Deciphering the Role of ERBB3 Isoforms in Renal Cell Carcinoma: A Comprehensive Genomic and Transcriptomic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medical Samples
2.2. Examining the UCSC Cancer Genomics Browser
2.3. Measurement of ERBB3 Isoforms Using SUPPA2
2.4. Isoform Analysis of ERBB3 Making Use of the cBioPortal Database
2.5. Analysis of CIBERSORT Deconvolution
2.6. Gene Set Enrichment
2.7. Reverse Transcription Polymerase Chain Reaction (RT-PCR)
2.8. Statistical Analysis
3. Results
3.1. Investigation of ERBB3 Isoform Expression in RCC Using SUPPA2
3.2. Comparative Analysis of uc001sjh.3 and uc001sjl.3 Isoforms Regarding Cancer Prognosis and Patient Survival
3.3. CIBERSORTx and Gene Set Enrichment Analysis (GSEA) to Elucidate the Relationship between ERBB3 Isoforms and Immune Cell Profiles in Cancer Progression
3.4. Expression Changes in Specific Exon Regions of ERBB3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17009. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Campbell, S.C.; Escudier, B. Renal cell carcinoma. Lancet 2009, 373, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, B.; Hanbury, D.C.; Kuczyk, M.A.; Merseburger, A.S.; Mulders, P.F.; Patard, J.-J.; Sinescu, I.C. Renal cell carcinoma guideline. Eur. Urol. 2007, 51, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; Gao, J.; Rathmell, W.K. Renal cell carcinoma. BMJ 2014, 349, g4797. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Tian, F.; Guo, F.; Zhang, F.; Zhang, H.; Ji, J.; Zhao, L.; He, J.; Xiao, Y.; Li, L. Circulating exosomal mRNA signatures for the early diagnosis of clear cell renal cell carcinoma. BMC Med. 2022, 20, 270. [Google Scholar] [CrossRef]
- Cochetti, G.; Cari, L.; Maulà, V.; Cagnani, R.; Paladini, A.; Del Zingaro, M.; Nocentini, G.; Mearini, E. Validation in an independent cohort of MiR-122, MiR-1271, and MiR-15b as urinary biomarkers for the potential early diagnosis of clear cell renal cell carcinoma. Cancers 2022, 14, 1112. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, H.; Kanda, Y.; Sejima, T.; Osaki, M.; Okada, F.; Takenaka, A. Serum miR-210 as a potential biomarker of early clear cell renal cell carcinoma. Int. J. Oncol. 2014, 44, 53–58. [Google Scholar] [CrossRef]
- Golovastova, M.O.; Korolev, D.O.; Tsoy, L.V.; Varshavsky, V.A.; Xu, W.-H.; Vinarov, A.Z.; Zernii, E.Y.; Philippov, P.P.; Zamyatnin, A.A. Biomarkers of renal tumors: The current state and clinical perspectives. Curr. Urol. Rep. 2017, 18, 3. [Google Scholar] [CrossRef]
- Toulany, M.; Rodemann, H.P. Potential of Akt mediated DNA repair in radioresistance of solid tumors overexpressing erbB-PI3K-Akt pathway. Transl. Cancer Res. 2013, 2, 190–202. [Google Scholar]
- Bai, S.; Xiong, X.; Tang, B.; Ji, T.; Li, X.; Qu, X.; Li, W. Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-κB/MMP-2 axis. Cell Death Dis. 2020, 11, 1008. [Google Scholar] [CrossRef]
