Advancements in Standardizing Radiological Reports: A Comprehensive Review
Abstract
:1. Introduction
2. Advantages and Disadvantages of Standardized Radiological Reports
3. Efforts toward Standardization
4. Challenges in Standardized Radiological Reports
5. AI Can Help the Standardization of Report
6. Methods for Structuring Reports from Unstructured Reports
7. 10 Rules to Create a Standardized Report
- Be Clear and Concise
- 2.
- Use Structured Templates
- 3.
- Include Relevant Clinical Information
- 4.
- Provide Contextual Recommendations
- 5.
- Follow Consistent Nomenclature:
- 6.
- Utilize Imaging Protocols:
- 7.
- Incorporate Structured Reporting Elements:
- 8.
- Address Critical Findings Promptly:
- 9.
- Validate and Review Reports:
- 10.
- Update and Evolve:
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rocha, D.M.; Brasil, L.M.; Lamas, J.M.; Luz, G.V.; Bacelar, S.S. Evidence of the benefits, advantages and potentialities of the structured radiological report: An integrative review. Artif. Intell. Med. 2020, 102, 101770. [Google Scholar] [CrossRef]
- Langlotz, C.P. The Radiology Report: A Guide to Thoughtful Communication for Radiologists and Other Medical Professionals; CreateSpace: Scotts Valley, SC, USA, 2015. [Google Scholar]
- Swensen, S.J.; Johnson, C.D. Radiologic Quality and Safety: Mapping Value into Radiology. J. Am. Coll. Radiol. 2005, 2, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F. How scientific mobility can help current and future radiology research: A radiology trainee’s perspective. Insights Imaging 2019, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Radiological Society of North America (RSNA). RadReport. Available online: https://radreport.org/ (accessed on 27 May 2023).
- European Society of Radiology. ESR paper on structured reporting in radiology. Insights Imaging 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Zins, M.; Matos, C.; Cassinotto, C. Pancreatic Adenocarcinoma Staging in the Era of Preoperative Chemotherapy and Radiation Therapy. Radiology 2018, 287, 374–390. [Google Scholar] [CrossRef]
- KSAR Study Group for Rectal Cancer. Essential Items for Structured Reporting of Rectal Cancer MRI: 2016 Consensus Recommendation from the Korean Society of Abdominal Radiology. Korean J. Radiol. 2017, 18, 132–151. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology (ACR). Imaging 3.0. Available online: https://www.acr.org/Practice-Management-Quality-Informatics/Imaging-3 (accessed on 19 February 2023).
- Clinger, N.J.; Hunter, T.B.; Hillman, B.J. Radiology reporting: Attitudes of referring physicians. Radiology 1988, 169, 825–826. [Google Scholar] [CrossRef]
- Schwartz, L.H.; Panicek, D.M.; Berk, A.R.; Li, Y.; Hricak, H.; Juluru, K.; Heilbrun, M.E.; Kohli, M.D.; Rodgers, S.K.; Fetzer, D.T.; et al. Improving Communication of Diagnostic Radiology Findings through Structured Reporting. Radiology 2011, 260, 174–181. [Google Scholar] [CrossRef]
- Johnson, A.J.; Chen, M.Y.; Zapadka, M.E.; Lyders, E.M.; Littenberg, B. Radiology Report Clarity: A Cohort Study of Structured Reporting Compared with Conventional Dictation. J. Am. Coll. Radiol. 2010, 7, 501–506. [Google Scholar] [CrossRef]
- Sippo, D.A.; Birdwell, R.L.; Andriole, K.P.; Raza, S. Quality Improvement of Breast MRI Reports with Standardized Templates for Structured Reporting. J. Am. Coll. Radiol. 2017, 14, 517–520. [Google Scholar] [CrossRef]
