Google Scholar] [CrossRef] [Green Version]
- Kamath, G.S.; Zareba, W.; Delaney, J.; Koneru, J.N.; McKenna, W.; Gear, K.; Polonsky, S.; Sherrill, D.; Bluemke, D.; Marcus, F.; et al. Value of the signal-averaged electrocardiogram in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm. 2011, 8, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Yodogawa, K.; Seino, Y.; Ohara, T.; Iwasaki, Y.K.; Hayashi, M.; Miyauchi, Y.; Azuma, A.; Shimizu, W. Prognostic significance of ventricular late potentials in patients with pulmonary sarcoidosis. Heart Rhythm. 2018, 15, 798–802. [Google Scholar] [CrossRef]
- Hashimoto, K.; Takase, B.; Nagashima, M.; Kasamaki, Y.; Shimabukuro, H.; Soma, M.; Nakayama, T. A novel signal-averaged electrocardiogram and an ambulatory-based signal-averaged electrocardiogram show strong correlations with conventional signal-averaged electrocardiogram in healthy subjects: A validation study. J. Electrocardiol. 2018, 51, 1145–1152. [Google Scholar] [CrossRef]
- Gatzoulis, K.A.; Tsiachris, D.; Arsenos, P.; Antoniou, C.K.; Dilaveris, P.; Sideris, S.; Kanoupakis, E.; Simantirakis, E.; Korantzopoulos, P.; Goudevenos, I.; et al. Arrhythmic risk stratification in post-myocardial infarction patients with preserved ejection fraction: The PRESERVE EF study. Eur. Heart J. 2019, 40, 2940–2949. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Amino, M.; Yoshioka, K.; Kasamaki, Y.; Kinoshita, T.; Ikeda, T. Combined evaluation of ambulatory-based late potentials and nonsustained ventricular tachycardia to predict arrhythmic events in patients with previous myocardial infarction: A Japanese noninvasive electrocardiographic risk stratification of sudden cardiac death (JANIES) substudy. Ann. Noninvasive Electrocardiol. 2021, 26, e12803. [Google Scholar] [CrossRef]
- Hashimoto, K.; Kinoshita, T.; Miwa, Y.; Amino, M.; Yoshioka, K.; Yodogawa, K.; Nakagawa, M.; Nakamura, K.; Watanabe, E.; Nakamura, K.; et al. Ambulatory electrocardiographic markers predict serious cardiac events in patients with chronic kidney disease: The Japanese Noninvasive Electrocardiographic Risk Stratification of Sudden Cardiac Death in Chronic Kidney Disease (JANIES-CKD) study. Ann. Noninvasive Electrocardiol. 2022, 27, e12923. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Kobayashi, K.; Yuzawa, H.; Sato, H.; Fukunaga, S.; Fujino, T.; Okano, Y.; Yamazaki, J.; Miwa, Y.; Yoshino, H.; et al. Comparison of late potentials for 24 hours between Brugada syndrome and arrhythmogenic right ventricular cardiomyopathy using a novel signal-averaging system based on Holter ECG. Circ. Arrhythmia Electrophysiol. 2012, 5, 789–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshioka, K.; Amino, M.; Zareba, W.; Shima, M.; Matsuzaki, A.; Fujii, T.; Kanda, S.; Deguchi, Y.; Kobayashi, Y.; Ikari, Y.; et al. Identification of high-risk Brugada syndrome patients by combined analysis of late potential and T-wave amplitude variability on ambulatory electrocardiograms. Circ. J. 2013, 77, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, M.; Iwao, T.; Ishida, S.; Yonemochi, H.; Fujino, T.; Saikawa, T.; Ito, M. Circadian rhythm of the signal averaged electrocardiogram and its relation to heart rate variability in healthy subjects. Heart 1998, 79, 493–496. