Simultaneous Administration of Hyperbaric Oxygen Therapy and Antioxidant Supplementation with Filipendula ulmaria Extract in the Treatment of Thermal Skin Injuries Alters Nociceptive Signalling and Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Housing
2.2. Treatment
2.2.1. Thermal Skin Injury Experimental Model
2.2.2. Hyperbaric Oxygen Treatment (HBO) and Antioxidant Supplementation with Filipendula ulmaria (FU) Extract
2.3. Behavioural Testing
2.3.1. Hot-Plate Test
2.3.2. Tail-Flick Test
2.4. Tissue Sample Collection
2.5. Histological Analysis
2.6. RNA Isolation and Real-Time PCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Morphological and Histological Parameters of the Wound Area
3.2. Relative Expression of Genes for Proinflammatory Cytokines in the Wound Area
3.3. Relative Expression of Genes Related to Apoptosis in the Wound Area
3.4. Relative Expression of Genes for Growth Factors in the Wound Area
3.5. Relative Expression of Opioid and Melatonin Receptor Genes in the Wound Area
3.6. Relative Expression of Opioid and Melatonin Receptor Genes in the Spinal Cord
3.7. Behavioural Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roshangar, L.; Soleimani Rad, J.; Kheirjou, R.; Reza Ranjkesh, M.; Ferdowsi Khosroshahi, A. Skin Burns: Review of Molecular Mechanisms and Therapeutic Approaches. Wounds A Compend. Clin. Res. Pract. 2019, 31, 308–315. [Google Scholar]
- Brusselaers, N.; Monstrey, S.; Vogelaers, D.; Hoste, E.; Blot, S. Severe burn injury in Europe: A systematic review of the incidence, etiology, morbidity, and mortality. Crit. Care 2010, 14, R188. [Google Scholar] [CrossRef] [PubMed]
- Walker, N.J.; King, K.C. Acute and Chronic Thermal Burn Evaluation and Management; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Thorne, C.H. Grabb and Smith’s Plastic Surgery, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; Volume 15, pp. 148–150. [Google Scholar]
- Hettiaratchy, S.; Dziewulski, P. ABC of burns: Pathophysiology and types of burns. BMJ Clin. Res. Ed. 2004, 328, 1427–1429. [Google Scholar] [CrossRef]
- Shpichka, A.; Butnaru, D.; Bezrukov, E.A.; Sukhanov, R.B.; Atala, A.; Burdukovskii, V.; Zhang, Y.; Timashev, P. Skin tissue regeneration for burn injury. Stem Cell Res. Ther. 2019, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Griggs, C.; Goverman, J.; Bittner, E.A.; Levi, B. Sedation and Pain Management in Burn Patients. Clin. Plast. Surg. 2017, 44, 535–540. [Google Scholar] [CrossRef]
- Yam, M.F.; Loh, Y.C.; Tan, C.S.; Khadijah Adam, S.; Abdul Manan, N.; Basir, R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int. J. Mol. Sci. 2018, 19, 2164. [Google Scholar] [CrossRef]
- Wu, Z.S.; Wu, S.H.; Lee, S.S.; Lin, C.H.; Chang, C.H.; Lo, J.J.; Chai, C.Y.; Wu, C.S.; Huang, S.H. Dose-Dependent Effect of Hyperbaric Oxygen Treatment on Burn-Induced Neuropathic Pain in Rats. Int. J. Mol. Sci. 2019, 20, 1951. [Google Scholar] [CrossRef]
- Wang, Y.; Gupta, M.; Poonawala, T.; Farooqui, M.; Li, Y.; Peng, F.; Rao, S.; Ansonoff, M.; Pintar, J.E.; Gupta, K. Opioids and opioid receptors orchestrate wound repair. Transl. Res. J. Lab. Clin. Med. 2017, 185, 13–23. [Google Scholar] [CrossRef]
- Jeschke, M.G.; van Baar, M.E.; Choudhry, M.A.; Chung, K.K.; Gibran, N.S.; Logsetty, S. Burn injury. Nat. Rev. Dis. Primers 2020, 6, 11. [Google Scholar] [CrossRef]
