Therapeutic Efficacy of Chinese Patent Medicine Containing Pyrite for Fractures: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.2.1. Study Types
2.2.2. Participant Types
2.2.3. Intervention and Control Types
2.2.4. Outcome Measurement Types
2.3. Data Extraction
2.4. Data Analyses
2.5. Quality Assessment
2.6. Ethics and Dissemination
3. Results
3.1. Literature Search
3.2. Study Characteristics
3.3. CPMPs Used in the Treatment Groups
3.4. Quality Assessment
3.5. Outcomes (Primary Outcomes: The Efficacy Rate)
3.5.1. Total Effective Rate
3.5.2. Callus Growth Rate
3.5.3. Bone Union Evaluation
3.5.4. Edema Disappearance Time
3.6. Outcomes (Secondary Outcomes: Pain Reduction)
3.6.1. VAS
3.6.2. Pain Disappearance Time
3.7. Outcomes (Others: Blood Test Results)
3.7.1. ESR
3.7.2. Hct
3.7.3. EA
3.7.4. PV
3.8. Safety Assessment
3.9. Bias Analysis
3.10. Summary of Evidence According to Outcome Measures
4. Discussion
4.1. Main Findings
4.2. CPMP Therapeutic Efficacy for Hematomas, a Critical Parameter in Fractures
4.3. CPMP Safety
4.4. Limitations and Suggestions for Further Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buccino, F.; Zagra, L.; Savadori, P.; Galluzzo, A.; Colombo, C.; Grossi, G.; Banfi, G.; Vergani, L.M. Mapping local mechanical properties of human healthy and osteoporotic femoral heads. Materialia 2021, 20, 101229. [Google Scholar] [CrossRef]
- Buccino, F.; Martinoia, G.; Vergani, L.M. Torsion—Resistant Structures: A Nature Addressed Solution. Materials 2021, 14, 5368. [Google Scholar] [CrossRef] [PubMed]
- Kasiri, S.; Taylor, D. A critical distance study of stress concentrations in bone. J. Biomech. 2008, 41, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Fazzalari, N.L. Bone fracture and bone fracture repair. Osteoporos. Int. 2011, 22, 2003–2006. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P.; Krogh, K.; Rejnmark, L.; Mosekilde, L. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord. 1998, 36, 790–796. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Fracture Collaborators. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: A systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021, 2, e580–e592. [Google Scholar] [CrossRef]
- Polinder, S.; Haagsma, J.; Panneman, M.; Scholten, A.; Brugmans, M.; Van Beeck, E. The economic burden of injury: Health care and productivity costs of injuries in the Netherlands. Accid Anal. Prev. 2016, 93, 92–100. [Google Scholar] [CrossRef]
- Borgström, F.; Karlsson, L.; Ortsäter, G.; Norton, N.; Halbout, P.; Cooper, C.; Lorentzon, M.; McCloskey, E.V.; Harvey, N.C.; Javaid, M.K.; et al. Fragility fractures in Europe: Burden, management and opportunities. Arch Osteoporos. 2020, 15, 59. [Google Scholar] [CrossRef]
- Tatangelo, G.; Watts, J.; Lim, K.; Connaughton, C.; Abimanyi-Ochom, J.; Borgström, F.; Nicholson, G.C.; Shore-Lorenti, C.; Stuart, A.L.; Iuliano-Burns, S.; et al. The cost of osteoporosis, osteopenia, and associated fractures in Australia in 2017. J. Bone Miner Res. 2019, 34, 616–625. [Google Scholar] [CrossRef]
- Loi, F.; Córdova, L.A.; Pajarinen, J.; Lin, T.H.; Yao, Z.; Goodman, S.B. Inflammation, fracture and bone repair. Bone 2016, 86, 119–130. [Google Scholar] [CrossRef]
- Endo, K.; Sairyo, K.; Komatsubara, S.; Sasa, T.; Egawa, H.; Yonekura, D.; Adachi, K.; Ogawa, T.; Murakami, R.-I.; Yasui, N. Cyclooxygenase-2 inhibitor inhibits the fracture healing. J. Physiol. Anthropol. Appl. Human Sci. 2002, 21, 235–238. [Google Scholar] [CrossRef]
- Chiodini, I.; Bolland, M.J. Calcium supplementation in osteoporosis: Useful or harmful? Eur. J. Endocrinol. 2018, 178, D13–D25. [Google Scholar] [CrossRef] [PubMed]
- Kennel, K.A.; Drake, M.T. Adverse effects of bisphosphonates: Implications for osteoporosis management. Mayo Clin. Proc. 2009, 84, 632–637, quiz 638. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Yao, Y.; Rong, Z.; Shen, Y.; Zheng, M.; Jiang, Q. The preoperative incidence of deep vein thrombosis (DVT) and its correlation with postoperative DVT in patients undergoing elective surgery for femoral neck fractures. Arch Orthop. Trauma. Surg. 2016, 136, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Calori, G.M.; Albisetti, W.; Agus, A.; Iori, S.; Tagliabue, L. Risk factors contributing to fracture non-unions. Injury 2007, 38, S11–S18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Potty, A.; Vyas, P.; Lane, J. The role of recombinant PTH in human fracture healing: A systematic review. J. Orthop. Trauma. 2014, 28, 57–62. [Google Scholar] [CrossRef]
- Babu, S.; Sandiford, N.A.; Vrahas, M. Use of teriparatide to improve fracture healing: What is the evidence? World J. Orthop. 2015, 6, 457–461. [Google Scholar] [CrossRef]
- Son, Y.J. Studies for Bone Formation of Herbal Medicines on Femoral Fracture Model in Rat. 2019. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201900019965 (accessed on 1 January 2023).