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Hashimoto, K.; Yoshioka, K.; Miwa, Y.; Yodogawa, K.; Watanabe, E.; Nakamura, K.; Nakagawa, M.; Nakamura, K.; Watanabe, T.; et al. Risk stratification for cardiac mortality using electrocardiographic markers based on 24-hour Holter recordings: The JANIES-SHD study. J. Cardiol. 2020, 75, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Amino, M.; Yoshioka, K.; Ichikawa, T.; Watanabe, E.; Kiyono, K.; Nakamura, M.; Sakama, S.; Ayabe, K.; Fujii, T.; Hashida, T.; et al. The presence of late potentials after percutaneous coronary intervention for the treatment of acute coronary syndrome as a predictor for future significant cardiac events resulting in re-hospitalization. J. Electrocardiol. 2019, 53, 71–78. [Google Scholar] [CrossRef]
- Breithardt, G.; Cain, M.E.; el-Sherif, N.; Flowers, N.C.; Hombach, V.; Janse, M.; Simson, M.B.; Steinbeck, G. Standards for analysis of ventricular late potentials using high-resolution or signal-averaged electrocardiography. A statement by a Task Force Committee of the European Society of Cardiology, the American Heart Association, and the American College of Cardiology. Circulation 1991, 83, 1481–1488. [Google Scholar] [CrossRef] [Green Version]
- Task Force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Steinbigler, P.; Haberl, R.; Jilge, G.; Steinbeck, G. Circadian variability of late potential analysis in Holter electrocardiograms. Pacing Clin. Electrophysiol. 1999, 22, 1448–1456. [Google Scholar] [CrossRef]
- Nakamura, M.; Yoshioka, K.; Amino, M.; Watanabe, E.; Fujii, T.; Hashida, T.; Fujibayashi, D.; Kanda, S.; Kobayashi, Y.; Tanabe, T.; et al. Late potential as a predictor of re-hospitalization after percutaneous coronary intervention for acute coronary syndrome. Tokai J. Exp. Clin. Med. 2016, 41, 172–180. [Google Scholar] [PubMed]
- Kremers, M.S.; Black, W.H.; Lange, R.; Wells, P.J.; Solo, M. Electrocardiographic signal-averaging during atrial pacing and effect of cycle length on the terminal QRS in patients with and without inducible ventricular tachycardia. Am. J. Cardiol. 1990, 66, 1095–1098. [Google Scholar] [CrossRef]
- Goldberger, J.J.; Ahmed, M.W.; Parker, M.A.; Kadish, A.H. Assessment of effects of autonomic stimulation and blockade on the signal-averaged electrocardiogram. Circulation 1994, 89, 1656–1664. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, K.; Amino, M.; Nakamura, M.; Kanda, S.; Kobayashi, Y.; Ikari, Y.; Shima, M.; Tanabe, T. Incidence of positive ventricular late potentials differs in postural changes among supine, left, and right lateral decubitus, and prone and sitting positions in Brugada syndrome. Ann. Noninvasive Electrocardiol. 2015, 20, 488–497. [Google Scholar] [CrossRef]
