Androgen Deprivation Therapy for Prostate Cancer: Focus on Cognitive Function and Mood
Abstract
:1. Introduction
2. ADT Materials and Methods
3. ADT as Treatment for Metastatic Prostate Cancer
3.1. Indications for ADT
3.2. ADT Medications and Their Mechanism of Action
3.3. ADT Risks and Side Effects
3.3.1. Overview of Side Effects
3.3.2. Hot Flushes
3.3.3. Sexual Dysfunction
3.3.4. Bone Density
3.3.5. Cardiovascular Effects of ADT
4. Testosterone Impact on Cognition, Mood, and Energy
5. ADT, Cognition, and Mood
5.1. The Controversy
5.2. Neurocognitive Tests
Cognitive Test | Description | Domains Tested | Scoring Method | References |
---|---|---|---|---|
MoCA | A brief cognitive screening tool with high sensitivity and specificity for detecting MCI. | (1) Memory, (2) executive functioning, (3) attention, (4) language, (5) visuospatial, and (6) orientation | 30-point total. Lower score indicates poorer performance | [98,99,100,101] |
MMSE | Well-validated assessment of cognitive function. Takes approximately 10–15 min to administer. | (1) Orientation, (2) immediate memory, (3) attention/concentration, (4) delayed recall, (5) language | 30-point total. Lower score indicates poorer performance | [104,105,106,107] |
Mini-Cog | Cognitive screening tool that takes about 3 min to administer. Used in various healthcare settings. Has 2 components: 3-word recall and clock drawing. | (1) Cognitive function, (2) memory, (3) language comprehension, (4) visual-motor skills, (5) executive function | Recall graded on a scale of 1 to 3. Clock draw graded 0 or 2. Total score of 2 or below indicates a positive dementia screen. Total score of 3 or above is negative | [109] |
N-back test | Test of working memory capacity. Participants required to integrate and recall stimulus sequences presented in a specific order. | Working memory with either visual or auditory presentation | Score calculated by dividing mean correct response times by proportion of hits for each participant and for each level of N-back | [110,111,112] |
CogState Brief Battery | A brief computerized test with 4 tasks and simple “yes” or “no” answers | Psychomotor function, attention, working memory, and memory | For the psychomotor, attention, and working memory tasks, scores are the log10 transformed mean response times of correct trials. For short-term memory task, scores are the arcsine of the square root of the proportion of correct responses | [114] |
5.3. ADT Impact on Cognition
5.4. ADT Impact on Mood
5.5. ADT and Fatigue
6. ADT Impact on Quality of Life
7. Possible Mechanisms Involved in Effect of ADT on Cognition
7.1. Changes to the Hypothalamus and Corpus Callosum
7.2. Potential Association between Cytokine Release and Cognitive Deficits
8. Is There a Relationship between ADT and Alzheimer’s Disease?
9. Limitations
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitsogianni, M.; Papatsoris, A.; Bala, V.M.; Issa, H.; Moussa, M.; Mitsogiannis, I. An overview of hormonal directed pharmacotherapy for the treatment of prostate cancer. Expert Opin. Pharmacother. 2023, 24, 1765–1774, Advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Schröder, F.; Crawford, E.D.; Axcrona, K.; Payne, H.; Keane, T.E. Androgen deprivation therapy: Past, present and future. BJU Int. 2012, 109, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Huggins, C.; Hodges, C.V. Studies on prostate cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941, 1, 293–297. [Google Scholar]
- Taitt, H.E. Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location. Am. J. Mens Health 2018, 12, 1807–1823. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, B.; He, M.; Wang, Y.; Wang, Z.; Du, L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries From 2000 to 2019. Front. Public Health 2022, 10, 811044. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.L.; Alibhai, S.M.; Basaria, S.; D’Amico, A.V.; Kantoff, P.W.; Keating, N.L.; Penson, D.F.; Rosario, D.J.; Tombal, B.; Smith, M.R. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur. Urol. 2015, 67, 825–836. [Google Scholar] [CrossRef]
- Zitzmann, M. Testosterone, mood, behaviour and quality of life. Andrology 2020, 8, 1598–1605. [Google Scholar] [CrossRef]
- Bennett, C.L.; Tosteson, T.D.; Schmitt, B.; Weinberg, P.D.; Ernstoff, M.S.; Ross, S.D. Maximum androgen-blockade with medical or surgical castration in advanced prostate cancer: A meta-analysis of nine published randomized controlled trials and 4128 patients using flutamide. Prostate Cancer Prostatic Dis. 1999, 2, 4–8. [Google Scholar] [CrossRef]
- Mandel, P.; Hoeh, B.; Wenzel, M.; Preisser, F.; Tian, Z.; Tilki, D.; Steuber, T.; Karakiewicz, P.I.; Chun, F.K.H. Triplet or Doublet Therapy in Metastatic Hormone-sensitive Prostate Cancer Patients: A Systematic Review and Network Meta-analysis. Eur. Urol. Focus 2023, 9, 96–105. [Google Scholar] [CrossRef]
- Hall, M.E.; Huelster, H.L.; Luckenbaugh, A.N.; Laviana, A.A.; Keegan, K.A.; Klaassen, Z.; Moses, K.A.; Wallis, C.J.D. Metastatic hormone-sensitive prostate cancer: Current perspective on the evolving therapeutic landscape. Onco. Targets Ther. 2020, 13, 3571–3581. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2021, 79, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.J.; Azad, A.A.; Iguchi, T.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Alcaraz, A.; Alekseev, B.; Shore, N.D.; et al. Improved Survival With Enzalutamide in Patients With Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. 2022, 40, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Mell, L.K.; Pugh, S.L.; Jones, C.U.; Nelson, T.J.; Zakeri, K.; Rose, B.S.; Zeitzer, K.L.; Gore, E.M.; Bahary, J.P.; Souhami, L.; et al. Effects of Androgen Deprivation Therapy on Prostate Cancer Outcomes According to Competing Event Risk: Secondary Analysis of a Phase 3 Randomised Trial. Eur. Urol. 2023, in press. [CrossRef] [PubMed]
- Tobiansky, D.J.; Wallin-Miller, K.G.; Floresco, S.B.; Wood, R.I.; Soma, K.K. Androgen Regulation of the Mesocorticolimbic System and Executive Function. Front. Endocrinol. 2018, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Giatti, S.; Garcia-Segura, L.M.; Barreto, G.E.; Melcangi, R.C. Neuroactive steroids, neurosteroidogenesis and sex. Prog. Neurobiol. 2019, 176, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Janowsky, J.S. The role of androgens in cognition and brain aging in men. Neuroscience 2006, 138, 1015–1020. [Google Scholar] [CrossRef]
- Resnick, S.M.; Matsumoto, A.M.; Stephens-Shields, A.J.; Ellenberg, S.S.; Gill, T.M.; Shumaker, S.A.; Pleasants, D.D.; Barrett-Connor, E.; Bhasin, S.; Cauley, J.A.; et al. Testosterone Treatment and Cognitive Function in Older Men With Low Testosterone and Age-Associated Memory Impairment. JAMA 2017, 317, 717–727. [Google Scholar] [CrossRef]
- Nieschlag, E.; Nieschlag, S. Endocrine history: The history of discovery, synthesis and development of testosterone for clinical use. Eur. J. Endocrinol. 2019, 180, R201–R212. [Google Scholar] [CrossRef]
- Ng, K.; Smith, S.; Shamash, J. Metastatic Hormone-Sensitive Prostate Cancer (mHSPC): Advances and Treatment Strategies in the First-Line Setting. Oncol. Ther. 2020, 8, 209–230. [Google Scholar] [CrossRef]