- Sung, S.H. Botanical Drug Product. Molecular Biology Newsletter. 2012. Available online: https://www.ksmcb.or.kr/file/webzine/2012_10_03.pdf (accessed on 1 January 2023).
- Hwang, J.H.; Ahn, J.H.; Kim, J.T.; Ahn, S.H.; Kim, K.H.; Cho, H.S.; Lee, S.D.; Kim, E.J.; Kim, K.S. Effects of administration of Pyritum on activation of osteoblast cells in human body and on tibia bone fracture in mice. J. Korean Acupunct Moxibustion Soc. 2009, 26, 159–170. [Google Scholar]
- Shin, K.M.; Jung, C.Y.; Hwang, M.S.; Lee, S.D.; Kim, K.H.; Kim, K.S. Effects of administration of Pyritum on fracture healing in mice. J. Korean Acupunct Moxibustion Soc. 2009, 26, 65–75. [Google Scholar]
- Wang, L.L.; Zuo, R.T.; Chen, S.Q. Analysis on therapeutic effects and adverse reactions of Chinese patent drug containing mineral medicine. Chin. Med. Pharm. 2017, 7, 50–54. [Google Scholar]
- Liu, K.; Zhang, Y.; Song, X. Effectiveness of Chinese patent medicine in the treatment of influenza: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e27766. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.C. A Network Meta-analysis of the Effect of Five Oral Chinese Herbal Prescriptions on Limb Fractures. Master’s Thesis, Hubei University of Chinese Medicine, Hubei, China, 2020. [Google Scholar]
- Choi, S.H.; Nam, E.Y.; Hwang, J.H. Therapeutic efficacy of Chinese patent medicine containing pyrite for fractures: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e32267. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.T. Practice of Orthopaedics, 4th ed.; People’s Military Medical Press: Beijing, China, 2012; pp. 169–172. [Google Scholar]
- Lan, C.G.; Tang, Y.J.; Lu, M.A.; Xie, K.G.; Wei, W. The effect of Diedashenggu granule on the hemorheology of patients after internal fixation of spine fracture. J. Cervicodynia Lumbodynia. 2009, 30, 340–342. [Google Scholar] [CrossRef]
- He, J.Y. Clinical observation of 34 cases of Colles fracture treated by Guyuling capsule. New Chin. Med. 2013, 45, 61–62. [Google Scholar]
- Hong, H.C.; Liu, X.; Huang, M.J.; Zhong, W.L.; Ceng, G.X.; Wu, C.J. Clinical observation of the treatment of senile distal radius fracture with manual reduction and small splint fixation combined with Guyuling capsule. Guide Chin. Med. 2012, 10, 646–647. [Google Scholar] [CrossRef]
- Zou, Z.K. The Clinical Observation of the Treatment of Upper Limb Fracture by Open Reduction and Internal Fixation with GuYuLing Capsule. Master’s Thesis, Hubei University of Traditional Chinese Medicine, Hubei, China, 2013. [Google Scholar]
- Chi, L.T.; Pei, F.X.; Yang, T.F.; Tu, Z.Q.; Li, J.; Ning, N. Clinical study of Guzhe Chuoshang capsule in promoting fracture healing. West China Med. J. 2001, 1, 25–26. [Google Scholar]
- Liu, H.F.; Wang, Z.P. Effect of Huoxue Zhitong capsule on postoperative bone metabolism in patients with tibiofibular fracture. Chin. J. Thromb. Hemost. 2021, 27, 237–238, 241. [Google Scholar]
- Niu, X.G.; Zhang, M.L. Effect of Huoxuezhitong capsule on bone metabolism and curative effect aft-er tibia and fibula fracture. World J. Integr. Trad West Med. 2020, 15, 1080–1083. [Google Scholar] [CrossRef]
- Xu, B.; Jia, L.; Zhang, H. Therapeutic effect of Huoxue Zhitong capsule on postoperative recovery of closed fractures around the knee joint. J. Shaanxi Univ. Chin. Med. 2018, 41, 92–95, 99. [Google Scholar] [CrossRef]
- Zhou, J.E. Effect of Huoxue Zhitong capsules for postoperative pain and swelling in patients with fracture of tibia and fibula. New Chin. Med. 2017, 49, 72–74. [Google Scholar]
- Tu, H.H.; Li, Y.X. Clinical effect of Jiegu Pills treating patients with limb fracture. Chin. Mod. Med. 2018, 25, 95–97. [Google Scholar]
- Zhang, Y.F.; Zhong, Q. Effect of Jiegu pill on morphogenetic Protein-7 and serum leptin in patients with long tubular bone fracture. Mod. J. Integr. Trad Chin. West Med. 2018, 27, 3501–3504. [Google Scholar]
- Liu, Y.B. Clinical observation of Sanhua Jiegu powder in treating fracture. Hebei J. TCM Publ. 1999, 1, 4–5. [Google Scholar]