- Alyafi, T.; Al-Marzouki, A.H.; Al Hassani, A.N. Therapeutic Outcome of Burn Patients Treated With Hyperbaric Oxygen. Cureus 2021, 13, e18671. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Hu, J.; Cheng, Y.; Yao, Z. Researches on cognitive sequelae of burn injury: Current status and advances. Front. Neurosci. 2022, 16, 1026152. [Google Scholar] [CrossRef]
- Till, G.O.; Friedl, H.P.; Ward, P.A. Antioxidant treatment in experimental thermal injury. Adv. Exp. Med. Biol. 1990, 264, 543–549. [Google Scholar] [CrossRef]
- Selçuk, C.T.; Ozalp, B.; Durgun, M.; Tekin, A.; Akkoç, M.F.; Alabalik, U.; Ilgezdi, S. The effect of hyperbaric oxygen treatment on the healing of burn wounds in nicotinized and nonnicotinized rats. J. Burn Care Res. Off. Publ. Am. Burn Assoc. 2013, 34, e237–e243. [Google Scholar] [CrossRef] [PubMed]
- Camporesi, E.M.; Bosco, G. Mechanisms of action of hyperbaric oxygen therapy. Undersea Hyperb. Med. J. Undersea Hyperb. Med. Soc. Inc. 2014, 41, 247–252. [Google Scholar]
- Smolle, C.; Lindenmann, J.; Kamolz, L.; Smolle-Juettner, F.-M. The History and Development of Hyperbaric Oxygenation (HBO) in Thermal Burn Injury. Medicina 2021, 57, 49. [Google Scholar] [CrossRef]
- Pruteanu, L.L.; Bailey, D.S.; Grădinaru, A.C.; Jäntschi, L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants 2023, 12, 860. [Google Scholar] [CrossRef]
- Sahib, A.S.; Al-Jawad, F.H.; Alkaisy, A.A. Effect of antioxidants on the incidence of wound infection in burn patients. Ann. Burn. Fire Disasters 2010, 23, 199–205. [Google Scholar]
- Al-Jawad, F.H.; Sahib, A.S.; Al-Kaisy, A.A. Role of antioxidants in the treatment of burn lesions. Ann. Burn. Fire Disasters 2008, 21, 186–191. [Google Scholar]
- Viaña-Mendieta, P.; Sánchez, M.L.; Benavides, J. Rational selection of bioactive principles for wound healing applications: Growth factors and antioxidants. Int. Wound J. 2022, 19, 100–113. [Google Scholar] [CrossRef]
- Rehou, S.; Shahrokhi, S.; Natanson, R.; Stanojcic, M.; Jeschke, M.G. Antioxidant and Trace Element Supplementation Reduce the Inflammatory Response in Critically Ill Burn Patients. J. Burn Care Res. Off. Publ. Am. Burn Assoc. 2018, 39, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Katanić, J.; Boroja, T.; Mihailović, V.; Nikles, S.; Pan, S.P.; Rosić, G.; Selaković, D.; Joksimović, J.; Mitrović, S.; Bauer, R. In vitro and in vivo assessment of meadowsweet (Filipendula ulmaria) as an anti-inflammatory agent. J. Ethnopharmacol. 2016, 193, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Samardžić, S.; Arsenijević, J.; Božić, D.; Milenković, M.; Tešević, V.; Maksimović, Z. Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench. J. Ethnopharmacol. 2018, 213, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Vinaik, R.; Aijaz, A.; Jeschke, M.G. Small animal models of thermal injury. Methods Cell Biol. 2022, 168, 161–189. [Google Scholar] [CrossRef] [PubMed]
- Brkic, P.; Stojiljkovic, M.; Jovanovic, T.; Dacic, S.; Lavrnja, I.; Savic, D.; Parabucki, A.; Bjelobaba, I.; Rakic, L.; Pekovic, S. Hyperbaric oxygenation improves locomotor ability by enhancing neuroplastic responses after cortical ablation in rats. Brain Inj. 2012, 26, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Arsenijevic, N.; Selakovic, D.; Stankovic, J.S.K.; Mihailovic, V.; Mitrovic, S.; Milenkovic, J.; Milanovic, P.; Vasovic, M.; Nikezic, A.; Milosevic-Djordjevic, O.; et al. Variable neuroprotective role of Filipendula ulmaria extract in rat hippocampus. JIN 2021, 20, 871–883. [Google Scholar] [CrossRef]