- Rice, M.A.; Malhotra, S.V.; Stoyanova, T. Second-Generation Antiandrogens: From Discovery to Standard of Care in Castration Resistant Prostate Cancer. Front. Oncol. 2019, 9, 801. [Google Scholar] [CrossRef]
- Gim, H.J.; Park, J.; Jung, M.E.; Houk, K.N. Conformational dynamics of androgen receptors bound to agonists and antagonists. Sci. Rep. 2021, 11, 15887. [Google Scholar] [CrossRef] [PubMed]
- Rehman, Y.; Rosenberg, J.E. Abiraterone acetate: Oral androgen biosynthesis inhibitor for treatment of castration-resistant prostate cancer. Drug Des. Devel. Ther. 2012, 6, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yeh, S.; Niu, Y.; Li, G.; Zheng, J.; Li, L.; Chang, C. Targeting androgen receptor versus targeting androgens to suppress castration resistant prostate cancer. Cancer Lett. 2017, 397, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.; McManus, J.M.; Sharifi, N. Hormonal Therapy for Prostate Cancer. Endocr. Rev. 2021, 42, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Mitsiades, N.; Kaochar, S. Androgen receptor signaling inhibitors: Post-chemotherapy, pre-chemotherapy and now in castration-sensitive prostate cancer. Endocr. Relat. Cancer 2021, 28, T19–T38. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, N.; Gulley, J.L.; Dahut, W.L. Androgen deprivation therapy for prostate cancer. JAMA 2005, 294, 238–244. [Google Scholar] [CrossRef]
- McGinty, H.L.; Phillips, K.M.; Jim, H.S.; Cessna, J.M.; Asvat, Y.; Cases, M.G.; Small, B.J.; Jacobsen, P.B. Cognitive functioning in men receiving androgen deprivation therapy for prostate cancer: A systematic review and meta-analysis. Support. Care Cancer 2014, 22, 2271–2280. [Google Scholar] [CrossRef]
- Corona, G.; Filippi, S.; Comelio, P.; Bianchi, N.; Frizza, F.; Dicuio, M.; Rastrelli, G.; Concetti, S.; Sforza, A.; Vignozzi, L.; et al. Sexual function in men undergoing androgen deprivation therapy. Int. J. Impot. Res. 2021, 33, 439–447. [Google Scholar] [CrossRef]
- Russell, N.; Hoermann, R.; Cheung, A.S.; Zajac, J.D.; Grossmann, M. Effects of oestradiol treatment on hot flushes in men undergoing androgen deprivation therapy for prostate cancer: A randomised placebo-controlled trial. Eur. J. Endocrinol. 2022, 187, 617–627. [Google Scholar] [CrossRef]
- Bargiota, A.; Oeconomou, A.; Zachos, I.; Samarinas, M.L.; Pisters, L.; Tzortzis, V. Adverse effects of androgen deprivation therapy in patients with prostate cancer: Focus on muscle and bone health. J. BUON 2020, 25, 1286–1294. [Google Scholar]
- O’Farrell, S.; Garmo, H.; Holmberg, L.; Adolfsson, J.; Stattin, P.; Van Hemelrijck, M. Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J. Clin. Oncol. 2015, 33, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.; Mahon, S.M.; Lubejko, B.G.; Ginex, P.K. Hot Flashes: Clinical Summary of the ONS Guidelines™ for Cancer Treatment-Related Hot Flashes in Women With Breast Cancer and Men With Prostate Cancer. Clin. J. Oncol. Nurs. 2020, 24, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Lewis, R.; Hughes, S. Managing Hot Flushes in Men Receiving Androgen Deprivation Therapy for Prostate Cancer. Trends Urol. Men’s Health 2014, 5, 31–33. [Google Scholar] [CrossRef]
- Wibowo, E.; Schellhammer, P.; Wassersug, R.J. Role of estrogen in normal male function: Clinical implications for patients with prostate cancer on androgen deprivation therapy. J. Urol. 2011, 185, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Schellhammer, P.F.; Corman, J.M.; Glodé, L.M.; Hall, S.J.; Whitmore, J.B.; Frohlich, M.W.; Penson, D.F. Quality of life after sipuleucel-T therapy: Results from a randomized, double-blind study in patients with androgen-dependent prostate cancer. Urology 2013, 82, 410–415. [Google Scholar] [CrossRef]
- Kaplan, I.; Bubley, G.J.; Bhatt, R.S.; Taplin, M.E.; Dowling, S.; Mahoney, K.; Werner, E.; Nguyen, P. Enzalutamide With Radiation Therapy for Intermediate-Risk Prostate Cancer: A Phase 2 Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1416–1422. [Google Scholar] [CrossRef]
- Hussain, A.; Jiang, S.; Varghese, D.; Appukkuttan, S.; Kebede, N.; Gnanasakthy, K.; Macahilig, C.; Waldeck, R.; Corman, S. Real-world burden of adverse events for apalutamide- or enzalutamide-treated non-metastatic castration-resistant prostate cancer patients in the United States. BMC Cancer 2022, 22, 304. [Google Scholar] [CrossRef]
- Allan, C.A.; Collins, V.R.; Frydenberg, M.; McLachlan, R.I.; Matthiesson, K.L. Androgen deprivation therapy complications. Endocr. Relat. Cancer 2014, 21, T119–T129. [Google Scholar] [CrossRef]
- Fisher, W.I.; Johnson, A.K.; Elkins, G.R.; Otte, J.L.; Burns, D.S.; Yu, M.; Carpenter, J.S. Risk factors, pathophysiology, and treatment of hot flashes in cancer. CA Cancer J. Clin. 2013, 63, 167–192. [Google Scholar] [CrossRef]
- Russell, N.; Hoermann, R.; Cheung, A.S.; Zajac, J.d.; Handelsman, D.J.; Grossman, M. Short-term effects of transdermal estradiol in men undergoing androgen deprivation therapy for prostate cancer: A randomized placebo-controlled trial. Eur. J. Endocrinol. 2018, 178, 565–576. [Google Scholar] [CrossRef]
- Kouriefs, C.; Georgiou, M.; Ravi, R. Hot flushes and prostate cancer: Pathogenesis and treatment. BJU Int. 2002, 89, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Qan’ir, Y.; DeDeaux, D.; Godley, P.A.; Mayer, D.K.; Song, L. Management of Androgen Deprivation Therapy-Associated Hot Flashes in Men With Prostate Cancer. Oncol. Nurs. Forum. 2019, 46, E107–E118. [Google Scholar] [CrossRef] [PubMed]
- Crabb, S.; Morgan, A.; Hunter, M.S.; Stefanopoulou, E.; Griffiths, G.; Richardson, A.; Fenlon, D.; Fleure, L.; Raftery, J.; Boxall, C.; et al. A multicentre randomised controlled trial of a guided self-help cognitive behavioural therapy to MANage the impact of hot flushes and night sweats in patients with prostate CANcer undergoing androgen deprivation therapy (MANCAN2). Trials 2023, 24, 450. [Google Scholar] [CrossRef] [PubMed]
- Gryzinski, G.M.; Fustok, J.; Raheem, O.M.; Bernie, H.L. Sexual Function in Men Undergoing Androgen Deprivation Therapy. Androg. Clin. Res. Ther. 2022, 3, 149–158. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Morgentaler, A.; Sforza, A.; Mannucci, E.; Maggi, M. Meta-analysis of Results of Testosterone Therapy on Sexual Function Based on International Index of Erectile Function Scores. Eur. Urol. 2017, 72, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.W.; Mills, T.M. Effect of androgens on penile tissue. Endocrine 2004, 23, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Rizk, P.J.; Kohn, T.P.; Pastuszak, A.W.; Khera, M. Testosterone therapy improves erectile function and libido in hypogonadal men. Curr. Opin. Urol. 2017, 27, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Hotta, Y.; Kataoka, T.; Kimura, K. Testosterone Deficiency and Endothelial Dysfunction: Nitric Oxide, Asymmetric Dimethylarginine, and Endothelial Progenitor Cells. Sex. Med. Rev. 2019, 7, 661–668. [Google Scholar] [CrossRef]
- Cunningham, G.R.; Stephens-Shields, A.J.; Rosen, R.C.; Wang, C.; Bhasin, S.; Matsumoto, A.M.; Parsons, J.K.; Gill, T.M.; Molitch, M.E.; Farrar, J.T.; et al. Testosterone Treatment and Sexual Function in Older Men With Low Testosterone Levels. J. Clin. Endocrinol. Metab. 2016, 10, 3096–3104. [Google Scholar] [CrossRef]