- Chamiec, T.; Kułakowski, P.; Ceremuzyński, L. Exercise producing alterations in the signal-averaged electrocardiogram in patients after myocardial infarction. Eur. Heart J. 1995, 16, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Strasberg, B.; Abboud, S.; Kusniec, J.; Inbar, S.; Zafrir, N.; Mager, A.; Sagie, A.; Sclarovsky, S. Prediction of arrhythmic events after acute myocardial infarction using two methods for late potentials recording. Pacing Clin. Electrophysiol. 1993, 16, 2118–2126. [Google Scholar] [CrossRef]
- Denes, P.; el-Sherif, N.; Katz, R.; Capone, R.; Carlson, M.; Mitchell, L.B.; Ledingham, R. Prognostic significance of signal-averaged electrocardiogram after thrombolytic therapy and/or angioplasty during acute myocardial infarction (CAST substudy). Cardiac Arrhythmia Suppression Trial (CAST) SAECG Substudy Investigators. Am. J. Cardiol. 1994, 74, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, D.M.; Snyder, J.E.; Steinberg, J.S. A critical appraisal of quantitative spectro-temporal analysis of the signal-averaged ECG: Predicting arrhythmic events after myocardial infarction. Pacing Clin. Electrophysiol. 1996, 19, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Sentici, A.; Adamec, R.; Metzger, J.; Mermillod, B.; Rutishauser, W. Long-term prognostic significance of ventricular late potentials after a first acute myocardial infarction. Am. Heart J. 1997, 134, 1019–1028. [Google Scholar] [CrossRef]
- Askin, L.; Cetin, M.; Turkmen, S. Ambulatory blood pressure results and heart rate variability in patients with premature ventricular contractions. Clin. Exp. Hypertens. 2018, 40, 251–256. [Google Scholar] [CrossRef]
- Hashimoto, K.; Harada, N.; Kimata, M.; Kawamura, Y.; Fujita, N.; Sekizawa, A.; Ono, Y.; Obuchi, Y.; Takayama, T.; Kasamaki, Y.; et al. Age-related reference intervals for ambulatory electrocardiographic parameters in healthy individuals. Front. Cardiovasc. Med. 2023, 10, 1099157. [Google Scholar] [CrossRef]
- Shimizu, M.; Suzuki, M.; Fujii, H.; Kimura, S.; Nishizaki, M.; Sasano, T. Machine learning of microvolt-level 12-lead electrocardiogram can help distinguish takotsubo syndrome and acute anterior myocardial infarction. Cardiovasc. Digit. Health J. 2022, 3, 179–188. [Google Scholar] [CrossRef] [PubMed]
Demographics | MI-VT Group (n = 23) | MI-Non-VT Group (n = 103) | p Value | Control Group (n = 60) |
---|---|---|---|---|
Age (years) | 66.9 ± 12.4 | 66.9 ± 13.1 | 0.994 | 56.7 ± 20.5 |
Sex: male, n (%) | 22 (96) | 83 (81) | 0.195 | 33 (55) |
Hypertension, n (%) | 18 (78) | 87 (84) | 0.758 | ― |
Dyslipidemia, n (%) | 14 (61) | 68 (66) | 0.831 | ― |
Diabetes mellitus, n (%) | 17 (74) | 41 (40) | 0.002 | ― |
Coronary culprit lesion | ||||
RCA | 3 (13) | 39 (38) | 0.023 | ― |
LAD | 17 (73) | 43 (42) | 0.04 | ― |
Cx | 2 (13) | 10 (20) | 0.562 | ― |
Echocardiographic data | ||||
LVEF (%) | 48.5 ± 16.0 | 58.4 ± 11.9 | <0.001 | 70.8 ± 6.5 |
LVDd (mm) | 57.1 ± 11.6 | 50.1 ± 7.4 | <0.001 | 44.4 ± 4.6 |