- Katanić, J.; Matić, S.; Pferschy-Wenzig, E.M.; Kretschmer, N.; Boroja, T.; Mihailović, V.; Stanković, V.; Stanković, N.; Mladenović, M.; Stanić, S.; et al. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 99, 86–102. [Google Scholar] [CrossRef]
- Katanić, J.; Pferschy-Wenzig, E.M.; Mihailović, V.; Boroja, T.; Pan, S.P.; Nikles, S.; Kretschmer, N.; Rosić, G.; Selaković, D.; Joksimović, J.; et al. Phytochemical analysis and anti-inflammatory effects of Filipendula vulgaris Moench extracts. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 122, 151–162. [Google Scholar] [CrossRef]
- Bannon, A.W.; Malmberg, A.B. Models of nociception: Hot-plate, tail-flick, and formalin tests in rodents. Curr. Protoc. Neurosci. 2007, 41, 8–9. [Google Scholar] [CrossRef]
- Guo, H.-F.; Abd Hamid, R.; Mohd Ali, R.; Chang, S.K.; Rahman, M.H.; Zainal, Z.; Khaza’ai, H. Healing Properties of Epidermal Growth Factor and Tocotrienol-Rich Fraction in Deep Partial-Thickness Experimental Burn Wounds. Antioxidants 2020, 9, 130. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Cianci, P.; Slade, J.B., Jr.; Sato, R.M.; Faulkner, J. Adjunctive hyperbaric oxygen therapy in the treatment of thermal burns. Undersea Hyperb. Med. J. Undersea Hyperb. Med. Soc. Inc. 2013, 40, 89–108. [Google Scholar] [CrossRef]
- Korn, H.N.; Wheeler, E.S.; Miller, T.A. Effect of hyperbaric oxygen on second-degree burn wound healing. Arch. Surg. Chic. Ill. 1960 1977, 112, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Shoshani, O.; Shupak, A.; Barak, A.; Ullman, Y.; Ramon, Y.; Lindenbaum, E.; Peled, Y. Hyperbaric oxygen therapy for deep second degree burns: An experimental study in the guinea pig. Br. J. Plast. Surg. 1998, 51, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Hatibie, M.J.; Islam, A.A.; Hatta, M.; Moenadjat, Y.; Susilo, R.H.; Rendy, L. Hyperbaric Oxygen Therapy for Second-Degree Burn Healing: An Experimental Study in Rabbits. Adv. Ski. Wound Care 2019, 32, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Vinha, P.P.; Martinez, E.Z.; Vannucchi, H.; Marchini, J.S.; Farina, J.A., Jr.; Jordao, A.A., Jr.; Cunha, S.F. Effect of acute thermal injury in the status of serum vitamins, inflammatory markers, and oxidative stress markers: Preliminary data. J. Burn Care Res. Off. Publ. Am. Burn Assoc. 2013, 34, e87–e91. [Google Scholar] [CrossRef]
- Csontos, C.; Rezman, B.; Foldi, V.; Bogar, L.; Drenkovics, L.; Röth, E.; Weber, G.; Lantos, J. Effect of N-acetylcysteine treatment on oxidative stress and inflammation after severe burn. Burn. J. Int. Soc. Burn Inj. 2012, 38, 428–437. [Google Scholar] [CrossRef]
- Sterling, J.P.; Lombardi, V.C. Decreasing the Likelihood of Multiple Organ Dysfunction Syndrome in Burn Injury with Early Antioxidant Treatment. Antioxidants 2021, 10, 1192. [Google Scholar] [CrossRef]
- Wijaya, I.P.; Rusly Hariantana Hamid, A.R.; Bagus Mahadewa, T.G.; Putu Hendra Sanjaya, I.G.; Suka Adnyana, I.M.; Suyasa, I.K. Supplementation of high-dose ascorbic acid reduces necrosis on random dorsal skin flap in rats. Int. J. Surg. Open 2022, 46, 100525. [Google Scholar] [CrossRef]