- Wassersug, R.J. Maintaining intimacy for prostate cancer patients on androgen deprivation therapy. Curr. Opin. Support. Palliat. Care. 2016, 10, 55–65. [Google Scholar] [CrossRef]
- Vitolins, M.Z.; Griffin, L.; Tomlinson, W.V.; Vuky, J.; Adams, P.T.; Moose, D.; Frizzell, B.; Lesser, G.J.; Naughton, M.; Radford, J.E.; et al. Randomized trial to assess the impact of venlafaxine and soy protein on hot flashes and quality of life in men with prostate cancer. J. Clin. Oncol. 2013, 31, 4092–4098. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Lee, H.S.; Park, J.Y.; Kim, J.W.; Ahn, H.K.; Ha, J.S.; Cho, K.S. Androgen-Deprivation Therapy and the Risk of Newly Developed Fractures in Patients With Prostate Cancer: A Nationwide Cohort Study in Korea. Sci. Rep. 2021, 11, 10057. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.K.; Parikh, R.B. Bone Health in Prostate Cancer Survivors: Recent Lessons and Opportunities for Improvement. Eur. Urol. Focus. 2023, 9, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.Y.; Ima-Nirwana, S. The effects of orchidectomy and supraphysiological testosterone administration on trabecular bone structure and gene expression in rats. Aging Male 2015, 18, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.V.; Soelaiman, I.N.; Chin, K.Y. A concise review of testosterone and bone health. Clin. Interv. Aging 2016, 11, 1317–1324. [Google Scholar] [CrossRef]
- Shigehara, K.; Izumi, K.; Kadono, Y.; Mizokami, A. Testosterone and Bone Health in Men: A Narrative Review. J. Clin. Med. 2021, 10, 530. [Google Scholar] [CrossRef]
- Hussain, A.; Tripathi, A.; Pieczonka, C.; Cope, D.; McNatty, A.; Logothetis, C.; Guise, T. Bone health effects of androgen-deprivation therapy and androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 290–300. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, S. Increased Risk of Hypertension with Enzalutamide in Prostate Cancer: A Meta-Analysis. Cancer Investig. 2019, 37, 478–488. [Google Scholar] [CrossRef]
- Gheorghe, G.S.; Hodorogea, A.S.; Ciobanu, A.; Nanea, I.T.; Gheorghe, A.C.D. Androgen Deprivation Therapy, Hypogonadism and Cardiovascular Toxicity in Men with Advanced Prostate Cancer. Curr. Oncol. 2021, 28, 3331–3346. [Google Scholar] [CrossRef]
- Agarwal, M.; Canan, T.; Glover, G.; Thareja, N.; Akhondi, A.; Rosenberg, J. Cardiovascular effects of androgen deprivation therapy in prostate cancer. Curr. Oncol. Rep. 2019, 21, 91. [Google Scholar] [CrossRef]
- Mitsuzuka, K.; Arai, Y. Metabolic changes in patients with prostate cancer during androgen deprivation therapy. Int. J. Urol. 2018, 25, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Ketchandji, M.; Kuo, Y.F.; Shahinian, V.B.; Goodwin, J.S. Cause of death in older men after the diagnosis of prostate cancer. J. Am. Geriatr. Soc. 2009, 57, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.T.; Bonilla, H.M.G.; Bryce, A.H.; Singh, P.; Herrmann, J. Approaches to Prevent and Manage Cardiovascular Disease in Patients Receiving Therapy for Prostate Cancer. Curr. Cardiol. Rep. 2023, 25, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Challa, A.A.; Calaway, A.C.; Cullen, J.; Garcia, J.; Desai, N.; Weintraub, N.L.; Deswal, A.; Kutty, S.; Vallakati, A.; Addison, D.; et al. Cardiovascular Toxicities of Androgen Deprivation Therapy. Curr. Treat. Options Oncol. 2021, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Kakkat, S.; Pramanik, P.; Singh, S.; Singh, A.P.; Sarkar, C.; Chakroborty, D. Cardiovascular Complications in Patients with Prostate Cancer: Potential Molecular Connections. Int. J. Mol. Sci. 2023, 24, 6984. [Google Scholar] [CrossRef] [PubMed]
- Amanatkar, H.R.; Chibnall, J.T.; Seo, B.W.; Manepalli, J.N.; Grossberg, G.T. Impact of exogenous testosterone on mood: A systematic review and meta-analysis of randomized placebo-controlled trials. Ann. Clin. Psychiatry 2014, 26, 19–32. [Google Scholar] [PubMed]
- Corona, G.; Goulis, D.G.; Huhtaniemi, I.; Zitzmann, M.; Toppari, J.; Forti, G.; Vanderschueren, D.; Wu, F.C. European Academy of Andrology (EAA) guidelines on investigation, treatment and monitoring of functional hypogonadism in males. Andrology 2020, 8, 970–987. [Google Scholar] [CrossRef]
- Menard, C.S.; Harlan, R.E. Up-regulation of androgen receptor immunoreactivity in the rat brain by androgenic-anabolic steroids. Brain Res. 1993, 622, 226–236. [Google Scholar] [CrossRef]
- Zarei, F.; Moazedi, A.A.; Salimi, Z.; Pourmotabbed, A.; Yousofvand, N.; Farshad, M.; Akrami, M.R. Activation of androgen receptors alters hippocampal synaptic plasticity and memory retention through modulation of L-type calcium channels. Life Sci. 2023, 314, 121155. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, R.; Tong, Y.; Chen, P.; Shen, Y.; Miao, S.; Liu, X. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol. Dis. 2020, 140, 104814. [Google Scholar] [CrossRef]
- Niu, P.P.; Wang, X.; Xu, Y.M. Causal effects of serum testosterone levels on brain volume: A sex-stratified Mendelian randomization study. J. Endocrinol. Investig. 2023, 46, 1787–1798. [Google Scholar] [CrossRef] [PubMed]
- Cherrier, M.M.; Craft, S.; Matsumoto, A.H. Cognitive changes associated with supplementation of testosterone or dihydrotestosterone in mildly hypogonadal men: A preliminary report. J. Androl. 2003, 24, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Lisco, G.; Giagulli, V.A.; De Tullio, A.; De Pergola, G.; Guastamacchia, E.; Triggiani, V. Age-Related Male Hypogonadism and Cognitive Impairment in the Elderly: Focus on the Effects of Testosterone Replacement Therapy on Cognition. Geriatrics 2020, 5, 76. [Google Scholar] [CrossRef] [PubMed]
- Giannos, P.; Prokopidis, K.; Church, D.D.; Kirk, B.; Morgan, P.T.; Lochlainn, M.N.; Macpherson, H.; Woods, D.R.; Ispoglou, T. Associations of Bioavailable Serum Testosterone With Cognitive Function in Older Men: Results From the National Health and Nutrition Examination Survey. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, K.; Kasuga, A.; Matsumoto, K.; Omori, Y.; Masui, Y.; Nakagawa, T.; Ogawa, M.; Ishioka, Y.; Inagaki, H.; Ikebe, K.; et al. Associations between salivary testosterone levels and cognitive function among 70-year-old Japanese elderly: A cross-sectional analysis of the SONIC study. Geriatr. Gerontol. Int. 2022, 22, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Popiołek, A.; Brzoszczyk, B.; Jarzemski, P.; Chyrek-Tomaszewska, A.; Wieczór, R.; Borkowska, A.; Bieliński, M. Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes. J. Clin. Med. 2021, 10, 5307. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.J.; Lakshmanan, G.; Seppan, P. Influence of Testosterone Depletion on Neurotrophin-4 in Hippocampal Synaptic Plasticity and Its Effects on Learning and Memory. Dev. Neurosci. 2022, 44, 102–112. [Google Scholar] [CrossRef]
- Muthu, S.J.; Lakshmanan, G.; Shimray, K.W.; Kaliyappan, K.; Sathyanathan, S.B.; Seppan, P. Testosterone Influence on Microtubule-Associated Proteins and Spine Density in Hippocampus: Implications on Learning and Memory. Dev. Neurosci. 2022, 44, 498–507. [Google Scholar] [CrossRef]