Renal function | ||||
Estimated GFR (mL/min per 1.73 m2) | 46.9 [34.7, 68.5] | 61.3 [37.7, 76.1] | 0.146 | 78.5 ± 18.2 |
Creatinine (mg/dL) | 1.1 [0.8, 1.5] | 0.93 [0.7, 1.2] | 0.152 | 0.69 [0.63, 0.79] |
Therapy | ||||
β-Blocker (%) | 19 (83) | 77 (75) | 0.424 | ― |
RAS inhibitor (%) | 14 (61) | 66 (64) | 0.729 | ― |
CCB (%) | 11(48) | 32 (31) | 0.125 | ― |
Diuretic (%) | 12 (52) | 42 (41) | 0.581 | ― |
Amiodarone (%) | 8 (34) | 6 (6) | <0.001 | ― |
Ⅰb (%) | 1 (4.3) | 5 (4.8) | 0.918 | ― |
Ⅰc (%) | 0 (0) | 0 (0) | ― | ― |
0:00 | 4:00 | 8:00 | 12:00 | 16:00 | 20:00 | p Value | |||
---|---|---|---|---|---|---|---|---|---|
MI-VT group (n = 23) | |||||||||
fQRS (ms) | median | 115.0 | 116.0 | 116.0 | 116.0 | 114.0 | 118.0 | 0.005 | |
(interquartile range) | [108.0,134.8] | [108.0, 131.0] | [101.0, 135.0] | [102.0, 135.0] | [107.0, 132.0] | [107.0, 134.0] | |||
RMS40 (µV) | median | 14.0 | 14.0 | 21.0 | 18.0 | 16.0 | 16.0 | 0.04 | |
(interquartile range) | [10.3, 54.8] | [10.0, 43.0] | [11.0, 55.0] | [8.0, 57.0] | [9.0, 43.0] | [6.6, 52.0] | |||
LAS40 (ms) | median | 43.5 | 41.0 | 37.0 | 40.0 | 40.0 | 39.0 | 0.02 | |
(interquartile range) | [29.0, 53.0] | [31.0, 48.0] | [27.0, 46.0] | [27.0, 46.0] | [26.0, 51.0] | [30.0, 50.0] | |||
MI-non-VT group (n = 103) | |||||||||
fQRS (ms) | median | 101.0 | 102.5 | 100.5 | 98.0 | 99.0 | 99.0 | <0.001 | |
(interquartile range) | [93.0, 115.0] | [94.0, 113.5] | [91.8, 112.3] | [93.0, 114.0] | [90.0, 110.5] | [94.0, 113.5] | |||
RMS40 (µV) | median | 30.5 | 30.5 | 32.5 | 34.0 | 36.0 | 30.0 | <0.001 | |
(interquartile range) | [16.0, 45.8] | [16.0, 45.8] | [20.0, 48.3] | [18.5, 47.0] | [19.5, 50.5] | [20.8, 48.5] | |||
LAS40 (ms) | median | 30.0 | 32.0 | 30.0 | 30.0 | 29.0 | 31.0 | 0.03 | |
(interquartile range) | 24.0, 41.5] | [24.0, 39.5] | [24.0, 36.5] | [24.0, 36.5] | [24.5, 36.0] | [25.0, 36.0] | |||
Control group (n = 60) | |||||||||
fQRS (ms) | median | 90.0 | 90.0 | 87.5 | 85.0 | 87.0 | 88.0 | ||
(interquartile range) | [86.0, 95.3] | [87.0, 96.0] | [83.0, 93.3] | [83.8, 90.0] | [83.0, 91.0] | [83.0, 93.0] | <0.001 | ||
RMS40 (µV) | median | 45.5 | 44.5 | 49.5 | 55.5 | 53.0 | 47.0 | ||
(interquartile range) | [29.5,64.0] | [28.8, 65.8] | [31.0, 81.8] | [33.0, 81.5] | [38.3, 78.8] | [33.0, 79.6] | <0.001 | ||
LAS40 (ms) | median | 28.0 | 27.0 | 27.0 | 26.0 | 26.0 | 25.0 | ||
(interquartile range) | [23.0, 32.0] | [24.0, 31.3] | [21.0, 33.0] | [20.0, 30.3] | [21.0, 29.0] | [22.0, 31.3] | 0.03 |
MI-VT Group (n = 23) | |||||||
---|---|---|---|---|---|---|---|
0:00 | 4:00 | 8:00 | 12:00 | 16:00 | 20:00 | p Value | |
Number of patients | 13 (57) | 13 (57) | 10 § (43) | 11# (48) | 13 (57) | 12 (52) | 0.009 |
(%) | |||||||
MI-non-VT group (n = 103) | |||||||
0:00 | 4:00 | 8:00 | 12:00 | 16:00 | 20:00 | p value | |
Number of patients | 24 (23) | 23 (22) | 18 § (17) | 19 § (18) | 21 (20) | 21 (20) | 0.002 |
(%) | |||||||
Control group (n = 60) | |||||||
0:00 | 4:00 | 8:00 | 12:00 | 16:00 | 20:00 | p value | |
