Isolated Severe Neutropenia in Adults, Evaluation of Underlying Causes and Outcomes, Real-World Data Collected over a 5-Year Period in a Tertiary Referral Hospital
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Causes of Isolated Neutropenia
4.2. Bone Marrow Investigations and Additional Diagnostic Work-Up
4.3. Drug-Induced Neutropenia
4.4. Post-Infectious Neutropenia
4.5. Congenital Neutropenia
4.6. Chronic Idiopathic Neutropenia/Idiopathic Cytopenia of Undetermined Significance-Neutropenia (ICUS-N)
4.7. Chronic Autoimmune Neutropenia
4.8. Pregnancy in Patients with Chronic Neutropenia
4.9. Infections, Use of G-CSF and Hospitalisation
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newburger, P.E.; Dale, D.C. Evaluation and management of patients with isolated neutropenia. Semin. Hematol. 2013, 50, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Schwartzberg, L.S. Neutropenia: Etiology and pathogenesis. Clin. Cornerstone 2006, 8 (Suppl. S5), S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, L.; Vidal, X.; Ballarín, E.; Laporte, J.R. Population-based drug-induced agranulocytosis. Arch. Intern. Med. 2005, 165, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Andersohn, F.; Bronder, E.; Klimpel, A.; Thomae, M.; Konzen, C.; Meyer, O.; Salama, A.; Schrezenmeier, H.; Garbe, E.; et al. Drug-induced agranulocytosis in the Berlin case-control surveillance study. Eur. J. Clin. Pharmacol. 2014, 70, 339–345. [Google Scholar] [CrossRef]
- Andres, E.; Mourot-Cottet, R. Non-chemotherapy drug-induced neutropenia—An update. Expert Opin. Drug Saf. 2017, 16, 1235–1242. [Google Scholar] [CrossRef]
- Pascutti, M.F.; Erkelens, M.N.; Nolte, M.A. Impact of Viral Infections on Hematopoiesis: From Beneficial to Detrimental Effects on Bone Marrow Output. Front. Immunol. 2016, 7, 364. [Google Scholar] [CrossRef]
- Sedger, L.M.; Hou, S.; Osvath, S.R.; Glaccum, M.B.; Peschon, J.J.; van Rooijen, N.; Hyland, L. Bone marrow B cell apoptosis during in vivo influenza virus infection requires TNF-alpha and lymphotoxin-alpha. J. Immunol. 2002, 169, 6193–6201. [Google Scholar] [CrossRef]
- Segel, G.B.; Halterman, J.S. Neutropenia in pediatric practice. Pediatr. Rev. 2008, 29, 12–23. [Google Scholar] [CrossRef]
- Agbuduwe, C.; Basu, S. Haematological manifestations of COVID-19: From cytopenia to coagulopathy. Eur. J. Haematol. 2020, 105, 540–546. [Google Scholar] [CrossRef]
- Bouslama, B.; Pierret, C.; Khelfaoui, F.; Bellanné-Chantelot, C.; Donadieu, J.; Héritier, S. Post-COVID-19 severe neutropenia. Pediatr. Blood Cancer 2021, 68, e28866. [Google Scholar] [CrossRef]
- Folino, F.; Menis, C.; Di Pietro, G.M.; Pinzani, R.; Marchisio, P.; Bosis, S. Incidental occurrence of neutropenia in children hospitalised for COVID-19. Ital. J. Pediatr. 2022, 48, 43. [Google Scholar] [CrossRef] [PubMed]
- Devi, Y.M.; Sehrawat, A.; Panda, P.K.; Nath, U.K. Febrile neutropenia due to COVID-19 in an immunocompetent patient. BMJ Case Rep. 2021, 14, e242683. [Google Scholar] [CrossRef] [PubMed]