- Mi, S.; Chen, H.; Lin, P.; Kang, P.; Qiao, D.; Zhang, B.; Wang, Z.; Zhang, J.; Hu, Z.; Wang, C.; et al. CaMKII is a modulator in neurodegenerative diseases and mediates the effect of androgen on synaptic protein PSD95. Front. Genet. 2022, 13, 959360. [Google Scholar] [CrossRef]
- Hatanaka, Y.; Hojo, Y.; Mukai, H.; Murakami, G.; Komastsuzaki, Y.; Kim, J.; Ikeda, M.; Hiragushi, A.; Kimoto, T.; Kawato, S. Rapid increase of spines by dihydrotestosterone and testosterone in hippocampal neurons: Dependence on synaptic androgen receptor and kinase networks. Brain Res. 2015, 1621, 121–132. [Google Scholar] [CrossRef]
- Shores, M.M.; Moceri, V.M.; Sloan, K.L.; Matsumoto, A.M.; Kivlahan, D.R. Low testosterone levels predict incident depressive illness in older men: Effects of age and medical morbidity. J. Clin. Psychiatry 2005, 66, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, N.; Thakur, D.S.; Patidar, A. Male hypogonadism: Symptoms and treatment. J. Adv. Pharm. Technol. Res. 2010, 1, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, J.B.; Aftab, A.; Radhakrishnan, R.; Widge, A.; Rodriguez, C.I.; Carpenter, L.L.; Nemeroff, C.B.; McDonald, W.M.; Kalin, N.H.; APA Council of Research Task Force on Novel Biomarkers and Treatments. Hormonal Treatments for Major Depressive Disorder: State of the Art. Am. J. Psychiatry 2020, 177, 686–705. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Van Schoor, N.M.; De Ronde, W.; Schaap, L.A.; Comijs, H.C.; Beekman, A.T.; Lips, P. Low free testosterone levels are associated with prevalence and incidence of depressive symptoms in older men. Clin. Endocrinol. 2010, 72, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.; Nachtigall, L.B.; Stern, T.A. The effect of testosterone levels on mood in men: A review. Psychosomatics 2013, 54, 509–514. [Google Scholar] [CrossRef]
- Hauger, R.L.; Saelzler, U.G.; Pagadala, M.S.; Panizzon, M.S. The role of testosterone, the androgen receptor, and hypothalamic-pituitary-gonadal axis in depression in ageing Men. Rev. Endocr. Metab. Disord. 2022, 23, 1259–1273. [Google Scholar] [CrossRef]
- Shores, M.M.; Kivlahan, D.R.; Sadak, T.I.; Li, E.J.; Matsumoto, A.M. A randomized, double-blind, placebo-controlled study of testosterone treatment in hypogonadal older men with subthreshold depression (dysthymia or minor depression). J. Clin. Psychiatry 2009, 70, 1009–1016. [Google Scholar] [CrossRef]
- Anderson, D.J.; Vazirnia, P.; Loehr, C.; Sternfels, W.; Hasoon, J.; Viswanath, O.; Kaye, A.D.; Urits, I. Testosterone Replacement Therapy in the Treatment of Depression. Health Psychol. Res. 2022, 10, 38956. [Google Scholar] [CrossRef]
- Rendón-Torres, L.; Sierra-Rojas, I.; Benavides-Guerrero, C.; Botello-Moreno, Y.; Guajardo-Balderas, V.; García-Perales, L. Predictive factors of cognitive impairment in people over 60. Factores predictores del deterioro cognitivo en personas mayores de 60 años. Enferm. Clin. 2021, 31, 91–98. [Google Scholar] [CrossRef]
- Corbett, A.; Williams, G.; Creese, B.; Hampshire, A.; Hayman, V.; Palmer, A.; Filakovzsky, A.; Mills, K.; Cummings, J.; Aarsland, D.; et al. Cognitive decline in older adults in the UK during and after the COVID-19 pandemic: A longitudinal analysis of PROTECT study data. Lancet Healthy Longev. 2023, 4, e591–e599. [Google Scholar] [CrossRef]
- Ihrig, A.; Pernt, P.M.; Zschäbitz, S.; Huber, J.; Friederich, H.C.; Bugaj, T.J.; Maatouk, I. Neurocognitive effects of androgen deprivation therapy and new hormonal agents in a sample of patients with metastatic prostate cancer. Int. Urol. Nephrol. 2023, 55, 2733–2739. [Google Scholar] [CrossRef] [PubMed]
- Cherrier, M.M.; Aubin, S.; Higano, C.S. Cognitive and mood changes in men undergoing intermittent combined androgen blockade for non-metastatic prostate cancer. Psychooncology 2009, 18, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, M.K.; Ortega, R.M.; Wehner, M.R.; Nead, K.T. Association of Second-generation Antiandrogens With Cognitive and Functional Toxic Effects in Randomized Clinical Trials: A Systematic Review and Meta-analysis. JAMA Oncol. 2023, 9, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Parthipan, M.; Feng, G.; Toledano, N.; Donison, V.; Breunis, H.; Sudharshan, A.; Emmenegger, U.; Finelli, A.; Warde, P.; Soto-Perez-de-Celis, E.; et al. Symptom experiences of older adults during treatment for metastatic prostate cancer: A qualitative investigation. J. Geriatr. Oncol. 2023, 14, 101397. [Google Scholar] [CrossRef] [PubMed]
- Alwhaibi, A.; Alsanea, S.; Almadi, B.; Al-Sabhan, J.; Alosaimi, F.D. Androgen deprivation therapy and depression in the prostate cancer patients: Review of risk and pharmacological management. Aging Male 2022, 25, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Valderrábano, R.J.; Pencina, K.; Storer, T.W.; Reid, K.F.; Kibel, A.S.; Burnett, A.L.; Huang, G.; Dorff, T.; Privat, F.; Ghattas-Puylara, C.; et al. Testosterone replacement in prostate cancer survivors with testosterone deficiency: Study protocol of a randomized controlled trial. Andrology 2023, 11, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Wefel, J.S.; Ryan, C.J.; Van, J.; Jackson, J.C.; Morgans, A.K. Assessment and Management of Cognitive Function in Patients with Prostate Cancer Treated with Second-Generation Androgen Receptor Pathway Inhibitors. CNS Drugs 2022, 36, 419–449. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Freitas, S.; Simões, M.R.; Alves, L.; Santana, I. Montreal Cognitive Assessment (MoCA): Normative study for the Portuguese population. J. Clin. Exp. Neuropsychol. 2011, 33, 989–996. [Google Scholar] [CrossRef]
- Coen, R.F.; Robertson, D.A.; Kenny, R.A.; King-Kallimanis, B.L. Strengths and Limitations of the MoCA for Assessing Cognitive Functioning: Findings From a Large Representative Sample of Irish Older Adults. J. Geriatr. Psychiatry Neurol. 2016, 29, 18–24. [Google Scholar] [CrossRef]
- Thomann, A.E.; Berres, M.; Goettel, N.; Steiner, L.A.; Monsch, A.U. Enhanced diagnostic accuracy for neurocognitive disorders: A revised cut-off approach for the Montreal Cognitive Assessment. Alzheimers Res. Ther. 2020, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Araújo, N.; Costa, A.; Lopes, C.; Lopes-Conceição, L.; Ferreira, A.; Carneiro, F.; Oliveira, J.; Morais, S.; Pacheco-Figueiredo, L.; Ruano, L.; et al. Prevalence of Cognitive Impairment before Prostate Cancer Treatment. Cancers 2022, 14, 1355. [Google Scholar] [CrossRef] [PubMed]
- Borland, E.; Nägga, K.; Nilsson, P.M.; Minthon, L.; Nilsson, E.D.; Palmqvist, S. The Montreal Cognitive Assessment: Normative Data from a Large Swedish Population-Based Cohort. J. Alzheimers Dis. 2017, 59, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, M.; Morgan, M.L.; Cervigni, M.; Martino, P.; Murray, J.; Calandra, M.; Razumovskiy, A.; Caycho-Rodríguez, T.; Gallegos, W.L.A. 45 Years of the mini-mental state examination (MMSE): A perspective from ibero-america. Dement. Neuropsychol. 2022, 16, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Sekine, Y.; Nomura, M.; Koike, H.; Matsui, H.; Shibata, Y.; Ito, K.; Suzuki, K. Effects of a luteinizing hormone-releasing hormone agonist on cognitive, sexual, and hormonal functions in patients with prostate cancer: Relationship with testicular and adrenal androgen levels. Basic Clin. Androl. 2015, 25, 3. [Google Scholar] [CrossRef] [PubMed]