Number of participants | 7 (12) | 4 # (7) | 4 # (7) | 3 § (5) | 2 § (3) | 3 § (5) | 0.009 |
(%) |
Sensitivity | Specificity | PPV | NPV | Sensitivity | Specificity | PPV | NPV | ||
---|---|---|---|---|---|---|---|---|---|
Parameter | Time Point | ||||||||
Worst fQRS | 61 | 67 | 61 | 89 | 0:00 | 57 | 74 | 57 | 88 |
Best fQRS | 43 | 80 | 43 | 86 | 4:00 | 57 | 75 | 57 | 89 |
Worst RMS40 | 61 | 65 | 61 | 88 | 8:00 | 43 | 75 | 43 | 86 |
Best RMS40 | 43 | 85 | 43 | 87 | 12:00 | 52 | 57 | 52 | 76 |
Worst LAS40 | 65 | 63 | 65 | 87 | 16:00 | 61 | 78 | 61 | 90 |
Best LAS40 | 43 | 84 | 43 | 87 | 20:00 | 57 | 80 | 57 | 90 |
Mean values of 3 LP parameters | 48 | 78 | 48 | 85 |
For Each LP Parameter | Univariate | Multivariate | Multivariate (Stepwise) | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Worst fQRS | 3.11 | 1.22–7.91 | <0.001 | 1.00 | 0.87–11.56 | 0.998 | |||
Best fQRS | 4.13 | 1.55–11.03 | <0.001 | ||||||
Worst RMS40 | 2.85 | 1.12–7.23 | <0.001 | 0.332 | 0.021–5.36 | 0.437 | |||
Best RMS40 | 4.46 | 1.66–12.0 | <0.001 | ||||||
Worst LAS40 | 3.75 | 1.45–9.71 | 0.006 | 10.41 | 0.58–185.46 | 0.111 | 3.75 | 1.45–9.71 | 0.006 |
Best LAS40 | 4.14 | 1.55–11.04 | <0.001 | ||||||
Mean values of three LP parameters | 3.76 | 1.45–9.75 | <0.001 | ||||||
For each time point | Univariate | Multivariate | Multivariate (stepwise) | ||||||
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
0:00 | 3.61 | 1.42–9.19 | 0.007 | 0.66 | 0.75–5.81 | 0.710 | |||
4:00 | 3.80 | 1.49–9.70 | <0.001 | 0.93 | 0.084–10.27 | 0.953 | |||
8:00 | 2.97 | 1.14–7.70 | <0.001 | 0.21 | 0.024–1.75 | 0.148 | |||
12:00 | 4.67 | 1.80–12.07 | <0.001 | 3.16 | 0.29–33.91 | 0.342 | |||
16:00 | 4.41 | 1.11–11.36 | <0.001 | 2.74 | 0.39–19.26 | 0.310 | |||
20:00 | 5.00 | 1.93–13.02 | <0.001 | 4.40 | 0.52–37.25 | 0.174 | 4.89 | 1.88–12.7 | 0.001 |
(A) | ||||||
---|---|---|---|---|---|---|
fQRS | R = 0.490 | R = 0.448 * | ||||
β | p | VIF | β | p | VIF | |
Body position | 0.031 | 0.770 | 1.527 | |||
log Noise (μV) | 0.081 | 0.484 | 1.812 | |||
log HR (bpm) | −0.188 | 0.085 | 1.599 | −0.180 | 0.037 | 1.016 |
log pNN50 (%) | 0.256 | 0.270 | 7.296 | 0.433 | <0.001 | 1.016 |
log RMSSD (ms) | 0.212 | 0.417 | 9.246 | |||
log ASDNN (ms) | −0.180 | 0.382 | 5.771 | |||
log SDANN (ms) | −0.021 | 0.832 | 1.325 | |||
log VLF (ms2) | 0.187 | 0207 | 2.977 | |||
log HFnu (TP) | 0.183 | 0.140 | 2.070 | |||
log LF/HF | 0.086 | 0.400 | 1.399 | |||
RMS40 | R = 0.500 | R = 0.305 * | ||||
β | p | VIF | β | p | VIF | |
Body position | −0.092 | 0.417 | 1.397 | |||
log Noise (μV) | −0.018 | 0.881 | 1.550 | |||
log HR (bpm) | 0.422 | 0.000 | 1.441 | 0.305 | 0.003 | 1.000 |
log pNN50 (%) | −0.230 | 0.336 | 6.211 | |||
log RMSSD (ms) | −0.066 | 0.790 | 6.619 | |||
log ASDNN (ms) | 0.180 | 0.415 | 5.264 | |||
log SDANN (ms) | 0.077 | 0.509 | 1.483 | |||
log VLF (ms2) | 0.076 | 0.648 | 2.971 | |||
log HFnu (TP) | 0.796 | 0.002 | 7.084 | |||
log LF/HF | 0.733 | 0.007 | 7.566 | |||
LAS40 | R = 0.392 | R = 0.292 * | ||||