- Zhou, Q.Y.; Lu, G.L.; Yu, M.; Wu, Y.J. Treatment of tibiofibular fracture with Sanhua Jiegu powder and calcaneal traction. Chin. J. Trad Med. Traum. Orthop. 2000, 2, 37–38. [Google Scholar]
- Chen, H.B.; Yang, S.W. Clinical observation on 44 cases of tibiofibular fracture treated by Shang-ke Jiegu tablet combined with western medicine. J. New Chin. Med. 2015, 47, 108–109. [Google Scholar]
- Gui, J.J.; Liang, Y.; Dai, Y.Y.; Qi, A.L. Effect of Shangke Jiegu tablet on syndrome of blood stasis and stagnation after pelvic fracture. ZH J. J. Trauma. 2019, 24, 917–919. [Google Scholar]
- He, M.L.; Xiao, Z.M.; Chen, A.M. Effect of Shangke Jiegu tablet on hemorheology of patients with lower limb fracture after internal fixation. J. Guangxi Med. Univ. 2007, 2, 278–279. [Google Scholar]
- He, H.L.; Qiu, D.Y.; Lian, J. Clinical observation of Shangke Jiegu tablet on patients with lower Li-mb fracture after internal fixation. Heilongjiang Med. J. 2019, 32, 1106–1108. [Google Scholar] [CrossRef]
- He, C.F.; Yu, L.C.; Zhao, L.F.; Ren, G.W. Observation on the effect of open reduction and internal fixation combined with Shangke Jiegu Tablet in the treatment of early intra-articular calcaneal fractures. ZH J. J. Trauma. 2021, 26, 100–102. [Google Scholar]
- Hua, Y.X. 60 cases of fracture treated with Shangke Jiegu tablet. Henan Trad. Chin. Med. 2006, 2, 47. [Google Scholar] [CrossRef]
- Jin, X.J.; Zhan, X.L.; You, X.B. Clinical study on Shangke Jiegu pills combined with internal fixation with locking plate for tibial fracture. New Chin. Med. 2022, 54, 115–118. [Google Scholar]
- Li, G.H.; Chen, C.; Xia, R.Y. The hemorheological effect of Shangke (department of traumatology) bone-knitting tablets in patients with lower limb fracture. Herald. Med. 2002, 12, 773–774. [Google Scholar]
- Mei, S.T. Effect of Shangke Jiegu tablet on hemorheology of patients with lower limb fracture after internal fixation. J. New Chin. Med. 2015, 47, 83–84. [Google Scholar]
- Qi, W.L.; Dong, S.Z. Effect of Shangke Jiegu tablet on improving the healing of ankle fracture after operation. Chin. J. Rural Med. Pharm. 2018, 25, 47–61. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Xie, Y.; Chen, C.Y.; Xie, Q.Y.; Lin, Z.X.; Ye, J.J. Clinical efficacy of Shangke Jiegu tablet combined with zoledronic acid in the treatment of perimenopausal osteoporosis and unstable tibial plateau fracture. Chin. J. Gerontol. 2020, 40, 4560–4564. [Google Scholar]
- Shao, R.H.; Zhu, X.M. Treatment of 40 cases of fracture with Shangke Jiegu tablet. China Pharm. 2013, 22, 117–118. [Google Scholar]
- Wang, X.X.; Yang, J. Clinical observation of Shangke Jiegu Tablets combined with diclofenac in treatment of early swelling of closed ankle and foot fractures. Drugs Clin. 2019, 34, 1855–1858. [Google Scholar]
- Yan, J.T.; Yan, C.H.; Zhao, S.H.; Yang, Y.P.; Wu, B.; Xiao, Q.; Feng, K.; Dong, Q.Q. Observation on clinical effect of PKP and Chinese patent medicine in treating senile patients with old osteoporotic vertebral compression fractures. World Chin. Med. 2017, 12, 2054–2057. [Google Scholar]
- Yang, G.Q.; Ran, Q.M.; Yang, R.X.; Chen, Z.L.; Hu, Y.L. Treatment of 400 cases of traumatic fracture with Shangke Jiegu tablet. Chin. Med. Mod. Distance Educ. China 2011, 9, 29–30. [Google Scholar]
- Zhou, J.S.; Li, Y.S.; Yuan, C.; Wang, Z.Q.; Cheng, C. Clinical observation on the treatment of traumatic fracture with Shangke Jiegu tablet. Chin. J. Traumatol. 1999, 5, 64. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Biswas, L.; Chen, J.; De Angelis, J.; Singh, A.; Owen-Woods, C.; Ding, Z.; Pujol, J.M.; Kumar, N.; Zeng, F.; Ramasamy, S.K.; et al. Lymphatic vessels in bone support regeneration after injury. Cell 2023, 186, 382–397.e24. [Google Scholar] [CrossRef] [PubMed]