- Reichert, M.; Popeneciu, I.V.; Uhlig, A.; Trojan, L.; Mohr, M.N. Cognitive Ability as a Non-modifiable Risk Factor for Post-prostatectomy Urinary Incontinence: A Double-Blinded, Prospective, Single-Center Trial. Front. Surg. 2022, 8, 812197. [Google Scholar] [CrossRef]
- Salis, F.; Costaggiu, D.; Mandas, A. Mini-Mental State Examination: Optimal Cut-Off Levels for Mild and Severe Cognitive Impairment. Geriatrics 2023, 8, 12. [Google Scholar] [CrossRef]
- Borson, S.; Scanlan, J.; Brush, M.; Vitaliano, P.; Dokmak, A. The mini-cog: A cognitive ‘vital signs’ measure for dementia screening in multi-lingual elderly. Int. J. Geriatr. Psychiatry 2000, 15, 1021–1027. [Google Scholar] [CrossRef]
- Seitz, D.P.; Chan, C.C.; Newton, H.T.; Gill, S.S.; Herrmann, N.; Smailagic, N.; Nikolaou, V.; Fage, B.A. Mini-Cog for the diagnosis of Alzheimer’s disease dementia and other dementias within a primary care setting. Cochrane Database Syst. Rev. 2018, 2, CD011415. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef]
- León-Domínguez, U.; Martín-Rodríguez, J.F.; León-Carrión, J. Executive n-back tasks for the neuropsychological assessment of working memory. Behav. Brain Res. 2015, 292, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.J.; Conway, A.R.A.; Miura, T.K.; Colflesh, G.J.H. Working memory, attention control, and the N-back task: A question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 615–622. [Google Scholar] [CrossRef]
- Maruff, P.; Lim, Y.Y.; Darby, D.; Ellis, K.A.; Pietrzak, R.H.; Snyder, P.J.; Bush, A.I.; Szoeke, C.; Schembri, A.; Ames, D.; et al. Clinical utility of the cogstate brief battery in identifying cognitive impairment in mild cognitive impairment and Alzheimer’s disease. BMC Psychol. 2013, 1, 30. [Google Scholar] [CrossRef] [PubMed]
- Koyama, A.K.; Hagan, K.A.; Okereke, O.I.; Weisskopf, M.G.; Rosner, B.; Grodstein, F. Evaluation of a Self-Administered Computerized Cognitive Battery in an Older Population. Neuroepidemiology 2015, 45, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Mundell, N.L.; Owen, P.J.; Dalla Via, J.; Macpherson, H.; Daly, R.M.; Livingston, P.M.; Rantalainen, T.; Foulkes, S.; Millar, J.; Murphy, D.G.; et al. Effects of a multicomponent resistance-based exercise program with protein, vitamin D and calcium supplementation on cognition in men with prostate cancer treated with ADT: Secondary analysis of a 12-month randomised controlled trial. BMJ Open 2022, 12, e060189. [Google Scholar] [CrossRef] [PubMed]
- Hassenstab, J.; Nicosia, J.; LaRose, M.; Aschenbrenner, A.J.; Gordon, B.A.; Benzinger, T.L.S.; Xiong, C.; Morris, J.C. Is comprehensiveness critical? Comparing short and long format cognitive assessments in preclinical Alzheimer disease. Alzheimers Res. Ther. 2021, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Appels, B.A.; Scherder, E. The diagnostic accuracy of dementia-screening instruments with an administration time of 10 to 45 minutes for use in secondary care: A systematic review. Am. J. Alzheimers Dis. Other Demen. 2010, 25, 301–316. [Google Scholar] [CrossRef]
- Pierro, M.J.; Kilari, D. The Confusion Surrounding Androgen Deprivation Therapy and Cognitive Dysfunction. Eur. Urol. Focus 2023, 9, 409–410. [Google Scholar] [CrossRef]
- Nelson, C.J.; Lee, J.S.; Gamboa, M.C.; Roth, A.J. Cognitive effects of hormone therapy in men with prostate cancer. Cancer 2008, 113, 1097–1106. [Google Scholar] [CrossRef]
- Gunlusoy, B.; Ceylan, Y.; Koskderelioglu, A.; Gedizlioglu, M.; Degirmenci, T.; Ortan, P.; Kozacioglu, Z. Cognitive Effects of Androgen Deprivation Therapy in Men With Advanced Prostate Cancer. Urology 2017, 103, 167–172. [Google Scholar] [CrossRef]
- Hong, J.H.; Huang, C.Y.; Chang, C.H.; Muo, C.H.; Jaw, F.S.; Lu, Y.C.; Chung, C.J. Different androgen deprivation therapies might have a differential impact on cognition—An analysis from a population-based study using time-dependent exposure model. Cancer Epidemiol. 2020, 64, 101657. [Google Scholar] [CrossRef] [PubMed]
- Mundell, N.L.; Daly, R.M.; Macpherson, H.; Fraser, S.F. Cognitive decline in prostate cancer patients undergoing ADT: A potential role for exercise training. Endocr. Relat. Cancer 2017, 24, R145–R155. [Google Scholar] [CrossRef] [PubMed]
- Tulk, J.; Rash, J.A.; Thoms, J.; Wassersug, R.; Gonzalez, B.; Garland, S.N. Androgen deprivation therapy and radiation for prostate cancer-cognitive impairment, sleep, symptom burden: A prospective study. BMJ Support. Palliat. Care 2021, 13, e454–e463. [Google Scholar] [CrossRef] [PubMed]
- Garland, S.N.; Savard, J.; Eisel, S.L.; Wassersug, R.J.; Rockwood, N.J.; Thoms, J.; Jim, H.S.L.; Gonzalez, B.D. A 2-year prospective analysis of insomnia as a mediator of the relationship between androgen deprivation therapy and perceived cognitive function in men with prostate cancer. Cancer 2021, 127, 4656–4664. [Google Scholar] [CrossRef] [PubMed]
- Dzierzewski, J.M.; Dautovich, N.; Ravyts, S. Sleep and Cognition in Older Adults. Sleep Med. Clin. 2018, 13, 93–106. [Google Scholar] [CrossRef]
- Brownlow, J.A.; Miller, K.E.; Gehrman, P.R. Insomnia and Cognitive Performance. Sleep Med. Clin. 2020, 15, 71–76. [Google Scholar] [CrossRef]
- Araújo, N.; Costa, A.; Lopes-Conceição, L.; Ferreira, A.; Carneiro, F.; Oliveira, J.; Braga, I.; Morais, S.; Pacheco-Figueiredo, L.; Ruano, L.; et al. Androgen-deprivation therapy and cognitive decline in the NEON-PC prospective study during the COVID-19 pandemic. ESMO Open 2022, 7, 100448. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Triguero-Mas, M.; Jardim Santos, C.; Gómez-Nieto, A.; Cole, H.; Anguelovski, I.; Silva, F.M.; Baró, F. Exposure to nature and mental health outcomes during COVID-19 lockdown. A comparison between Portugal and Spain. Environ. Int. 2021, 154, 106664. [Google Scholar] [CrossRef]
- Buskbjerg, C.R.; Amidi, A.; Buus, S.; Gravholt, C.H.; Hadi Hosseini, S.M.; Zachariae, R. Androgen deprivation therapy and cognitive decline-associations with brain connectomes, endocrine status, and risk genotypes. Prostate Cancer Prostatic Dis. 2022, 25, 208–218. [Google Scholar] [CrossRef]
- Cherrier, M.M.; Cross, D.J.; Higano, C.S.; Minoshima, S. Changes in cerebral metabolic activity in men undergoing androgen deprivation therapy for non-metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2018, 21, 394–402. [Google Scholar] [CrossRef]
- Gaynor, A.M.; Flaherty, K.R.; Root, J.C.; Salas-Ramirez, K.Y.; Scott, J.M.; Nelson, C.J. Exercise Associated with Cognitive Function in Older Men with Prostate Cancer Undergoing Androgen Deprivation Therapy. Int. J. Behav. Med. 2023, 30, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Roy, A.; Summers, C.; Ahles, T.; Li, C.R.; Chao, H.H. Effects of androgen deprivation on white matter integrity and processing speed in prostate cancer patients. Am. J. Cancer Res. 2022, 12, 4802–4814. [Google Scholar] [PubMed]