β | p | VIF | β | p | VIF | |
body position | 0.013 | 0.916 | 1.492 | |||
log Noise (μV) | −0.010 | 0.942 | 1.788 | |||
log HR (bpm) | −0.330 | 0.010 | 1.524 | −0.261 | 0.011 | 1.000 |
log pNN50 (%) | 0.081 | 0.749 | 6.233 | |||
log RMSSD (ms) | 0.148 | 0.568 | 6.483 | |||
log ASDNN (ms) | −0.032 | 0.890 | 5.196 | |||
log SDANN (ms) | −0.008 | 0.950 | 1.475 | |||
log VLF (ms2) | −0.134 | 0.448 | 2.970 | |||
log HFnu (TP) | −0.525 | 0.057 | 7.175 | |||
log LF/HF | −0.402 | 0.154 | 7.582 | |||
(B) | ||||||
fQRS | R = 0.366 | R = 0.353 * | ||||
β | p | VIF | β | p | VIF | |
Body position | −0.054 | 0.348 | 1.287 | |||
log Noise (μV) | −0.036 | 0.529 | 1.308 | |||
log HR (bpm) | −0.021 | 0.725 | 1.436 | |||
log pNN50 (%) | 0.305 | 0.001 | 3.092 | 0.298 | 0.001 | 2.945 |
log ASDNN (ms) | −0.235 | 0.028 | 4.480 | −0.222 | 0.029 | 4.047 |
log SDANN (ms) | 0.005 | 0.934 | 1.406 | |||
log VLF (ms2) | −0.184 | 0.037 | 3.027 | −0.180 | 0.030 | 2.684 |
log HFnu (TP) | −0.038 | 0.692 | 3.680 | |||
log LF/HF | 0.190 | 0.071 | 4.291 | 0.209 | 0.002 | 1.822 |
RMS40 | R = 0.367 | R = 0.327 * | ||||
β | p | VIF | β | p | VIF | |
Body position | −0.039 | 0.493 | 1.287 | |||
log Noise (μV) | 0.155 | 0.007 | 1.308 | 0.156 | 0.002 | 1.000 |
log HR (bpm) | 0.046 | 0.446 | 1.436 | |||
log pNN50 (%) | −0.241 | 0.007 | 3.092 | −0.208 | 0.003 | 1.903 |
log ASDNN (ms) | 0.136 | 0.203 | 4.480 | 0.206 | 0.003 | 1.902 |
log SDANN (ms) | 0.075 | 0.209 | 1.406 | |||
log VLF (ms2) | 0.119 | 0.175 | 3.027 | |||
log HFnu (TP) | −0.027 | 0.777 | 3.680 | |||
log LF/HF | −0.157 | 0.134 | 4.291 | |||
LAS40 | R = 0.344 | R = 0.314 * | ||||
β | p | VIF | β | p | VIF | |
Body position | 0.029 | 0.617 | 1.287 | |||
log Noise (μV) | −0.119 | 0.041 | 1.308 | −0.122 | 0.017 | 1.000 |
log HR (bpm) | −0.008 | 0.890 | 1.436 | |||
log pNN50 (%) | 0.265 | 0.003 | 3.092 | 0.219 | 0.002 | 1.903 |
log ASDNN (ms) | −0.221 | 0.041 | 4.480 | −0.224 | 0.001 | 1.902 |
log SDANN (ms) | −0.086 | 0.154 | 1.406 | |||
log VLF (ms2) | −0.008 | 0.929 | 3.027 | |||
log HFnu (TP) | 0.070 | 0.472 | 3.680 | |||
log LF/HF | 0.155 | 0.142 | 4.291 | |||
(C) | ||||||
fQRS | R = 0.458 | R = 0.452 * | ||||
β | p | VIF | β | p | VIF | |
Body position | −0.035 | 0.556 | 1.352 | |||
log Noise (μV) | −0.473 | <0.001 | 1.271 | −0.484 | <0.001 | 1.179 |
log HR (bpm) | 0.139 | 0.050 | 1.948 | 0.141 | 0.022 | 1.473 |
log pNN50 (%) | −0.048 | 0.631 | 3.860 | |||
log ASDNN (ms) | 0.118 | 0.332 | 5.753 | |||
log SDANN (ms) | −0.024 | 0.705 | 1.530 | |||
log VLF (ms2) | −0.105 | 0.298 | 3.985 | |||
log HFnu (TP) | −0.150 | 0.319 | 8.789 | −0.129 | 0.028 | 1.356 |
log LF/HF | 0.004 | 0.982 | 9.626 | |||
RMS40 | R = 0.396 | R = 0.356 * | ||||
β | p | VIF | β | p | VIF | |
Body position | 0.112 | 0.078 | 1.385 | |||
log Noise (μV) | 0.138 | 0.042 | 1.588 | 0.147 | 0.008 | 1.049 |
log HR (bpm) | −0.081 | 0.265 | 1.840 | |||
log pNN50 (%) | 0.123 | 0.249 | 3.925 | 0.094 | 0.089 | 1.049 |
log ASDNN (ms) | −0.013 | 0.911 | 4.489 | |||