- Owen-Woods, C.; Kusumbe, A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin. Cell Dev. Biol. 2022, 123, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Khajuria, D.K.; Reider, I.; Kamal, F.; Norbury, C.C.; Elbarbary, R.A. Distinct defects in early innate and late adaptive immune responses typify impaired fracture healing in diet-induced obesity. Front. Immunol. 2023, 14, 1250309. [Google Scholar] [CrossRef] [PubMed]
- Khajuria, D.K.; Nowak, I.; Leung, M.; Karuppagounder, V.; Imamura, Y.; Norbury, C.C.; Kamal, F.; Elbarbary, R.A. Transcript shortening via alternative polyadenylation promotes gene expression during fracture healing. Bone Res. 2023, 11, 5. [Google Scholar] [CrossRef]
- Tsukasaki, M.; Takayanagi, H. Osteoimmunology: Evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 2019, 19, 626–642. [Google Scholar] [CrossRef]
- Marsh, D. Concepts of fracture union, delayed union, and nonunion. Clin. Orthop. Relat. Res. 1998, 355, S22–S30. [Google Scholar] [CrossRef]
- Hak, D.J.; Fitzpatrick, D.; Bishop, J.A.; Marsh, J.L.; Tilp, S.; Schnettler, R.; Simpson, H.; Alt, V. Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 2014, 45 (Suppl. S2), S3–S7. [Google Scholar] [CrossRef]
- Tseng, C.Y.; Huang, C.W.; Huang, H.C.; Tseng, W.C. Utilization pattern of traditional Chinese medicine among fracture patients: A Taiwan hospital-based cross-sectional study. Evid. Based Complement Altern. Med. 2018, 2018, 1706517. [Google Scholar] [CrossRef]
- Yuan, Z. Assessment of the safety and efficacy of the Chinese herbal formula (CHF) in fracture treatment. In Proceedings of the 12th International Conference on Biomedical Engineering and Technology (ICBET 2022), Tokyo, Japan, 20–23 April 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 161–168. [Google Scholar] [CrossRef]
- Chalmers, J.; Gray, D.H.; Rush, J. Observations on the induction of bone in soft tissues. J. Bone Joint. Surg. Br. 1975, 57, 36–45. [Google Scholar] [CrossRef]
- Mohr, R.; Scherer, P.R. Accelerated fracture healing. J. Am. Podiatr. Med. Assoc. 1976, 66, 588–603. [Google Scholar] [CrossRef] [PubMed]
- Keum, D.H.; Kim, S.S. Healing effect of pyrite on Tibia Fractured Rats. J. Orient. Rehabil. Med. 2002, 12, 51–68. [Google Scholar]
- Kim, S.O.; Park, M.E. Standardization studies for the oriental mineral medicine. Econ. Environ. Geol. 2015, 48, 187–197. [Google Scholar] [CrossRef]
- Zhang, J.L. Chinese Patent Medicines; China Traditional Chinese Medicine Publishing House: Beijing, China, 2018; Volume 2018, pp. 5–10. [Google Scholar]
- State Pharmacopoeia Commission of the PRC. Pharmacopoeia of the People’s Republic of China; Chemical Industry Press: Beijing, China, 2005; Volume I. [Google Scholar]
- Bibbo, C.; Lin, S.S.; Beam, H.A.; Behrens, F.F. Complications of ankle fractures in diabetic patients. Orthop. Clin. N. Am. 2001, 32, 113–133. [Google Scholar] [CrossRef]
- Xue, C.; Pan, W.; Lu, X.; Guo, J.; Xu, G.; Sheng, Y.; Yuan, G.; Zhao, N.; Sun, J.; Guo, X.; et al. Effects of compound deer bone extract on osteoporosis model mice and intestinal microflora. J. Food Biochem. 2021, 45, e13740. [Google Scholar] [CrossRef]
- Fu, X.; Shao, B.-H.; Wei, X.; Wang, H.-H.; Chen, X.; Zhao, T.-T.; Wang, C.-M. Tubiechong: A review on ethnomedicinal uses, bioactive chemical constituents and pharmacological activities. J. Ethnopharmacol. 2022, 298, 115642. [Google Scholar] [CrossRef]
Study | Study Design | Sample Size (T/C) | Age (Years) (T/C) | Gender | Diagnostic Criteria | Fracture Type and Site | Operation Methods | Blinding Method | |
---|---|---|---|---|---|---|---|---|---|
M | F | ||||||||
Lan 2009 [28] | RCT | 40/40 | 44/45 | 52 | 28 | N/A (postoperative) | Spinal (CV, TV, LV, TV and LV) | IF (screw-rod system/anterior plate) | N/A |
He 2013 [29] | RCT | 34/34 | 26–49 | 30 | 38 | Diagnostic criteria for Colles fracture | Colles | MRS | N/A |
Hong 2012 [30] | RCT | 23/22 | 60–85/60–82 | N/A | N/A | N/A (postoperative) | Colles | MRS | N/A |
Zou 2013 [31] | RCT | 30/30 | 20–29 10; 30~39 9: 40~49 11/20~29 11; 30~39 10: 40~49 9 | 34 | 26 | Diagnostic criteria for fractures | Humerus, ulna or radius, ulna and radius | ORIF | N/A |