- Melenhorst, W.B.; Mulder, G.M.; Xi, Q.; Hoenderop, J.G.; Kimura, K.; Eguchi, S.; van Goor, H. Epidermal growth factor receptor signaling in the kidney: Key roles in physiology and disease. Hypertension 2008, 52, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Ye, X.-C.; Chu, K.; Navone, N.M.; Sage, E.H.; Yu-Lee, L.-Y.; Logothetis, C.J.; Lin, S.-H. A secreted isoform of ErbB3 promotes osteonectin expression in bone and enhances the invasiveness of prostate cancer cells. Cancer Res. 2007, 67, 6544–6548. [Google Scholar] [CrossRef]
- Kim, C.K.; Lee, S.B.; Nguyen, T.L.; Lee, K.-H.; Um, S.H.; Kim, J.; Ahn, J.-Y. Long isoform of ErbB3 binding protein, p48, mediates protein kinase B/Akt-dependent HDM2 stabilization and nuclear localization. Exp. Cell Res. 2012, 318, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Sithanandam, G.; Anderson, L. The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther. 2008, 15, 413–448. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Ma, J.; Lyu, H.; Huang, J.; Kim, A.; Liu, B. Role of erbB3 receptors in cancer therapeutic resistance. Acta Biochim. Biophys. Sin. 2014, 46, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Chang, Y.; Rios, A.; An, Z. HER3/ErbB3, an emerging cancer therapeutic target. Acta Biochim. Biophys. Sin. 2016, 48, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef]
- Karolchik, D.; Baertsch, R.; Diekhans, M.; Furey, T.S.; Hinrichs, A.; Lu, Y.; Roskin, K.M.; Schwartz, M.; Sugnet, C.W.; Thomas, D.J. The UCSC genome browser database. Nucleic Acids Res. 2003, 31, 51–54. [Google Scholar] [CrossRef]
- Hsu, F.; Kent, W.J.; Clawson, H.; Kuhn, R.M.; Diekhans, M.; Haussler, D. The UCSC known genes. Bioinformatics 2006, 22, 1036–1046. [Google Scholar] [CrossRef]
- Trincado, J.L.; Entizne, J.C.; Hysenaj, G.; Singh, B.; Skalic, M.; Elliott, D.J.; Eyras, E. SUPPA2: Fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 2018, 19, 40. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, M.; Robinson, M.D. DRIMSeq: A Dirichlet-multinomial framework for multivariate count outcomes in genomics. F1000Res. 2016, 5, 1356. [Google Scholar] [CrossRef] [PubMed]
- Vitting-Seerup, K.; Sandelin, A. IsoformSwitchAnalyzeR: Analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics 2019, 35, 4469–4471. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. In Cancer Systems Biology: Methods and Protocols; Humana: Louisville, KY, USA, 2018; pp. 243–259. [Google Scholar]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
NO. | Patient ID | Laterality | Type of Surgery | Histologic Subtype | Tumor Size | Nucleolar Grade (WHO/ISUP) | Tumor Necrosis | Pathologic Stage (AJCC 2017): |
---|---|---|---|---|---|---|---|---|
#1 | KC-9 | right | radical nephrectomy | clear cell type | 3.5 cm | 2/4 | 0% | pT3aNx |
#2 | KC-10 | right | radical nephrectomy | clear cell type | 3 cm | 2/4 | 0% | pT1aNx |
#3 | KC-11 | right | partial nephrectomy | clear cell type | 9.1 cm | 3/4 | 10% | PT3bNx |
#4 | KC-12 | left | radical nephrectomy | clear cell type | 2 cm | 2/4 | 0% | pT1aNx |
#5 | KC-13 | left | radical nephrectomy | clear cell type | 2.8 cm | 2/4 | 0% | pT1aNx |
#6 | KC-14 | left | partial nephrectomy | clear cell type | 7.2 cm | 3/4 | 5% | pT2aNx |
#7 | KC-15 | right | partial nephrectomy | clear cell type | 8 cm | 3/4 | 10% | pT3aNx |
#8 | KC-16 | right | radical nephrectomy | papillary type 1 | 1.5 cm | 3/4 | 5% | pT1aNx |