- Hobson, R. Vitamin E and wound healing: An evidence-based review. Int. Wound J. 2016, 13, 331–335. [Google Scholar] [CrossRef]
- Abbaszadeh, A.; Tehmasebi-Foolad, A.; Rajabzadeh, A.; Beigi-Brojeni, N.; Zarei, L. Effects of Chitosan/Nano Selenium Biofilm on Infected Wound Healing in Rats; An Experimental Study. Bull. Emerg. Trauma 2019, 7, 284–291. [Google Scholar] [CrossRef]
- Goorani, S.; Zangeneh, M.M.; Koohi, M.K.; Seydi, N.; Zangeneh, A.; Souri, N.; Hosseini, M.-S. Assessment of antioxidant and cutaneous wound healing effects of Falcaria vulgaris aqueous extract in Wistar male rats. Comp. Clin. Pathol. 2019, 28, 435–445. [Google Scholar] [CrossRef]
- Ahmad, S.U.; Binti Aladdin, N.A.; Jamal, J.A.; Shuid, A.N.; Mohamed, I.N. Evaluation of Wound-Healing and Antioxidant Effects of Marantodes pumilum (Blume) Kuntze in an Excision Wound Model. Molecules 2021, 26, 228. [Google Scholar] [CrossRef] [PubMed]
- Khalil, R.; Yahya, G.; Abdo, W.S.; El-Tanbouly, G.S.; Johar, D.; Abdel-Halim, M.S.; Eissa, H.; Magheru, C.; Saber, S.; Cavalu, S. Emerging Approach for the Application of Hibiscus sabdariffa Extract Ointment in the Superficial Burn Care. Sci. Pharm. 2022, 90, 41. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Li, Y.-Q. The Downregulation of Opioid Receptors and Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 5981. [Google Scholar] [CrossRef]
- Gibbons, C.R.; Liu, S.; Zhang, Y.; Sayre, C.L.; Levitch, B.R.; Moehlmann, S.B.; Shirachi, D.Y.; Quock, R.M. Involvement of brain opioid receptors in the anti-allodynic effect of hyperbaric oxygen in rats with sciatic nerve crush-induced neuropathic pain. Brain Res. 2013, 1537, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Navarro, M.; Cabañero, D.; Wawrzczak-Bargiela, A.; Robe, A.; Gavériaux-Ruff, C.; Kieffer, B.L.; Przewlocki, R.; Baños, J.E.; Maldonado, R. Mu and delta opioid receptors play opposite nociceptive and behavioural roles on nerve-injured mice. Br. J. Pharmacol. 2020, 177, 1187–1205. [Google Scholar] [CrossRef] [PubMed]
- Ueda, M.; Hirose, M.; Takei, N.; Ibuki, T.; Naruse, Y.; Ibata, Y.; Tanaka, M. Foot Hyperalgesia after Thoracic Burn Injury-Histochemical, Behavioral and Pharmacological Studies. Acta Histochem. Et Cytochem. 2001, 34, 441–450. [Google Scholar] [CrossRef]
- Osgood, P.F.; Murphy, J.L.; Carr, D.B.; Szyfelbein, S.K. Increases in plasma beta-endorphin and tail flick latency in the rat following burn injury. Life Sci. 1987, 40, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Peciña, M.; Karp, J.F.; Mathew, S.; Todtenkopf, M.S.; Ehrich, E.W.; Zubieta, J.K. Endogenous opioid system dysregulation in depression: Implications for new therapeutic approaches. Mol. Psychiatry 2019, 24, 576–587. [Google Scholar] [CrossRef]
- Ferdousi, M.I.; Calcagno, P.; Clarke, M.; Aggarwal, S.; Sanchez, C.; Smith, K.L.; Eyerman, D.J.; Kelly, J.P.; Roche, M.; Finn, D.P. Hyporesponsivity to mu-opioid receptor agonism in the Wistar-Kyoto rat model of altered nociceptive responding associated with negative affective state. Pain 2021, 162, 405–420. [Google Scholar] [CrossRef]
- Wang, L.; Hou, K.; Wang, H.; Fu, F.; Yu, L. Role of mu-opioid receptor in nociceptive modulation in anterior cingulate cortex of rats. Mol. Pain 2020, 16, 1744806920966144. [Google Scholar] [CrossRef] [PubMed]