Chi 2001 [32] | RCT | 25/22 | 20–45 | 47 | 0 | N/A (postoperative) | Tibiofibula | CR, IIN | N/A |
Liu 2021 [33] | RCT | 30/30 | 21~57 (38.92 ± 5.39)/ 22~58 (39.11 ± 5.43) | 35 | 25 | X-ray, CT | Tibiofibula | IIN | N/A |
Niu 2020 [34] | RCT | 100/100 | 21~76 (45.38 ± 7.24)/ 24~78 (46.12 ± 8.03) | 132 | 68 | Diagnostic criteria for fractures | Tibiofibula | ORIF | N/A |
Xu 2018 [35] | RCT | 30/30 | 33.2 ± 1.5/32.8 ± 1.8 | 38 | 22 | Diagnostic criteria for fractures | Closed fractures around the knee joint | N/A | N/A |
Zhou 2017 [36] | RCT | 43/43 | 18~77 (56 ± 7.2)/ 18~78 (56.6 ± 7.1) | 57 | 29 | Diagnostic criteria for fractures | Tibiofibula | IIN | N/A |
Tu 2018 [37] | RCT | 47/47 | 36.02 ± 8.56/35.58 ± 8.13 | 59 | 35 | N/A (postoperative) | Radius, femur, humerus, tibia | Reduction; IF; EF | N/A |
Zhang 2018 [38] | RCT | 60/60 | 49.3 ± 7.8/49.6 ± 9.4 | 89 | 31 | Diagnostic criteria for long bone fractures | Humerus, ulna, radius, ulna and radius, femur, tibia, fibula, tibia and dibula | INN, EF; PSF; EF | N/A |
Liu 1999 [39] | RCT | 46/46 | 7–78 | N/A | N/A | N/A (postoperative) | Humeral shaft, Humerus, ulna and radius, Colles, Metacarpal bone, pelvis, tibiofibula, medial and lateral ankles, metatarsal bone | MRS | N/A |
Zhou 2000 [40] | RCT | 62/40 | 34 | 64 | 38 | N/A (postoperative) | Tibiofibula | Calcaneal traction | N/A |
Chen 2015 [41] | RCT | 44/44 | 45.18 ± 6.39 | 53 | 35 | X-ray | Tibia, fibula, tibiofibular | ORIF | N/A |
Gui 2019 [42] | RCT | 43/43 | 44.51 ± 5.90/44.91 ± 5.82 | 52 | 34 | Diagnostic criteria for pelvic fractures | Pelvic (tile C1~C3) | I: EF + NPWT; II: ORIF | N/A |
He 2007 [43] | RCT | 25/25 | 44/45 | 32 | 18 | N/A (postoperative) | Tibia, tibiofibular, patella, multiple | IN/KWF | N/A |
He 2019 [44] | RCT | 41/41 | 39.8 ± 13.2/38.2 ± 12.8 | 44 | 38 | X-ray | lower limb | RIF | N/A |
He 2021 [45] | RCT | 40/40 | 41.13 ± 5.62/41.49 ± 5.52 | 58 | 22 | Imaging examination | Calcaneus | ORIF | N/A |
Hua 2006 [46] | RCT | 60/60 | 17–40 24; 41–60 22; 61–80 14/ 17–40 23; 41–60 22; 61–80 15 | 59 | 61 | N/A (postoperative) | Ulna and radius, femur, patella, tibiofibular | ORIF; MRPF | N/A |
Jin 2022 [47] | RCT | 41/41 | 51.03 ± 6.18/50.90 ± 6.31 | 60 | 22 | Diagnostic criteria for acute closed tibial fracture | Acute closed tibial fracture | IF | N/A |
Li 2002 [48] | RCT | 25/25 | 40.3/47.8 | 28 | 22 | N/A (postoperative) | Femur, intertrochanteric, tibia, tibiofibular | N/A | N/A |
Mei 2015 [49] | RCT | 30/30 | 37.2 ± 3.8/38.3 ± 3.7 | 37 | 23 | Diagnostic criteria for lower limb fracture | Multiple, patella, fibular, femur | IIN | N/A |
Qi 2018 [50] | RCT | 48/48 | 37.8 ± 10.3/36.5 ± 12.4 | 53 | 43 | X-ray | Ankle | ORIF | N/A |
Qiu 2020 [51] | RCT | 40/39 | 49.62 ± 4.07/49.68 ± 4.11 | 0 | 79 | N/A (postoperative) | Perimenopausal osteoporosis and unstable tibial plateau fracture | PPF | N/A |
Shao 2013 [52] | RCT | 40/40 | 40.2 ± 15.3/39.4 ± 14.7 | 49 | 31 | X-ray | Humerus, tibia, femur | ORIF | N/A |
Wang 2019 [53] | RCT | 50/50 | 50.93 ± 4.26/50.28 ± 4.37 | 61 | 39 | Diagnosed as ankle fracture | Closed ankle fracture | TF | N/A |
Yan 2017 [54] | RCT | 20/20 | 83.01 ± 1.24 | 18 | 22 | MRI, CT, QCT, X-ray | Senior osteoporotic spinal compression (LV1~LV3) | PKP | N/A |
Yang 2011 [55] | RCT | 400/400 | 38.5 | 596 | 204 | X-ray | Upper limb, lower limb, rib, spine, compound, pelvis | MREF; ORIF | N/A |
Zhou 1999 [56] | RCT | 104/104 | 46.5/44.5 | 145 | 63 | N/A | Humerus, ulna and radius, femoral shaft, distal femur, tibiofibular, tibia | MN; EF | N/A |
Study | Treatments | Dosages/Duration | Outcomes | Adverse Effect | |||
---|---|---|---|---|---|---|---|
Comparative Treatment | Treatment Included in Both Treatment and Control Groups | CPMP | Control | Main | Others | ||
Lan 2009 [28] | DDSG vs. none | OP | 1 pk/t, 1/d, 7 d | N/A | ESR; PV; Hct; EA | WBV; WBRV; ED | N/A |