- Bosmans, J.M.L.; Neri, E.; Ratib, O.; Kahn, C.E. Structured reporting: A fusion reactor hungry for fuel. Insights Imaging 2015, 6, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Bin Park, S.; Kim, M.-J.; Ko, Y.; Sim, J.Y.; Kim, H.J.; Lee, K.H.; LOCAT Group. Structured Reporting versus Free-Text Reporting for Appendiceal Computed Tomography in Adolescents and Young Adults: Preference Survey of 594 Referring Physicians, Surgeons, and Radiologists from 20 Hospitals. Korean J. Radiol. 2019, 20, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.L.; Langlotz, C.P. Structured Reporting: Patient Care Enhancement or Productivity Nightmare? Radiology 2008, 249, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Langlotz, C.P.; Caldwell, S.A. The Completeness of Existing Lexicons for Representing Radiology Report Information. J. Digit. Imaging 2002, 15 (Suppl. 1), 201–205. [Google Scholar] [CrossRef] [PubMed]
- Pisano, E.D.; Gatsonis, C.; Hendrick, E.; Yaffe, M.; Baum, J.K.; Acharyya, S.; Conant, E.F.; Fajardo, L.L.; Bassett, L.; D’Orsi, C.; et al. Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening. N. Engl. J. Med. 2005, 353, 1773–1783. [Google Scholar] [CrossRef]
- Nobel, J.M.; Kok, E.M.; Robben, S.G.F. Redefining the structure of structured reporting in radiology. Insights Imaging 2020, 11, 10. [Google Scholar] [CrossRef]
- Marcovici, P.A.; Taylor, G.A. Journal Club: Structured Radiology Reports Are More Complete and More Effective Than Unstructured Reports. Am. J. Roentgenol. 2014, 203, 1265–1271. [Google Scholar] [CrossRef]
- Larson, D.B.; Towbin, A.J.; Pryor, R.M.; Donnelly, L.F. Improving Consistency in Radiology Reporting through the Use of Department-wide Standardized Structured Reporting. Radiology 2013, 267, 240–250. [Google Scholar] [CrossRef]
- Burns, J.; Catanzano, T.M.; Schaefer, P.W.; Agarwal, V.; Kim, D.; Goiffon, R.J.; Jordan, S.G. Structured Reports and Radiology Residents: Friends or Foes? Acad. Radiol. 2022, 29 (Suppl. 5), S43–S47. [Google Scholar] [CrossRef]
- Scheinfeld, M.H.; Kaplun, O.; Simmons, N.A.; Sterman, J.; Goldberg-Stein, S. Implementing a Software Solution Across Multiple Ultrasound Vendors to Auto-fill Reports with Measurement Values. Curr. Probl. Diagn. Radiol. 2019, 48, 216–219. [Google Scholar] [CrossRef]
- Lu, M.T.; Rosman, D.A.; Wu, C.C.; Gilman, M.D.; Harvey, H.B.; Gervais, D.A.; Alkasab, T.K.; Shepard, J.-A.O.; Boland, G.W.; Pandharipande, P.V. Radiologist Point-of-Care Clinical Decision Support and Adherence to Guidelines for Incidental Lung Nodules. J. Am. Coll. Radiol. 2016, 13, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.; Young, S.; Natarajan, S. MRI–ultrasound fusion for guidance of targeted prostate biopsy. Curr. Opin. Urol. 2013, 23, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Beesley, S.D.; Patrie, J.T.; Gaskin, C.M. Radiologist Adoption of Interactive Multimedia Reporting Technology. J. Am. Coll. Radiol. 2019, 16, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Komarraju, A.M.; Van Rilland, E.Z.; Gebhardt, M.C.; Anderson, M.E.; Heincelman, C.; Wu, J.S. What is the Value of Radiology Input During a Multidisciplinary Orthopaedic Oncology Conference? Clin. Orthop. Relat. Res. 2023. [Google Scholar] [CrossRef]
- D’Orsi, C.J.; Sickles, E.A.; Mendelson, E.B.; Morris, E.A. ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System, V ed; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- American College of Radiology (ACR). Prostate Imaging Reporting & Data System (PI-RADS). 2019. Available online: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS (accessed on 15 August 2023).
- American College of Radiology (ACR). Ovarian-Adnexal Reporting & Data System (O-RADS). 2019. Available online: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/O-Rads (accessed on 15 August 2023).