- Olliaro, P.; Djimdé, A.; Dorsey, G.; Karema, C.; Mårtensson, A.; Ndiaye, J.L.; Sirima, S.B.; Vaillant, M.; Zwang, J. Hematologic parameters in pediatric uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa. Am. J. Trop. Med. Hyg. 2011, 85, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.; Berliner, N. How we evaluate and treat neutropenia in adults. Blood 2014, 124, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Dale, D.C.; Cottle, T.E.; Fier, C.J.; Bolyard, A.A.; Bonilla, M.A.; Boxer, L.A.; Cham, B.; Freedman, M.H.; Kannourakis, G.; Welte, K.; et al. Severe chronic neutropenia: Treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am. J. Hematol. 2003, 72, 82–93. [Google Scholar] [CrossRef]
- Rydzynska, Z.; Pawlik, B.; Krzyzanowski, D.; Mlynarski, W.; Madzio, J. Neutrophil Elastase Defects in Congenital Neutropenia. Front. Immunol. 2021, 12, 653932. [Google Scholar] [CrossRef]
- Arun, A.K.; Senthamizhselvi, A.; Hemamalini, S.; Edison, E.S.; Korula, A.; Fouzia, N.A.; George, B.; Mathews, V.; Balasubramanian, P. Spectrum of ELANE mutations in congenital neutropenia: A single-centre study in patients of Indian origin. J. Clin. Pathol. 2018, 71, 1046–1050. [Google Scholar] [CrossRef]
- Horwitz, M.S.; Duan, Z.; Korkmaz, B.; Lee, H.H.; Mealiffe, M.E.; Salipante, S.J. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 2007, 109, 1817–1824. [Google Scholar] [CrossRef]
- Klein, C. Congenital neutropenia. Hematol. Am. Soc. Hematol. Educ. Program 2009, 2009, 344–350. [Google Scholar] [CrossRef]
- Welte, K.; Zeidler, C.; Dale, D.C. Severe congenital neutropenia. Semin. Hematol. 2006, 43, 189–195. [Google Scholar] [CrossRef]
- Rosenberg, P.S.; Alter, B.P.; Bolyard, A.A.; Bonilla, M.A.; Boxer, L.A.; Cham, B.; Fier, C.; Freedman, M.; Kannourakis, G.; Dale, D.C.; et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006, 107, 4628–4635. [Google Scholar] [CrossRef] [PubMed]
- Aapro, M.S.; Bohlius, J.; Cameron, D.A.; Lago, L.D.; Donnelly, J.P.; Kearney, N.; Lyman, G.H.; Pettengell, R.; Tjan-Heijnen, V.C.; Walewski, J.; et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur. J. Cancer 2011, 47, 8–32. [Google Scholar] [CrossRef] [PubMed]
- Fioredda, F.; Skokowa, J.; Tamary, H.; Spanoudakis, M.; Farruggia, P.; Almeida, A.; Guardo, D.; Höglund, P.; Newburger, P.E.; Papadaki, H.A.; et al. The European Guidelines on Diagnosis and Management of Neutropenia in Adults and Children: A Consensus Between the European Hematology Association and the EuNet-INNOCHRON COST Action. Hemasphere 2023, 7, e872. [Google Scholar] [CrossRef] [PubMed]
- Gunn, E.; Powers, J.M.; Rahman, A.F.; Bemrich-Stolz, C.; Mennemeyer, S.; Lebensburger, J.D.; Wilson, H.P. Diagnosis and management of isolated neutropenia: A survey of pediatric hematologist oncologists. Pediatr. Blood Cancer 2023, 70, e29946. [Google Scholar] [CrossRef]
- Donadieu, J. Evaluation of neutropenia in children. Arch. Pediatr. 2003, 10 (Suppl. S4), 521s–523s. [Google Scholar] [CrossRef]
- Dale, D.C. How I diagnose and treat neutropenia. Curr. Opin. Hematol. 2016, 23, 1–4. [Google Scholar] [CrossRef]
- Frater, J.L. How I investigate neutropenia. Int. J. Lab. Hematol. 2020, 42 (Suppl. S1), 121–132. [Google Scholar] [CrossRef]
- Andres, E.; Noel, E.; Kurtz, J.E.; Henoun Loukili, N.; Kaltenbach, G.; Maloisel, F. Life-threatening idiosyncratic drug-induced agranulocytosis in elderly patients. Drugs Aging 2004, 21, 427–435. [Google Scholar] [CrossRef]
- Andres, E.; Kurtz, J.E.; Maloisel, F. Nonchemotherapy drug-induced agranulocytosis: Experience of the Strasbourg teaching hospital (1985–2000) and review of the literature. Clin. Lab. Haematol. 2002, 24, 99–106. [Google Scholar] [CrossRef]