He 2013 [29] | GYL vs. none | OP + VitD Ca + calcitriol | 5 tb/t, 3/d, 4 wk | VitD Ca 2 tb/t, 1/d; calcitriol 1 tb/t, 3/d, 4 wk | EDT (d); PDT; BUE (d); CGR; TER | N/A | N/A |
Hong 2012 [30] | GYL vs. none | OP | 5 tb/t, 3/d, 4 wk | N/A | BUE (d); CGR; TER | N/A | N/A |
Zou 2013 [31] | GYL vs. none | OP | 6 tb/t, 3/d, 8 wk | N/A | VAS | Edema; FL; CG | N/A |
Chi 2001 [32] | GZCS vs. none | OP | 3 tb/t, 3/d, 8–12 wk | N/A | CGR | BUE (mo); EDT (wk) | N/A |
Liu 2021 [33] | HXZT vs. none | OP + mezlocillin injection | 1.0 g/t, 3/d, 5 d | Mezlocillin injection 2.0 g, 2/d, 3~5 d | TER; PDT | ROM; PICP; BGP; β-CTX; Fb; PLT | N/A |
Niu 2020 [34] | HXZT vs. none | OP | 1.0 g/t, 3/d, 7 d | N/A | TER; VAS | BGP; BMP-2; Calcitonin; PICP; D-D; PT; Fb; APTT | None |
Xu 2018 [35] | HXZT vs. none | OP + sodium chloride injection + cefazolin sodium pentahydrate | 1.0 g/t, 3/d, 7 d | 0.9% sodium chloride injection 1000 mL + cefazolin sodium pentahydrate 2.0 g, 1–3 d | TER; VAS; EDT (d) | BUE (wk) | None |
Zhou 2017 [36] | HXZT vs. none | OP + cefoxitin sodium + saline | 1.0 g/t, 3/d, 5 d | Cefoxitin sodium for injection 2.0 g + 100 mL saline 1/d, 35 d | TER; EDT (d); PDT | NRS | T: None; C: rash (1) |
Tu 2018 [37] | JGW vs. none | OP | 1 tb/t, 2/d, 4 wk | N/A | PDT; TER | CRP; TNF-α; IL-6; BUE (wk); EDT (wk) | None |
Zhang 2018 [38] | JGW vs. none | OP | 1 tb/t, 2/d, 6 wk | N/A | TER; BUE (d); PDT; EDT (d) | BMP-7; LEP | T: FM (1); DU (1); DF (1); LD (2)/C: FM (3); DU (5); Inf (2); DF (3); LD (3) |
Liu 1999 [39] | SHJG vs. none | OP | 1 pk (5 g)/t, ~3 yr: 1/3 pk, 3 yr~: 1/2 pk, 2/d, 14 d | Antd 2 mL; CAP tb 2 tb, 3/d; OC tb 100 mg, 3/d; Vit AD, 1 tb, 3/d; 10% Glu 50 mL, β-SA 25 mg, 1/d; 20%, Man 250 mL, 1/d, 7 d | CGR | PER; EER | N/A |
Zhou 2000 [40] | SHJG vs. none | Calcaneal traction + Vit C + OC | 1 pk (5 g)/t, 2/d, 14 d | Vit C, OC tb 4 tb, 3/d | CGR | N/A | N/A |
Chen 2015 [41] | SKJG vs. none | OP | 10–14 yr: 3 tb/t; 14~: 4 tb/t, 3/d, 8 wk | N/A | VAS; EDT (d); TER | LOS; CG; BUE (wk) | N/A |
Gui 2019 [42] | SKJG vs. Antibiotics + HS | OP | 4 tb/t, 3/d, 3 mo | Antibiotics (6–7 d); HS (2 wk) | ESR | Fb; VR; WBV | N/A |
He 2007 [43] | SKJG vs. none | OP | 4 tb/t, 3/d | N/A | ESR; Hct; PV; EA | Fb; ED; WBRV | N/A |
He 2019 [44] | SKJG vs. none | OP | 4 tb/t, 3/d, 30 d | N/A | TER; ESR; Hct; PV; EA | CRP; ALP; CF; WBRV; ED | N/A |
He 2021 [45] | SKJG vs. none | OP | 4 tb/t, 3/d, 12 wk | N/A | BUE (d); TER | CM | T: DVT (1)/C: Inf (1), DVT (3), hem (2) |
Hua 2006 [46] | SKJG vs. none | OP | 4 tb/t, 3/d, 6 wk | N/A | TER | N/A | N/A |
Jin 2022 [47] | SKJG vs. none | OP + HS | 3/d, 1.32 g/t, 12 wk | HS Injection, 1/d, 0.4 mL/t, 6 d | VAS; TER | BUR | N/A |
Li 2002 [48] | SKJG vs. OP | - | 4 tb/t, 7 d | N/A | ESR; PV; Hct; EA | WBRV; ED; CF | N/A |
Mei 2015 [49] | SKJG vs. none | SA | 4 tb/t; 3/d, 7 d | SA 30 mg + 10% Glu 1/d, 7 d | TER; PV; ESR | Fb | N/A |
Qi 2018 [50] | SKJG vs. none | OP | 4 tb/t, 3/d, 4 wk | N/A | TER | CM | N/A |
Qiu 2020 [51] | SKJG vs. none | OP | 3/d, 4 tb/t, 6 mo | N/A | PDT; EDT (d); BUE (d) | BALP; Ca; BD; CG; Cal | Adverse effects T: 25/40 (62.50%), fever 23, ache 20; C: 24/40 (61.54%), fever 23, ache 19 Complications T:5/40 (12.50%), DU 2, LIF 3 C: 10/39 (25.64%), DU 5, LIF5 |
Shao 2013 [52] | SKJG vs. none | OP | 4 tb/t, 3/d, 30 d | N/A | TER | CG; BUE (wk) | None |
Wang 2019 [53] | SKJG vs. none | OP + DSI | 3/d, 4 tb/t, 4 d | DSI 50 mg/t, 2–3/d | TER; EDT (d); VAS | CM; LOS | None |
Yan 2017 [54] | SKJG vs. none | PKP | 4 tb/t, 4/d, 8 wk | N/A | VAS | ODI; VBH | N/A |
Yang 2011 [55] | SKJG vs. benorilate | OP | 2 tb/t, 3/d (10 yr); 4 tb/t, 3/d (Ad) | benorilate 1–2 tb/t, 3/d, 60 d | CGR | SD | N/A |
Zhou 1999 [56] | SKJG vs. none | OP | 4 tb/t, 3/d, 30 d | N/A | CGR | EDR; BUE (wk) | N/A |
Characteristic | No. of Studies |
---|---|
Main Varieties | |
Diedashenggu keli (granules) | 1 |
Guyuling jiaonang (capsule) | 3 |
Guzhecuoshang jiaonang (capsule) | 1 |
Huoxuezhitong jiaonang (capsule) | 4 |
Jiegu wan (pill) | 2 |
Sanhuajiegu san (powder) | 2 |