log SDANN (ms) | 0.035 | 0.552 | 1.227 | |||
log VLF (ms2) | −0.075 | 0.407 | 2.837 | |||
log HFnu (TP) | −0.027 | 0.768 | 2.795 | |||
log LF/HF | 0.001 | 0.987 | 1.523 | |||
LAS40 | R = 0.575 | R = 0.563 * | ||||
β | p | VIF | β | p | VIF | |
Body position | 0.032 | 0.558 | 1.352 | |||
log Noise (μV) | −0.633 | <0.001 | 1.271 | −0.609 | <0.001 | 1.169 |
log HR (bpm) | 0.240 | <0.001 | 1.948 | 0.245 | <0.001 | 1.169 |
log pNN50 (%) | 0.100 | 0.278 | 3.860 | |||
log ASDNN (ms) | −0.008 | 0.946 | 5.753 | |||
log SDANN (ms) | 0.035 | 0.548 | 1.530 | |||
log VLF (ms2) | −0.026 | 0.781 | 3.985 | |||
log HFnu (TP) | 0.051 | 0.715 | 8.789 | |||
log LF/HF | 0.152 | 0.295 | 9.626 |
Author (Published Year) | LP Method | No of Pt | No of Pt AE (%) | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
Strasbert et al. (1993) [23] | Real-time LP | 100 | 12 (12) | 50 | 61 | 15 | 90 |
Denes et al. (1994) [24] | Real-time LP | 787 | 33 (4) | 60 | 98 | 20 | 89 |
Bloomfield et al. (1996) [25] | Real-time LP | 177 | 16 (9) | 69 | 62 | 15 | 95 |
Zimmerman et al. (1997) [26] | Real-time LP | 458 | 32 (6) | 44 | 83 | 20 | 94 |
Ikeda et al. (2000) [2] | Real-time LP | 102 | 15 (14) | 53 | 85 | 38 | 91 |
Amino et al. (2019) [14] | Holter-based LP | 90 | 421 (21) | 53 | 31 | NA | NA |
Hashimoto et al. (2020) [8] | Holter-based LP | 104 | 11 (10) | 63 | 80 | 20 | 95 |
This study, worst LAS40 (2023) | Holter-based LP | 126 | 23 (18) | 65 | 63 | 65 | 87 |
This study, 20:00 (2023) | Holter-based LP | 126 | 24 (18) | 57 | 80 | 57 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, K.; Harada, N.; Kimata, M.; Kawamura, Y.; Fujita, N.; Sekizawa, A.; Ono, Y.; Obuchi, Y.; Takayama, T.; Kasamaki, Y.; et al. Diurnal Variation in and Optimal Time to Measure Holter-Based Late Potentials to Predict Lethal Arrhythmia after Myocardial Infarction. Medicina 2023, 59, 1460. https://doi.org/10.3390/medicina59081460
Hashimoto K, Harada N, Kimata M, Kawamura Y, Fujita N, Sekizawa A, Ono Y, Obuchi Y, Takayama T, Kasamaki Y, et al. Diurnal Variation in and Optimal Time to Measure Holter-Based Late Potentials to Predict Lethal Arrhythmia after Myocardial Infarction. Medicina. 2023; 59(8):1460. https://doi.org/10.3390/medicina59081460
Chicago/Turabian StyleHashimoto, Kenichi, Naomi Harada, Motohiro Kimata, Yusuke Kawamura, Naoya Fujita, Akinori Sekizawa, Yosuke Ono, Yasuhiro Obuchi, Tadateru Takayama, Yuji Kasamaki, and et al. 2023. "Diurnal Variation in and Optimal Time to Measure Holter-Based Late Potentials to Predict Lethal Arrhythmia after Myocardial Infarction" Medicina 59, no. 8: 1460. https://doi.org/10.3390/medicina59081460
APA StyleHashimoto, K., Harada, N., Kimata, M., Kawamura, Y., Fujita, N., Sekizawa, A., Ono, Y., Obuchi, Y., Takayama, T., Kasamaki, Y., & Tanaka, Y. (2023). Diurnal Variation in and Optimal Time to Measure Holter-Based Late Potentials to Predict Lethal Arrhythmia after Myocardial Infarction. Medicina, 59(8), 1460. https://doi.org/10.3390/medicina59081460