- Walther, A.; Breidenstein, J.; Miller, R. Association of Testosterone Treatment With Alleviation of Depressive Symptoms in Men: A Systematic Review and Meta-analysis. JAMA Psychiatry 2019, 76, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Berruti, A.; Cracco, C.; Sguazzotti, E.; Porpiglia, F.; Russo, L.; Bertaglia, V.; Picci, R.L.; Negro, M.; Tosco, A.; et al. Psychological distress in men with prostate cancer receiving adjuvant androgen-deprivation therapy. Urol. Oncol. 2013, 3, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, C.F.; Birsika, V.; Denham, J.W. Factors associated with feelings of loss of masculinity in men with prostate cancer in the RADAR trial. Psychooncology 2014, 23, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Tsang, V.W.; Skead, C.; Wassersug, R.J.; Palmer-Hague, J.L. Impact of prostate cancer treatments on men’s understanding of their masculinity. Psychol. Men Masc. 2019, 20, 214–225. [Google Scholar] [CrossRef]
- Cherrier, M.M.; Higano, C.S. Impact of androgen deprivation therapy on mood, cognition, and risk for AD. Urol. Oncol. 2020, 38, 53–61. [Google Scholar] [CrossRef]
- Nead, K.T.; Sinha, S.; Yang, D.D.; Nguyen, P.L. Association of androgen deprivation therapy and depression in the treatment of prostate cancer: A systematic review and meta-analysis. Urol. Oncol. 2017, 35, 664.e1–664.e9. [Google Scholar] [CrossRef]
- Rice, S.M.; Kealy, D.; Ogrodniczuk, J.S.; Seidler, Z.E.; Denehy, L.; Oliffe, J.L. The Cost of Bottling It Up: Emotion Suppression as a Mediator in the Relationship Between Anger and Depression Among Men with Prostate Cancer. Cancer Manag. Res. 2020, 12, 1039–1046. [Google Scholar] [CrossRef]
- Crump, C.; Stattin, P.; Brooks, J.D.; Sundquist, J.; Bill-Axelson, A.; Edwards, A.C.; Sundquist, K.; Sieh, W. Long-term Risks of Depression and Suicide Among Men with Prostate Cancer: A National Cohort Study. Eur. Urol. 2023, 84, 263–272. [Google Scholar] [CrossRef]
- Nowakowska, M.K.; Lei, X.; Wehner, M.R.; Corn, P.G.; Giordano, S.H.; Nead, K.T. Association of Second-generation Antiandrogens With Depression Among Patients With Prostate Cancer. JAMA Netw. Open 2021, 4, e2140803. [Google Scholar] [CrossRef] [PubMed]
- Tsao, P.A.; Ross, R.D.; Bohnert, A.S.B.; Mukherjee, B.; Caram, M.E.V. Depression, Anxiety, and Patterns of Mental Health Care Among Men With Prostate Cancer Receiving Androgen Deprivation Therapy. Oncologist 2022, 27, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martínez, V.; Buigues, C.; Navarro-Martínez, R.; García-Villodre, L.; Jeghalef, N.; Serrano-Carrascosa, M.; Rubio-Briones, J.; Cauli, O. Analysis of Brain Functions in Men with Prostate Cancer under Androgen Deprivation Therapy: A One-Year Longitudinal Study. Life 2021, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.M.; Gonzalez, B.D.; Jim, H.S.; Cessna, J.M.; Sutton, S.K.; Small, B.J.; Fishman, M.N.; Zachariah, B.; Jacobsen, P.B. Characteristics and predictors of fatigue among men receiving androgen deprivation therapy for prostate cancer: A controlled comparison. Support. Care Cancer 2016, 24, 4159–4166. [Google Scholar] [CrossRef] [PubMed]
- Toro-Urrego, N.; Garcia-Segura, L.M.; Echeverria, V.; Barreto, G.E. Testosterone Protects Mitochondrial Function and Regulates Neuroglobin Expression in Astrocytic Cells Exposed to Glucose Deprivation. Front. Aging Neurosci. 2016, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Bassey, I.E.; Emodi, B.A.; Akpan, U.O.; Iyakndue, I.F.A.; Anakebe, E.A.; Icha, B.E.; Efobi, H.A.; Ntinya, A.J.; Udoh, A.E. Impact of Androgen Deprivation on Oxidative Stress and Antioxidant Status in Nigerian Patients With Prostate Cancer Undergoing Androgen Deprivation Therapy. JCO Glob. Oncol. 2020, 6, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.R.; Wolff, B.S.; Liwang, J.; Regan, J.M.; Alshawi, S.; Raheem, S.; Saligan, L.N. Cancer-related fatigue during combined treatment of androgen deprivation therapy and radiotherapy is associated with mitochondrial dysfunction. Int. J. Mol. Med. 2020, 45, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Mangar, S.; Abbadasari, M.; Carollo, A.; Esposito, G.; Ahmed, H.; Shah, T.; Dimitriou, D. Understanding Sleep Disturbances in Prostate Cancer-A Scientometric Analysis of Sleep Assessment, Aetiology, and Its Impact on Quality of Life. Cancers 2023, 15, 3485. [Google Scholar] [CrossRef]
- Irani, J.; Salomon, L.; Oba, R.; Bouchard, P.; Mottet, N. Efficacy of venlafaxine, medroxyprogesterone acetate, and cyproterone acetate for the treatment of vasomotor hot flushes in men taking gonadotropin-releasing hormone analogues for prostate cancer: A double-blind, randomised trial. Lancet Oncol. 2010, 11, 147–154. [Google Scholar] [CrossRef]
- Chaudhary, S.; Roy, A.; Summers, C.; Zhornitsky, S.; Ahles, T.; Li, C.R.; Chao, H.H. Hypothalamic connectivities predict individual differences in ADT-elicited changes in working memory and quality of life in prostate cancer patients. Sci. Rep. 2022, 12, 9567. [Google Scholar] [CrossRef]
- Downing, A.; Wright, P.; Hounsome, L.; Selby, P.; Wilding, S.; Watson, E.; Wagland, R.; Kind, P.; Donnelly, D.W.; Butcher, H.; et al. Quality of life in men living with advanced and localised prostate cancer in the UK: A population-based study. Lancet Oncol. 2019, 20, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Mafla-España, M.A.; Torregrosa, M.D.; Beamud-Cortés, M.; Bermell-Marco, L.; Rubio-Briones, J.; Cauli, O. Comparison of Frailty Criteria, Cognitive Function, Depressive and Insomnia Symptoms in Men with Localized and Advanced Prostate Cancer under Androgen Deprivation Therapy. Healthcare 2023, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Gagliano-Jucá, T.; Travison, T.G.; Nguyen, P.L.; Kantoff, P.W.; Taplin, M.E.; Kibel, A.S.; Manley, R.; Hally, K.; Bearup, R.; Beleva, Y.M.; et al. Effects of Androgen Deprivation Therapy on Pain Perception, Quality of Life, and Depression in Men With Prostate Cancer. J. Pain Symptom Manag. 2018, 55, 307–317.e1. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.A.; Wang, H.; Denmeade, S.R. First, do no harm: The unclear benefit of lifelong castration for patients with metastatic prostate cancer. Prostate 2023, 83, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Kanazawa, S.; Watanabe, R.; Terunuma, M.; Takahashi, K. Influence of hot flashes on quality of life in patients with prostate cancer treated with androgen deprivation therapy. Int. J. Urol 2004, 11, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Capece, M.; Creta, M.; Calogero, A.; La Rocca, R.; Napolitano, L.; Barone, B.; Sica, A.; Fusco, F.; Santangelo, M.; Dodaro, C.; et al. Does Physical Activity Regulate Prostate Carcinogenesis and Prostate Cancer Outcomes? A Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 1441. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Zhornitsky, S.; Roy, A.; Summers, C.; Ahles, T.; Li, C.R.; Chao, H.H. The effects of androgen deprivation on working memory and quality of life in prostate cancer patients: The roles of hypothalamic connectivity. Cancer Med. 2022, 11, 3425–3436. [Google Scholar] [CrossRef]
- Kamali, A.; Milosavljevic, S.; Gandhi, A.; Lano, K.R.; Shobeiri, P.; Sherbaf, F.G.; Sair, H.I.; Riascos, R.F.; Hasan, K.M. The Cortico-Limbo-Thalamo-Cortical Circuits: An Update to the Original Papez Circuit of the Human Limbic System. Brain Topogr. 2023, 36, 371–389. [Google Scholar] [CrossRef]