Shangkejiegu pian (pill) | 16 |
Outcomes | |
Total effective rate | 17 (16+, 1−) |
Callus growth rate | 7 (7+) |
Evaluation of bone union | 5 (5+) |
Edema disappearance time | 7 (7+) |
VAS pain score | 7 (6+, 1−) |
Pain disappearance time | 6 (6+) |
Erythrocyte sedimentation rate | 6 (5+, 1−) |
Hematocrit | 4 (4+) |
Erythrocyte aggregation | 4 (3+, 1−) |
Plasma viscosity | 5 (4+, 1−) |
Main Varieties | Drug Composition (Chinese Pinyin) | Approval No. of SFDA (State Food and Drug Administration in China) | Prescription Functions (TCM Patterns) |
---|---|---|---|
Diedashenggu keli (granules) | Caulis Premnae Fulvae (Zhangu), Sarcandrae Herba (Zhongjiefeng), Pyritum (Zirantong), Salviae Miltiorrhizae Radix Et Rhizoma (Danshen), Corydalis Rhizoma (Yanhusuo), Achyranthis Bidentatae Radix (Niuxi), Eucommiae Cortex (Duzhong), Dextrin | Z20025338 | Improve blood circulation and disperse stasis, reduce swelling and alleviate pain, and strengthen muscles and bones. |
Guyuling jiaonang (capsule) | Notoginseng Radix Et Rhizoma (Sanqi), Draconis Sanguis (Xuejie), Carthami Flos (Honghua), Angelicae Sinensis Radix (Danggui), Rhizoma Chuanxiong (Chuanxiong), Paeoniae Radix Rubra (Chishao), Olibanum (Ruxiang), Commiphora Myrrha (Moyao), Rhei Radix Et Rhizoma (Dahuang), Dipsaci Radix (Xudan), Drynariae Rhizoma (Gusuibu), Acanthopanacis Cortex (Wujiapi), Rehmanniae Radix Praeparata (Shudihuang), Pyritum (Zirantong), Paeoniae Radix Alba (Baishao), Sodium tetraborate (Pengsha) | Z20025015 | Improve blood circulation and disperse stasis, reduce swelling and alleviate pain, and strengthen muscles and bones. Used for fractures and osteoporosis. |
Guzhecuoshang jiaonang (capsule) | Pig’s bone (Zhugu), Semen Cucumis Sativi (Huangguazi), Eupolyphaga Steleophaga (Tubiechong), Pyritum (Zirantong), Olibanum (Ruxiang), Commiphora Myrrha (Moyao), Draconis Sanguis (Xuejie), Carthami Flos (Honghua), Rhei Radix Et Rhizoma (Dahuang), Angelicae Sinensis Radix (Danggui) | Z20053201 | Stimulate the circulation of the blood and cause the muscles and joints to relax, join bone, and relieve pain. Used for injuries from falls, reducing swelling and dissipating blood stasis, lumbar swelling, upper limb pain, etc. |
Huoxuezhitong jiaonang (capsule) | Angelicae Sinensis Radix (Danggui), Notoginseng Radix Et Rhizome (Sanqi), Olibanum (Ruxiang), Borneolum (Bingpian), Eupolyphaga Steleophaga (Tubiechong),Pyritum (Zirantong) | Z10920002 | Improve blood circulation and disperse stasis, reduce swelling, and alleviate pain. Used for injuries from falls, reducing swelling, and dissipating blood stasis. |
Jiegu wan (pill) | Melo Semen (Tianguazi), Eupolyphaga Steleophaga (Tubiechong), Pheretima (Dilong), Cinnamomi Ramulus (Guizi), Curcumae Radix (Yujin), Drynariae Rhizoma (Gusuibu), Dipsaci Radix (Xudan), Pyritum (Zirantong), Semen Strychni Pulveratum (Maqianzifen) | Z22025709 | Improve blood circulation and disperse stasis, reduce swelling, and alleviate pain. Used for injuries from falls, purplish swelling and pain, lumbar swelling, upper limb pain, fracture, and blood stasis and pain. |
Sanhuajiegu san (powder) | Notoginseng Radix Et Rhizome (Sanqi), Croci Stigma(Xihonghua), Strychni Semen (Maqianzi), Cinnamomum cassia (Guipi), Aquilariae Lignum Resinatum (Chenxiang), Angelicae sinensis radix (Danggui), Pheretima (Dilong), Achyranthis Bidentatae Radix (Niuxi), Borneolum (Bingpian), Aucklandiae Radix (Muxiang), Rhizoma chuanxiong (Chuanxiong), Eupol-yphaga Steleophaga (Tubiechong), Dipsaci Radix (Xudan), Drynariae Rhizoma (Gusuibu), Draconis Sanguis (Xuejie), Rhei Radix Et Rhizoma (Dahuang), Pyritum (Zirantong), Angelica Dahuricae Radix powder (Baizhifen) | Z10950013 | Improve blood circulation, disperse stasis, reduce swelling, alleviate pain, and reunite bone. Used for fracture and tendon injury, blood stasis, and pain. |