#9 | KC-17 | right | radical nephrectomy | clear cell type | 1.8 cm | 3/4 | 10% | pT1aNx |
#10 | KC-20 | left | radical nephrectomy | clear cell type | 1.5 cm | 3/4 | 0% | pT1aNx |
#11 | KC-21 | right | radical nephrectomy | clear cell type | 1.4 cm | 2/4 | 0% | pT1aNx |
#12 | KC-22 | left | radical nephrectomy | papillary type 2 | 2.8 cm | 3/4 | 0% | pT1aNx |
#13 | KC-23 | right | partial nephrectomy | clear cell type | 2.5 cm | 2/4 | 3% | pT3aNx |
#14 | KC-24 | left | partial nephrectomy | leiomyoma | 7 cm | 4/4 | 10% | ypT3a |
#15 | KC-26 | left | partial nephrectomy | clear cell type | 2.2 cm | 2/4 | 0% | pT1aNx |
#16 | KC-27 | left | radical nephrectomy | clear cell type | 1.1 cm | 2/4 | 0% | pT1aNx |
#17 | KC-28 | left | radical nephrectomy | clear cell type | 2.5 cm | 3/4 | 0% | pT1aNx |
#18 | KC-29 | left | radical nephrectomy | clear cell type | 4.4 cm | 4/4 | 60% | pT1bNx |
#19 | KC-32 | left | partial nephrectomy | clear cell type | 2.2 cm | 2/4 | 10% | pT1aNx |
#20 | KC-36 | right | partial nephrectomy | clear cell type | 3.5 cm | 4/4 | 10% | pT1aNx |
#21 | KC-37 | left | radical nephrectomy | clear cell type | 7.8 cm | 4/4 | 20% | pT3aNx |
#22 | KC-38 | left | partial nephrectomy | clear cell type | 3.5 cm | 4/4 | 10% | pT1aNx |
#23 | KC-43 | left | radical nephrectomy | clear cell type | 4.5 cm | 3/4 | 10% | pT1bNx |
#24 | KC-51 | left | partial nephrectomy | clear cell type | 3.6 cm | 3/4 | 10% | pT1aNx |
#25 | KC-52 | left | radical nephrectomy | clear cell type | 8.8 cm | 3/4 | 10% | pT2aNx |
#26 | KC-57 | right | partial nephrectomy | clear cell type | 3.8 cm | 3/4 | 10% | pT3aNx |
Genes | Sequence (5′-3′) | Annealing Temperature (°C) | |
---|---|---|---|
18S | Forward Reverse | 5’-CTGCCCTATCAACTTTCGATGGTA-3’ 5’-CCGTTTCTCAGGCTCCCTCTC-3’ | 54 °C |
ERBB3 23 Exon | Forward Reverse | 5’-TGATGACCTTCGGGGCAGAG-3’ 5’-CATCAATTGTGCAGATCTGGGG-3’ | 57 °C |
ERBB3 21 Exon | Forward | 5′-ATGGTGCATAGAAACCTGGCT-3′ | 55 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Lee, H.H.; Won, S.D.; Jang, Y.; Kim, B.G.; Cho, N.H.; Choi, Y.D.; Chung, J.S.; Han, H.H. Deciphering the Role of ERBB3 Isoforms in Renal Cell Carcinoma: A Comprehensive Genomic and Transcriptomic Analysis. Medicina 2024, 60, 181. https://doi.org/10.3390/medicina60010181
Kim M, Lee HH, Won SD, Jang Y, Kim BG, Cho NH, Choi YD, Chung JS, Han HH. Deciphering the Role of ERBB3 Isoforms in Renal Cell Carcinoma: A Comprehensive Genomic and Transcriptomic Analysis. Medicina. 2024; 60(1):181. https://doi.org/10.3390/medicina60010181
Chicago/Turabian StyleKim, Mingyu, Hyung Ho Lee, So Dam Won, YeonSue Jang, Baek Gil Kim, Nam Hoon Cho, Young Deuk Choi, Jin Soo Chung, and Hyun Ho Han. 2024. "Deciphering the Role of ERBB3 Isoforms in Renal Cell Carcinoma: A Comprehensive Genomic and Transcriptomic Analysis" Medicina 60, no. 1: 181. https://doi.org/10.3390/medicina60010181
APA StyleKim, M., Lee, H. H., Won, S. D., Jang, Y., Kim, B. G., Cho, N. H., Choi, Y. D., Chung, J. S., & Han, H. H. (2024). Deciphering the Role of ERBB3 Isoforms in Renal Cell Carcinoma: A Comprehensive Genomic and Transcriptomic Analysis. Medicina, 60(1), 181. https://doi.org/10.3390/medicina60010181