- Strom, B.L.; Carson, J.L.; Schinnar, R.; Snyder, E.S.; Shaw, M. Descriptive epidemiology of agranulocytosis. Arch. Intern. Med. 1992, 152, 1475–1480. [Google Scholar] [CrossRef]
- Andersohn, F.; Konzen, C.; Garbe, E. Systematic review: Agranulocytosis induced by nonchemotherapy drugs. Ann. Intern. Med. 2007, 146, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Lampl, C.; Likar, R. Metamizole (dipyrone): Mode of action, drug-drug interactions, and risk of agranulocytosis. Schmerz 2014, 28, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Blaser, L.S.; Tramonti, A.; Egger, P.; Haschke, M.; Krähenbühl, S.; Rätz Bravo, A.E. Hematological safety of metamizole: Retrospective analysis of WHO and Swiss spontaneous safety reports. Eur. J. Clin. Pharmacol. 2015, 71, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Andersohn, F.; Sarganas, G.; Bronder, E.; Klimpel, A.; Thomae, M.; Konzen, C.; Kreutz, R.; Garbe, E. Metamizole-induced agranulocytosis revisited: Results from the prospective Berlin Case-Control Surveillance Study. Eur. J. Clin. Pharmacol. 2015, 71, 219–227. [Google Scholar] [CrossRef]
- Hoffmann, F.; Bantel, C.; Jobski, K. Agranulocytosis attributed to metamizole: An analysis of spontaneous reports in EudraVigilance 1985–2017. Basic Clin. Pharmacol. Toxicol. 2020, 126, 116–125. [Google Scholar] [CrossRef]
- Hedenmalm, K.; Spigset, O. Agranulocytosis and other blood dyscrasias associated with dipyrone (metamizole). Eur. J. Clin. Pharmacol. 2002, 58, 265–274. [Google Scholar] [CrossRef]
- de Leeuw, T.G.; Dirckx, M.; Gonzalez, C.A.; Scoones, G.P.; Huygen, F.J.P.M.; de Wildt, S.N. The use of dipyrone (metamizol) as an analgesic in children: What is the evidence? A review. Paediatr. Anaesth. 2017, 27, 1193–1201. [Google Scholar] [CrossRef]
- Bhaumik, S. India’s health ministry bans pioglitazone, metamizole, and flupentixol-melitracen. BMJ 2013, 347, f4366. [Google Scholar] [CrossRef]
- Li, R.; Zaidi, S.T.R.; Chen, T.; Castelino, R. Effectiveness of interventions to improve adverse drug reaction reporting by healthcare professionals over the last decade: A systematic review. Pharmacoepidemiol. Drug Saf. 2020, 29, 1–8. [Google Scholar] [CrossRef]
- Beeler, P.E.; Stammschulte, T.; Dressel, H. Hospitalisations Related to Adverse Drug Reactions in Switzerland in 2012–2019: Characteristics, In-Hospital Mortality, and Spontaneous Reporting Rate. Drug Saf. 2023, 46, 753–763. [Google Scholar] [CrossRef]
- Mina, A.; van Besien, K.; Platanias, L.C. Hematological manifestations of COVID-19. Leuk. Lymphoma 2020, 61, 2790–2798. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, P.; Leinonen, M.; Jalanko, H.; Hovi, L.; Saarinen, U.M. Fever and neutropenia: Bacterial etiology revealed by serological methods. Acta Paediatr. 1993, 82, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Linman, J.W. Chronic idiopathic neutropenia. A newly recognized entity? N. Engl. J. Med. 1968, 279, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Dale, D.C.; Bolyard, A.A. An update on the diagnosis and treatment of chronic idiopathic neutropenia. Curr. Opin. Hematol. 2017, 24, 46–53. [Google Scholar] [CrossRef]
- Papadaki, H.A.; Palmblad, J.; Eliopoulos, G.D. Non-immune chronic idiopathic neutropenia of adult: An overview. Eur. J. Haematol. 2001, 67, 35–44. [Google Scholar] [CrossRef]