Shangkejiegu pian (pill) | Carthami Flos (Honghua), Eupolyphaga Steleophaga (Tubiechong), Cinnabaris (Zhusha), Semen Strychni Pulv-eratum (Maqianzifen), Commiphora Myrrha (Moyao), Notoginseng Radix Et Rhizome (Sanqi), Star Fish (Haix-ing), Chicken bone (Jigu), Borneolum (Bingpian), Pyritu-m (Zirantong), Olibanum (Ruxiang), Melo Semen (Tianguazi) | Z21021461 | Improve blood circulation and disperse stasis, reduce swelling and alleviate pain, soothe the sinews, and strengthen the bones. Used for injuries from falls, purplish swelling and pain, lumbar swelling, upper limb pain, fracture, and blood stasis and pain. Patients with fractures should be treated with reduction before use. |
Study | D1 | D2 | D3 | D4 | D5 | Overall |
---|---|---|---|---|---|---|
Chen 2015 [18] | L | Sc | L | Sc | Sc | Sc |
Chi 2001 [9] | L | Sc | L | Sc | Sc | Sc |
Gui 2019 [19] | L | Sc | L | Sc | Sc | Sc |
He 2007 [20] | L | Sc | L | Sc | Sc | Sc |
He 2013 [6] | Sc | Sc | L | Sc | Sc | Sc |
He 2019 [21] | Sc | Sc | L | Sc | Sc | Sc |
He 2021 [22] | L | Sc | L | Sc | Sc | Sc |
Hong 2012 [7] | H | Sc | L | Sc | Sc | H |
Hua 2006 [23] | H | Sc | L | Sc | Sc | H |
Jin 2022 [24] | L | Sc | L | Sc | Sc | Sc |
Lan 2009 [5] | Sc | Sc | L | Sc | Sc | Sc |
Li 2002 [25] | Sc | Sc | H | Sc | Sc | H |
Liu 1999 [16] | Sc | Sc | L | Sc | Sc | Sc |
Liu 2021 [10] | Sc | Sc | L | Sc | Sc | Sc |
Mei 2015 [26] | Sc | Sc | L | Sc | Sc | Sc |
Niu 2020 [11] | L | Sc | L | Sc | Sc | Sc |
Qi 2018 [27] | L | Sc | L | Sc | Sc | Sc |
Qiu 2020 [28] | L | Sc | L | Sc | Sc | Sc |
Shao 2013 [29] | Sc | Sc | L | Sc | Sc | Sc |
Tu 2018 [14] | Sc | Sc | L | Sc | Sc | Sc |
Wang 2019 [30] | L | Sc | L | Sc | Sc | Sc |
Xu 2018 [12] | L | Sc | L | Sc | Sc | Sc |
Yan 2017 [31] | L | Sc | L | Sc | Sc | Sc |
Yang 2011 [32] | H | Sc | L | Sc | Sc | Sc |
Zhang 2018 [15] | Sc | Sc | L | Sc | Sc | Sc |
Zhou 1999 [33] | Sc | Sc | L | Sc | Sc | Sc |
Zhou 2000 [7] | H | Sc | L | Sc | Sc | H |
Zhou 2017 [13] | L | Sc | L | Sc | Sc | Sc |
Zou 2013 [8] | Sc | Sc | L | Sc | Sc | Sc |
Intervention | Outcomes | Number of Participants (Studies) | Anticipated Absolute Effects (95% CI) | Quality of the Evidence (GRADE) |
---|---|---|---|---|
Comparison of CPMP and control (no CPMP or WM) for fracture | Total efficacy rate | 1539 (17) | 197 fewer per 1000 (from 258 fewer to 143 fewer) | ⨁⨁⨁◯ Moderate * |
Callus growth rate | 1362 (7) | 192 fewer per 1000 (275 fewer to 124 fewer) | ⨁⨁⨁◯ Moderate † | |
Evaluation of bone union | 392 (5) | SMD 1.28 lower (1.94 lower to 0.63 lower) | ⨁⨁◯◯ Low * † | |
Edema disappearance time | 601 (7) | SMD 1.23 lower (1.59 lower to 0.88 lower) | ⨁⨁◯◯ Low * † | |
VAS | 650 (7) | SMD 1.62 lower (2.76 lower to 0.49 lower) | ⨁⨁◯◯ Low * † | |
Pain disappearance time | 507 (6) | SMD 1.72 lower (2.59 lower to 0.85 lower) | ⨁⨁◯◯ Low * † | |
ESR | 408 (6) | SMD 1.07 lower (1.73 lower to 0.4 lower) | ⨁⨁◯◯ Low * † | |
Hct | 262 (4) | SMD 0.72 lower (1.08 lower to 0.36 lower) | ⨁⨁⨁◯ Moderate * | |
EA | 262 (4) | SMD 2.53 lower (4.75 lower to 0.31 lower) | ⨁⨁◯◯ Low * † | |
PV | 322 (5) | SMD 0.93 lower (1.77 lower to 0.09 lower) | ⨁⨁◯◯ Low * † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, E.-Y.; Choi, S.H.; Hwang, J.H. Therapeutic Efficacy of Chinese Patent Medicine Containing Pyrite for Fractures: A Systematic Review and Meta-Analysis. Medicina 2024, 60, 76. https://doi.org/10.3390/medicina60010076
Nam E-Y, Choi SH, Hwang JH. Therapeutic Efficacy of Chinese Patent Medicine Containing Pyrite for Fractures: A Systematic Review and Meta-Analysis. Medicina. 2024; 60(1):76. https://doi.org/10.3390/medicina60010076
Chicago/Turabian StyleNam, Eun-Young, Su Hyun Choi, and Ji Hye Hwang. 2024. "Therapeutic Efficacy of Chinese Patent Medicine Containing Pyrite for Fractures: A Systematic Review and Meta-Analysis" Medicina 60, no. 1: 76. https://doi.org/10.3390/medicina60010076
APA StyleNam, E. -Y., Choi, S. H., & Hwang, J. H. (2024). Therapeutic Efficacy of Chinese Patent Medicine Containing Pyrite for Fractures: A Systematic Review and Meta-Analysis. Medicina, 60(1), 76. https://doi.org/10.3390/medicina60010076