- Lazarus, E.; Mainiero, M.B.; Schepps, B.; Koelliker, S.L.; Livingston, L.S. BI-RADS Lexicon for US and Mammography: Interobserver Variability and Positive Predictive Value. Radiology 2006, 239, 385–391. [Google Scholar] [CrossRef]
- Snoek, J.; Nagtegaal, I.; Siesling, S.; van den Broek, E.; van Slooten, H.; Hugen, N. The impact of standardized structured reporting of pathology reports for breast cancer care. Breast 2022, 66, 178–182. [Google Scholar] [CrossRef]
- De Rooij, M.; Hamoen, E.H.J.; Fütterer, J.J.; Barentsz, J.O.; Rovers, M.M. Accuracy of multiparametric MRI for prostate cancer detection: A meta-analysis. Am. J. Roentgenol. 2014, 202, 343–351. [Google Scholar] [CrossRef]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Almeida, G.L.; Petralia, G.; Ferro, M.; Ribas, C.A.P.M.; Detti, S.; Jereczek-Fossa, B.A.; Tagliabue, E.; Matei, D.V.; Coman, I.; De Cobelli, O. Role of Multi-Parametric Magnetic Resonance Image and PIRADS Score in Patients with Prostate Cancer Eligible for Active Surveillance According PRIAS Criteria. Urol. Int. 2016, 96, 459–469. [Google Scholar] [CrossRef]
- Pesapane, F.; Standaert, C.; De Visschere, P.; Villeirs, G. T-staging of prostate cancer: Identification of useful signs to standardize detection of posterolateral extraprostatic extension on prostate MRI. Clin. Imaging 2019, 59, 1–7. [Google Scholar] [CrossRef]
- Araruna Bezerra de Melo, R.; Menis, F.; Calsavara, V.F.; Stefanini, F.S.; Novaes, T.; Saieg, M. The impact of the use of the ACR-TIRADS as a screening tool for thyroid nodules in a cancer center. Diagn. Cytopathol. 2022, 50, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Langlotz, C.P. RadLex: A New Method for Indexing Online Educational Materials. RadioGraphics 2006, 26, 1595–1597. [Google Scholar] [CrossRef] [PubMed]
- Al-Hawary, M.M.; Francis, I.R.; Chari, S.T.; Fishman, E.K.; Hough, D.M.; Lu, D.S.; Macari, M.; Megibow, A.J.; Miller, F.H.; Mortele, K.J.; et al. Pancreatic Ductal Adenocarcinoma Radiology Reporting Template: Consensus Statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology 2014, 270, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Frija, G.; Radiology, T.E.S.O.; Hoeschen, C.; Granata, C.; Vano, E.; Paulo, G.; Damilakis, J.; Donoso, L.; Bonomo, L.; Loose, R.; et al. ESR EuroSafe Imaging and its role in promoting radiation protection—6 years of success. Insights Imaging 2021, 12, 3. [Google Scholar] [CrossRef]
- Jenkins, P.; Coates, P.; Fong, J.; Eccles, A.; Drake, L.; Hudson, T. New concept: “TARN friendly trauma reporting” (what radiologists say really does matter). Clin. Radiol. 2021, 76, 571–575. [Google Scholar] [CrossRef]
- Royal College of Radiology (RCR). Available online: https://www.rcr.ac.uk/publication/standards-interpretation-and-reporting-imaging-investigations-second-edition (accessed on 28 May 2023).