- Papadaki, H.A.; Stamatopoulos, K.; Damianaki, A.; Gemetzi, C.; Anagnostopoulos, A.; Papadaki, T.; Eliopoulos, A.G.; Eliopoulos, G.D. Activated T-lymphocytes with myelosuppressive properties in patients with chronic idiopathic neutropenia. Br. J. Haematol. 2005, 128, 863–876. [Google Scholar] [CrossRef]
- Spanoudakis, M.; Koutala, H.; Ximeri, M.; Pyrovolaki, K.; Stamatopoulos, K.; Papadaki, H.A. T-cell receptor Vbeta repertoire analysis in patients with chronic idiopathic neutropenia demonstrates the presence of aberrant T-cell expansions. Clin. Immunol. 2010, 137, 384–395. [Google Scholar] [CrossRef]
- Palmblad, J.; Papadaki, H.A. Chronic idiopathic neutropenias and severe congenital neutropenia. Curr. Opin. Hematol. 2008, 15, 8–14. [Google Scholar] [CrossRef]
- Koumaki, V.; Damianaki, A.; Ximeri, M.; Pontikoglou, C.; Axioti, F.; Spanoudakis, M.; Eliopoulos, G.D.; Papadaki, H.A. Pro-inflammatory bone marrow milieu in patients with chronic idiopathic neutropenia is associated with impaired local production of interleukin-10. Br. J. Haematol. 2006, 135, 570–573. [Google Scholar] [CrossRef]
- Akhtari, M.; Curtis, B.; Waller, E.K. Autoimmune neutropenia in adults. Autoimmun. Rev. 2009, 9, 62–66. [Google Scholar] [CrossRef]
- Bux, J.; Kissel, K.; Nowak, K.; Spengel, U.; Mueller-Eckhardt, C. Autoimmune neutropenia: Clinical and laboratory studies in 143 patients. Ann. Hematol. 1991, 63, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Bux, J.; Behrens, G.; Jaeger, G.; Welte, K. Diagnosis and clinical course of autoimmune neutropenia in infancy: Analysis of 240 cases. Blood 1998, 91, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Bux, J.; Chapman, J. Report on the second international granulocyte serology workshop. Transfusion 1997, 37, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Furutani, E.; Newburger, P.E.; Shimamura, A. Neutropenia in the age of genetic testing: Advances and challenges. Am. J. Hematol. 2019, 94, 384–393. [Google Scholar] [CrossRef]
- Klein, C.; Grudzien, M.; Appaswamy, G.; Germeshausen, M.; Sandrock, I.; Schäffer, A.A.; Rathinam, C.; Zeidler, C.; Grimbacher, B.; Welte, K. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat. Genet. 2007, 39, 86–92. [Google Scholar] [CrossRef]
- Ancliff, P.J.; Blundell, M.P.; Cory, G.O.; Calle, Y.; Worth, A.; Kempski, H.; Burns, S.; Jones, G.E.; Sinclair, J.; Thrasher, A.J.; et al. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood 2006, 108, 2182–2189. [Google Scholar] [CrossRef]
- Devriendt, K.; Kim, A.S.; Mathijs, G.; Frints, S.G.; Schwartz, M.; Van Den Oord, J.J.; Verhoef, G.E.; Boogaerts, M.A.; Fryns, J.P.; Vandenberghe, P.; et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat. Genet. 2001, 27, 313–317. [Google Scholar] [CrossRef]
- Boxer, L.A.; Newburger, P.E. A molecular classification of congenital neutropenia syndromes. Pediatr. Blood Cancer 2007, 49, 609–614. [Google Scholar] [CrossRef]
- Dale, D.C.; Bonilla, M.A.; Davis, M.W.; Nakanishi, A.M.; Hammond, W.P.; Kurtzberg, J.; Wang, W.; Jakubowski, A.; Winton, E.; Lalezari, P.; et al. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 1993, 81, 2496–2502. [Google Scholar] [CrossRef]