- Burdakov, D.; Peleg-Raibstein, D. The hypothalamus as a primary coordinator of memory updating. Physiol. Behav. 2020, 223, 112988. [Google Scholar] [CrossRef]
- Hinkley, L.B.; Marco, E.J.; Findlay, A.M.; Honma, S.; Jeremy, R.J.; Strominger, Z.; Bukshpun, P.; Wakahiro, M.; Brown, W.S.; Paul, L.K.; et al. The role of corpus callosum development in functional connectivity and cognitive processing. PLoS ONE 2012, 7, e39804. [Google Scholar] [CrossRef]
- Videtta, G.; Squarcina, L.; Rossetti, M.G.; Brambilla, P.; Delvecchio, G.; Bellani, M. White matter modifications of corpus callosum in bipolar disorder: A DTI tractography review. J. Affect. Disord. 2023, 338, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Van der Knaap, L.J.; van der Ham, I.J. How does the corpus callosum mediate interhemispheric transfer? A review. Behav. Brain Res. 2011, 223, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Banzola, I.; Mengus, C.; Wyler, S.; Hudolin, T.; Manzella, G.; Chiarugi, A.; Boldorini, R.; Sais, G.; Schmidli, T.S.; Chiffi, G.; et al. Expression of Indoleamine 2,3-Dioxygenase Induced by IFN-γ and TNF-α as Potential Biomarker of Prostate Cancer Progression. Front. Immunol. 2018, 9, 1051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Adekoya, T.O.; Richardson, R.M. Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int. J. Mol. Sci. 2020, 21, 4449. [Google Scholar] [CrossRef] [PubMed]
- Bradburn, S.; Sarginson, J.; Murgatroyd, C.A. Association of Peripheral Interleukin-6 with Global Cognitive Decline in Non-demented Adults: A Meta-Analysis of Prospective Studies. Front. Aging Neurosci. 2018, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Bourgognon, J.M.; Cavanagh, J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci. Adv. 2020, 4, 2398212820979802. [Google Scholar] [CrossRef]
- Trapero, I.; Cauli, O. Interleukin 6 and cognitive dysfunction. Metab. Brain Dis. 2014, 29, 593–608. [Google Scholar] [CrossRef]
- Hoogland, A.I.; Jim, H.S.L.; Gonzalez, B.D.; Small, B.J.; Gilvary, D.; Breen, E.C.; Bower, J.E.; Fishman, M.; Zachariah, B.; Jacobsen, P.B. Systemic inflammation and symptomatology in patients with prostate cancer treated with androgen deprivation therapy: Preliminary findings. Cancer 2021, 127, 1476–1482. [Google Scholar] [CrossRef]
- Navarro-Martínez, R.; Serrano-Carrascosa, M.; Buigues, C.; Fernández-Garrido, J.; Sánchez-Martínez, V.; Castelló-Domenech, A.B.; García-Villodre, L.; Wong-Gutiérrez, A.; Rubio-Briones, J.; Cauli, O. Frailty syndrome is associated with changes in peripheral inflammatory markers in prostate cancer patients undergoing androgen deprivation therapy. Urol. Oncol. 2019, 37, 976–987. [Google Scholar] [CrossRef]
- Verma, S.; Kushwaha, P.P.; Shankar, E.; Ponsky, L.E.; Gupta, S. Increased cytokine gene expression and cognition risk associated with androgen deprivation therapy. Prostate 2022, 82, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Chen, W.Y.; Abou-Kheir, W.; Zeng, T.; Yin, J.J.; Bahmad, H.; Lee, Y.C.; Liu, Y.N. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.C.; Lee, K.D.; Tsai, Y.C. Roles of Interleukin-1 Receptor Antagonist in Prostate Cancer Progression. Biomedicines 2020, 8, 602. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.C.; Dunne, V.L.; Alshehri, A.H.D.; Redmond, K.M.; Cole, A.J.; Prise, K.M. Abiraterone In Vitro Is Superior to Enzalutamide in Response to Ionizing Radiation. Front. Oncol. 2021, 11, 700543. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Zhu, W.; Ding, Y.; Zhu, H.; Jing, X.; Yu, H.; Lu, M.; Qiao, Y.; Wang, X.; Ai, H.; et al. Phosphorylation of LIFR promotes prostate cancer progression by activating the AKT pathway. Cancer Lett. 2019, 451, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, X.; Zhong, Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front. Aging Neurosci. 2020, 12, 566922. [Google Scholar] [CrossRef]
- Li, Y.; Mao, M.; Zhu, L.; Sun, Q.; Tong, J.; Zhou, Z. IL-17A drives cognitive aging probably via inducing neuroinflammation and theta oscillation disruption in the hippocampus. Immunopharmacology 2022, 108, 108898. [Google Scholar] [CrossRef]
- Nebel, R.A.; Aggarwal, N.T.; Barnes, L.L.; Gallagher, A.; Goldstein, J.M.; Kantarci, K.; Mallampalli, M.P.; Mormino, E.C.; Scott, L.; Yu, W.H.; et al. Understanding the impact of sex and gender in Alzheimer’s disease: A call to action. Alzheimers Dement. 2018, 14, 1171–1183. [Google Scholar] [CrossRef]
- Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers 2015, 1, 15056. [Google Scholar] [CrossRef]
- Beauchet, O. Testosterone and cognitive function: Current clinical evidence of a relationship. Eur. J. Endocrinol. 2006, 155, 773–781. [Google Scholar] [CrossRef]
- Kuznetsov, K.O.; Khaidarova, R.R.; Khabibullina, R.H.; Stytsenko, E.S.; Filosofova, V.I.; Nuriakhmetova, I.R.; Hisameeva, E.M.; Vazhorov, G.S.; Khaibullin, F.R.; Ivanova, E.A.; et al. Testosterone and Alzheimer’s disease. Probl. Endokrinol. 2022, 68, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Du, N.; Liu, Y.; Fan, X.; Wang, Y.; Jia, X.; Hou, X.; Wang, B. Low testosterone level and risk of Alzheimer’s disease in the elderly men: A systematic review and meta-analysis. Mol. Neurobiol. 2016, 53, 2679–2684. [Google Scholar] [CrossRef] [PubMed]
- Prévot, V.; Tena-Sempere, M.; Pitteloud, N. New Horizons: Gonadotropin-Releasing Hormone and Cognition. J. Clin. Endocrinol. Metab. 2023, 108, 2747–2758. [Google Scholar] [CrossRef] [PubMed]
- Kusters, C.D.J.; Paul, K.C.; Romero, T.; Sinsheimer, J.S.; Ritz, B.R. Among men, androgens are associated with a decrease in Alzheimer’s disease risk. Alzheimers Dement. 2023, 19, 3826–3834. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.H.C.; Au Yeung, S.L.; Kwok, M.K.; Zhao, J.V.; Schooling, C.M. The influence of growth and sex hormones on risk of alzheimer’s disease: A mendelian randomization study. Eur. J. Epidemiol. 2023, 38, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, A.; Epstein, M.; Marchese, M.; Dickerman, B.A.; Cole, A.P.; Lipsitz, S.R.; Nguyen, P.L.; Kibel, A.S.; Choueiri, T.K.; Basaria, S.; et al. Risk of dementia following androgen deprivation therapy for treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2020, 23, 410–418. [Google Scholar] [CrossRef]
- Nead, K.T.; Gaskin, G.; Chester, C.; Swisher-McClure, S.; Dudley, J.T.; Leeper, N.J.; Shah, N.H. Androgen Deprivation Therapy and Future Alzheimer’s Disease Risk. J. Clin. Oncol. 2016, 34, 566–571. [Google Scholar] [CrossRef]
- Lonergan, P.E.; Washington, S.L.; Cowan, J.E.; Zhao, S.; Broering, J.M.; Cooperberg, M.R.; Carroll, P.R. Androgen Deprivation Therapy and the Risk of Dementia after Treatment for Prostate Cancer. J. Urol. 2022, 207, 832–840. [Google Scholar] [CrossRef]
- Shim, M.; Bang, W.J.; Oh, C.Y.; Lee, Y.S.; Cho, J.S. Androgen deprivation therapy and risk of cognitive dysfunction in men with prostate cancer: Is there a possible link? Prostate Int. 2022, 10, 68–74. [Google Scholar] [CrossRef]
- Lehrer, S.; Rheinstein, P.H.; Rosenzweig, K.E. No Relationship of Anti-Androgens to Alzheimer’s Disease or Cognitive Disorder in the MedWatch Database. J. Alzheimers Dis. Rep. 2018, 2, 123–127. [Google Scholar] [CrossRef]