- Borsani, E.; Buffoli, B.; Bonazza, V.; Reiter, R.J.; Rezzani, R.; Rodella, L.F. Single Administration of Melatonin Modulates the Nitroxidergic System at the Peripheral Level and Reduces Thermal Nociceptive Hypersensitivity in Neuropathic Rats. Int. J. Mol. Sci. 2017, 18, 2143. [Google Scholar] [CrossRef] [PubMed]
- Piano, I.; Baba, K.; Claudia, G.; Tosini, G. Heteromeric MT1/MT2 melatonin receptors modulate the scotopic electroretinogram via PKCζ in mice. Exp. Eye Res. 2018, 177, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Zahn, P.K.; Lansmann, T.; Berger, E.; Speckmann, E.-J.; Musshoff, U. Gene expression and functional characterization of melatonin receptors in the spinal cord of the rat: Implications for pain modulation. J. Pineal Res. 2003, 35, 24–31. [Google Scholar] [CrossRef]
- Marvizon, J.C.; Chen, W.; Fu, W.; Taylor, B.K. Neuropeptide Y release in the rat spinal cord measured with Y1 receptor internalization is increased after nerve injury. Neuropharmacology 2019, 158, 107732. [Google Scholar] [CrossRef]
- Taiwo, O.B.; Taylor, B.K. Antihyperalgesic effects of intrathecal neuropeptide Y during inflammation are mediated by Y1 receptors. Pain 2002, 96, 353–363. [Google Scholar] [CrossRef]
- Smith, P.A.; Moran, T.D.; Abdulla, F.; Tumber, K.K.; Taylor, B.K. Spinal mechanisms of NPY analgesia. Peptides 2007, 28, 464–474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstic, M.; Jovicic, N.; Selakovic, D.; Krstic, B.; Arsenijevic, N.; Vasiljevic, M.; Milanovic, P.; Milanovic, J.; Milovanovic, D.; Simic, M.; et al. Simultaneous Administration of Hyperbaric Oxygen Therapy and Antioxidant Supplementation with Filipendula ulmaria Extract in the Treatment of Thermal Skin Injuries Alters Nociceptive Signalling and Wound Healing. Medicina 2023, 59, 1676. https://doi.org/10.3390/medicina59091676
Krstic M, Jovicic N, Selakovic D, Krstic B, Arsenijevic N, Vasiljevic M, Milanovic P, Milanovic J, Milovanovic D, Simic M, et al. Simultaneous Administration of Hyperbaric Oxygen Therapy and Antioxidant Supplementation with Filipendula ulmaria Extract in the Treatment of Thermal Skin Injuries Alters Nociceptive Signalling and Wound Healing. Medicina. 2023; 59(9):1676. https://doi.org/10.3390/medicina59091676
Chicago/Turabian StyleKrstic, Milos, Nemanja Jovicic, Dragica Selakovic, Bojana Krstic, Natalija Arsenijevic, Milica Vasiljevic, Pavle Milanovic, Jovana Milanovic, Dragan Milovanovic, Marko Simic, and et al. 2023. "Simultaneous Administration of Hyperbaric Oxygen Therapy and Antioxidant Supplementation with Filipendula ulmaria Extract in the Treatment of Thermal Skin Injuries Alters Nociceptive Signalling and Wound Healing" Medicina 59, no. 9: 1676. https://doi.org/10.3390/medicina59091676
APA StyleKrstic, M., Jovicic, N., Selakovic, D., Krstic, B., Arsenijevic, N., Vasiljevic, M., Milanovic, P., Milanovic, J., Milovanovic, D., Simic, M., Katanic Stankovic, J. S., & Rosic, G. (2023). Simultaneous Administration of Hyperbaric Oxygen Therapy and Antioxidant Supplementation with Filipendula ulmaria Extract in the Treatment of Thermal Skin Injuries Alters Nociceptive Signalling and Wound Healing. Medicina, 59(9), 1676. https://doi.org/10.3390/medicina59091676