- Heussner, P.; Haase, D.; Kanz, L.; Fonatsch, C.; Welte, K.; Freund, M.G. CSF in the long-term treatment of cyclic neutropenia and chronic idiopathic neutropenia in adult patients. Int. J. Hematol. 1995, 62, 225–234. [Google Scholar]
- Zeidler, C.; Grote, U.A.; Nickel, A.; Brand, B.; Carlsson, G.; Cortesão, E.; Dufour, C.; Duhem, C.; Notheis, G.; Welke, K.; et al. Outcome and management of pregnancies in severe chronic neutropenia patients by the European Branch of the Severe Chronic Neutropenia International Registry. Haematologica 2014, 99, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Boxer, L.A.; Bolyard, A.A.; Kelley, M.L.; Marrero, T.M.; Phan, L.; Bond, J.M.; Newburger, P.E.; Dale, D.C. Use of granulocyte colony-stimulating factor during pregnancy in women with chronic neutropenia. Obstet. Gynecol. 2015, 125, 197–203. [Google Scholar] [CrossRef] [PubMed]
Drug | N | % of Acute Forms |
---|---|---|
Azathioprin | 2 | 5.5 |
Clopidogrel | 1 | 2.8 |
Clozapin | 1 | 2.8 |
Dimethylfumarat | 1 | 2.8 |
Infliximab | 1 | 2.8 |
Lamivudin/zidovudine | 2 | 5.5 |
Lamotrigin | 1 | 2.8 |
Metamizole | 14 | 39.0 |
Methotrexate | 2 | 5.5 |
Ocrelizumab | 1 | 2.8 |
Pembrolizumab | 1 | 2.8 |
Rituximab | 4 | 11.0 |
Tenofovir/Emtricitabin | 1 | 2.8 |
Trazodone | 2 | 5.5 |
Tocilizumab | 2 | 5.5 |
Patient | Age at Diagnosis | Pathogen | ANC at Diagnosis (109/L) | Duration of Neutropenia (Days) |
---|---|---|---|---|
1 | 31 | Dengue virus | 0.48 | 1 |
2 | 29 | Haemophilus influenzae | 0.22 | 1 |
3 | 39 | Enterovirus | 0.46 | 4 |
4 | 54 | Rhinovirus | 0.21 | 7 |
5 | 26 | Epstein-Barr virus | 0.35 | 1 |
6 | 28 | Dengue virus | 0.36 | 2 |
7 | 40 | Not known | 0.42 | 3 |
8 | 48 | Not known | 0.11 | 5 |
9 | 25 | Not known | 0.22 | 1 |
10 | 35 | Not known | 0.42 | 2 |
Neutropenia Cause | n | G-CSF Use | Hospitalization-Rate, N | |
---|---|---|---|---|
n | % | |||
Congenital neutropenia | 4 | 3 | 75 | 3 (75%) |
CIN and AIN | 20 | 11 | 55 | 2 (10%) |
Drug-induced neutropenia | 36 | 8 | 22 | 17 (47%) |
Post-infectious neutropenia | 10 | 0 | 0 | 2 (20%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Njue, L.; Porret, N.; Schnegg-Kaufmann, A.S.; Varra, L.F.; Andres, M.; Rovó, A. Isolated Severe Neutropenia in Adults, Evaluation of Underlying Causes and Outcomes, Real-World Data Collected over a 5-Year Period in a Tertiary Referral Hospital. Medicina 2024, 60, 1576. https://doi.org/10.3390/medicina60101576
Njue L, Porret N, Schnegg-Kaufmann AS, Varra LF, Andres M, Rovó A. Isolated Severe Neutropenia in Adults, Evaluation of Underlying Causes and Outcomes, Real-World Data Collected over a 5-Year Period in a Tertiary Referral Hospital. Medicina. 2024; 60(10):1576. https://doi.org/10.3390/medicina60101576
Chicago/Turabian StyleNjue, Linet, Naomi Porret, Annatina Sarah Schnegg-Kaufmann, Luca Francesco Varra, Martin Andres, and Alicia Rovó. 2024. "Isolated Severe Neutropenia in Adults, Evaluation of Underlying Causes and Outcomes, Real-World Data Collected over a 5-Year Period in a Tertiary Referral Hospital" Medicina 60, no. 10: 1576. https://doi.org/10.3390/medicina60101576
APA StyleNjue, L., Porret, N., Schnegg-Kaufmann, A. S., Varra, L. F., Andres, M., & Rovó, A. (2024). Isolated Severe Neutropenia in Adults, Evaluation of Underlying Causes and Outcomes, Real-World Data Collected over a 5-Year Period in a Tertiary Referral Hospital. Medicina, 60(10), 1576. https://doi.org/10.3390/medicina60101576