- Nead, K.T.; Sinha, S.; Nguyen, P.L. Androgen deprivation therapy for prostate cancer and dementia risk: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017, 20, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, S.; Rheinstein, P.H. Androgen Deprivation Therapy Unrelated to Alzheimer’s Disease in the UK Biobank Cohort. Anticancer Res. 2023, 43, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Kim, S.H.; Joung, J.Y.; Yang, M.S.; Back, J.H.; Kim, S.H. The Insignificant Correlation between Androgen Deprivation Therapy and Incidence of Dementia Using an Extension Survival Cox Hazard Model and Propensity-Score Matching Analysis in a Retrospective, Population-Based Prostate Cancer Registry. Cancers 2022, 14, 2705. [Google Scholar] [CrossRef] [PubMed]
- Du, X.L.; Song, L.A. Large Retrospective Cohort Study on the Risk of Alzheimer’s Disease and Related Dementias in Association with Vascular Diseases and Cancer Therapy in Men with Prostate Cancer. J. Prev. Alzheimers Dis. 2023, 10, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.P.; Li, J.; Tewari, A.K. Inflammation and prostate cancer: The role of interleukin 6 (IL-6). BJU Int. 2014, 113, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Verma, A.; Chaurasia, R.N. Vitamin D and inflammatory cytokines association in mild cognitive impaired subjects. Neurosci. Lett. 2023, 795, 137044. [Google Scholar] [CrossRef]
- Mohamad, N.V.; Wong, S.K.; Wan Hasan, W.N.; Jolly, J.J.; Nur-Farhana, M.F.; Ima-Nirwana, S.; Chin, K.Y. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 2019, 22, 129–140. [Google Scholar] [CrossRef]
- Bobjer, J.; Katrinaki, M.; Tsatsanis, C.; Lundberg Giwercman, Y.; Giwercman, A. Negative association between testosterone concentration and inflammatory markers in young men: A nested cross-sectional study. PLoS ONE. 2013, 8, e61466. [Google Scholar] [CrossRef]
- Rosario, E.R.; Carroll, J.C.; Oddo, S.; LaFerla, F.M.; Pike, C.J. Androgens regulate the development of neuropathology in a triple transgenic mouse model of Alzheimer’s disease. J. Neurosci. 2006, 26, 13384–13389. [Google Scholar] [CrossRef]
- Lei, Y.; Renyuan, Z. Effects of Androgens on the Amyloid-β Protein in Alzheimer’s Disease. Endocrinology 2018, 159, 3885–3894. [Google Scholar] [CrossRef]
- Goldspiel, B.R.; Kohler, D.R. Flutamide: An antiandrogen for advanced prostate cancer. DICP 1990, 24, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.S.; Sun, J.F.; Zhang, B.; Yan, X.S.; Wang, H.; Jia, J.X.; Yang, Z.J. Protective effects of testosterone on cognitive dysfunction in Alzheimer’s disease model rats induced by oligomeric beta amyloid peptide 1–42. J. Toxicol. Environ. Health A 2016, 79, 856–863. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, C.H.; Lane, H.Y. Machine Learning and Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 2761. [Google Scholar] [CrossRef]
- Ishii, M.; Iadecola, C. Metabolic and Non-Cognitive Manifestations of Alzheimer’s Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab. 2015, 22, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Harris, B.N.; Roberts, B.R.; DiMarco, G.M.; Maldonado, K.A.; Okwunwanne, Z.; Savonenko, A.V.; Soto, P.L. Hypothalamic-pituitary-adrenal (HPA) axis activity and anxiety-like behavior during aging: A test of the glucocorticoid cascade hypothesis in amyloidogenic APPswe/PS1dE9 mice. Gen. Comp. Endocrinol. 2023, 330, 114126. [Google Scholar] [CrossRef] [PubMed]
- Canet, G.; Pineau, F.; Zussy, C.; Hernandez, C.; Hunt, H.; Chevallier, N.; Perrier, V.; Torrent, J.; Belanoff, J.K.; Meijer, O.C.; et al. Glucocorticoid receptors signaling impairment potentiates amyloid-β oligomers-induced pathology in an acute model of Alzheimer’s disease. FASEB J. 2020, 34, 1150–1168. [Google Scholar] [CrossRef]
- Canet, G.; Hernandez, C.; Zussy, C.; Chevallier, N.; Desrumaux, C.; Givalois, L. Is AD a Stress-Related Disorder? Focus on the HPA Axis and Its Promising Therapeutic Targets. Front. Aging Neurosci. 2019, 11, 269. [Google Scholar] [CrossRef]
- Choi, E.; Buie, J.; Camacho, J.; Sharma, P.; de Riese, W.T.W. Evolution of Androgen Deprivation Therapy (ADT) and Its New Emerging Modalities in Prostate Cancer: An Update for Practicing Urologists, Clinicians and Medical Providers. Res. Rep. Urol. 2022, 14, 87–108. [Google Scholar] [CrossRef]
- Santiago, J.A.; Potashkin, J.A. Biological and Clinical Implications of Sex-Specific Differences in Alzheimer’s Disease. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2023; Volume 282, pp. 181–197. [Google Scholar] [CrossRef]
- Barone, B.; Napolitano, L.; Abate, M.; Cirillo, L.; Reccia, P.; Passaro, F.; Turco, C.; Morra, S.; Mastrangelo, F.; Scarpato, A.; et al. The Role of Testosterone in the Elderly: What Do We Know? Int. J. Mol. Sci. 2022, 23, 3535. [Google Scholar] [CrossRef]
- Achard, V.; Ceyzériat, K.; Tournier, B.B.; Frisoni, G.B.; Garibotto, V.; Zilli, T. Biomarkers to Evaluate Androgen Deprivation Therapy for Prostate Cancer and Risk of Alzheimer’s Disease and Neurodegeneration: Old Drugs, New Concerns. Front. Oncol. 2021, 11, 734881. [Google Scholar] [CrossRef]
- Rosenman, R.; Tennekoon, V.; Hill, L.G. Measuring bias in self-reported data. Int. J. Behav. Healthc. Res. 2011, 2, 320–332. [Google Scholar] [CrossRef] [PubMed]
Category of Side Effect | Symptoms | References |
---|---|---|
Cognition | * Memory impairment * Disturbed attention * Deficits in information processing Altered glucose metabolism in brain | [27,93,129,130,131,132] |
Mood disturbances | Depression Anxiety Irritability Fatigue Sleep disturbances Tension Loss of vigor | [133,134,135,136,137,138,139] |
Vasomotor | Cutaneous vasodilation (hot flushes) Excessive sweating Rapid heartbeat Feelings of anxiety Reduced sexual desire and function Sensation of heat in face, throat | [32,33,34,35,36,37,38] |
Sexual dysfunction | Low libido Impaired erectile and orgasmic functions | [44,45,46,47,48,49] |
Bone density | Reduced bone mineral density Increased risk of fractures Bone loss with skeletal fragility | [52,53,54,55,56] |
Cardiovascular | Hypertension Arrhythmia Elevated risk of cardiovascular event Insulin resistance Dyslipidemia Metabolic syndrome | [6,58,59,60,61,62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiss, A.B.; Gulkarov, S.; Pinkhasov, A.; Sheehan, K.M.; Srivastava, A.; De Leon, J.; Katz, A.E. Androgen Deprivation Therapy for Prostate Cancer: Focus on Cognitive Function and Mood. Medicina 2024, 60, 77. https://doi.org/10.3390/medicina60010077
Reiss AB, Gulkarov S, Pinkhasov A, Sheehan KM, Srivastava A, De Leon J, Katz AE. Androgen Deprivation Therapy for Prostate Cancer: Focus on Cognitive Function and Mood. Medicina. 2024; 60(1):77. https://doi.org/10.3390/medicina60010077
Chicago/Turabian StyleReiss, Allison B., Shelly Gulkarov, Aaron Pinkhasov, Katie M. Sheehan, Ankita Srivastava, Joshua De Leon, and Aaron E. Katz. 2024. "Androgen Deprivation Therapy for Prostate Cancer: Focus on Cognitive Function and Mood" Medicina 60, no. 1: 77. https://doi.org/10.3390/medicina60010077
APA StyleReiss, A. B., Gulkarov, S., Pinkhasov, A., Sheehan, K. M., Srivastava, A., De Leon, J., & Katz, A. E. (2024). Androgen Deprivation Therapy for Prostate Cancer: Focus on Cognitive Function and Mood. Medicina, 60(1), 77. https://doi.org/10.3390/medicina60010077