- Reiner, B.I.; Knight, N.; Siegel, E.L. Radiology Reporting, Past, Present, and Future: The Radiologist’s Perspective. J. Am. Coll. Radiol. 2007, 4, 313–319. [Google Scholar] [CrossRef]
- Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 35. [Google Scholar] [CrossRef]
- Goldberg-Stein, S.; Chernyak, V. Adding Value in Radiology Reporting. J. Am. Coll. Radiol. 2019, 16 (Pt B), 1292–1298. [Google Scholar] [CrossRef]
- Carrodeguas, E.; Lacson, R.; Swanson, W.; Khorasani, R. Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports. J. Am. Coll. Radiol. 2019, 16, 336–343. [Google Scholar] [CrossRef]
- Derevianko, A.; Pizzoli, S.F.M.; Pesapane, F.; Rotili, A.; Monzani, D.; Grasso, R.; Cassano, E.; Pravettoni, G. The Use of Artificial Intelligence (AI) in the Radiology Field: What Is the State of Doctor–Patient Communication in Cancer Diagnosis? Cancers 2023, 15, 470. [Google Scholar] [CrossRef]
- Pesapane, F.; Rotili, A.; Valconi, E.; Agazzi, G.M.; Montesano, M.; Penco, S.; Nicosia, L.; Bozzini, A.; Meneghetti, L.; Latronico, A.; et al. Women’s perceptions and attitudes to the use of AI in breast cancer screening: A survey in a cancer referral centre. Br. J. Radiol. 2023, 96, 20220569. [Google Scholar] [CrossRef] [PubMed]
- Sirshar, M.; Paracha, M.F.K.; Akram, M.U.; Alghamdi, N.S.; Zaidi, S.Z.Y.; Fatima, T. Attention based automated radiology report generation using CNN and LSTM. PLoS ONE 2022, 17, e0262209. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Mittal, A. CADxReport: Chest x-ray report generation using co-attention mechanism and reinforcement learning. Comput. Biol. Med. 2022, 145, 105498. [Google Scholar] [CrossRef]
- Paalvast, O.; Nauta, M.; Koelle, M.; Geerdink, J.; Vijlbrief, O.; Hegeman, J.H.; Seifert, C. Radiology report generation for proximal femur fractures using deep classification and language generation models. Artif. Intell. Med. 2022, 128, 102281. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.E.W.; Pollard, T.J.; Berkowitz, S.J.; Greenbaum, N.R.; Lungren, M.P.; Deng, C.-Y.; Mark, R.G.; Horng, S. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data 2019, 6, 317. [Google Scholar] [CrossRef]
- Powell, D.K.; Silberzweig, J.E. State of Structured Reporting in Radiology, a Survey. Acad. Radiol. 2015, 22, 226–233. [Google Scholar] [CrossRef]
- Jungmann, F.; Arnhold, G.; Kämpgen, B.; Jorg, T.; Düber, C.; Mildenberger, P.; Kloeckner, R. A Hybrid Reporting Platform for Extended RadLex Coding Combining Structured Reporting Templates and Natural Language Processing. J. Digit. Imaging 2020, 33, 1026–1033. [Google Scholar] [CrossRef]
- Casey, A.; Davidson, E.; Poon, M.; Dong, H.; Duma, D.; Grivas, A.; Grover, C.; Suárez-Paniagua, V.; Tobin, R.; Whiteley, W.; et al. A systematic review of natural language processing applied to radiology reports. BMC Med. Inform. Decis. Mak. 2021, 21, 179. [Google Scholar] [CrossRef]
- Jorg, T.; Kämpgen, B.; Feiler, D.; Müller, L.; Düber, C.; Mildenberger, P.; Jungmann, F. Efficient structured reporting in radiology using an intelligent dialogue system based on speech recognition and natural language processing. Insights Imaging 2023, 14, 47. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesapane, F.; Tantrige, P.; De Marco, P.; Carriero, S.; Zugni, F.; Nicosia, L.; Bozzini, A.C.; Rotili, A.; Latronico, A.; Abbate, F.; et al. Advancements in Standardizing Radiological Reports: A Comprehensive Review. Medicina 2023, 59, 1679. https://doi.org/10.3390/medicina59091679
Pesapane F, Tantrige P, De Marco P, Carriero S, Zugni F, Nicosia L, Bozzini AC, Rotili A, Latronico A, Abbate F, et al. Advancements in Standardizing Radiological Reports: A Comprehensive Review. Medicina. 2023; 59(9):1679. https://doi.org/10.3390/medicina59091679
Chicago/Turabian StylePesapane, Filippo, Priyan Tantrige, Paolo De Marco, Serena Carriero, Fabio Zugni, Luca Nicosia, Anna Carla Bozzini, Anna Rotili, Antuono Latronico, Francesca Abbate, and et al. 2023. "Advancements in Standardizing Radiological Reports: A Comprehensive Review" Medicina 59, no. 9: 1679. https://doi.org/10.3390/medicina59091679
APA StylePesapane, F., Tantrige, P., De Marco, P., Carriero, S., Zugni, F., Nicosia, L., Bozzini, A. C., Rotili, A., Latronico, A., Abbate, F., Origgi, D., Santicchia, S., Petralia, G., Carrafiello, G., & Cassano, E. (2023). Advancements in Standardizing Radiological Reports: A Comprehensive Review. Medicina, 59(9), 1679. https://doi.org/10.3390/medicina59091679