Optimal Targeted Temperature Management for Patients with Post-Cardiac Arrest Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Role of the Funding Source
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Patient Population and Baseline Characteristics
3.2. Outcomes
3.3. Outcomes in the Subgroups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nolan, J.P.; Maconochie, I.; Soar, J.; Olasveengen, T.M.; Greif, R.; Wyckoff, M.H.; Singletary, E.M.; Aickin, R.; Berg, K.M.; Mancini, M.E.; et al. Executive Summary: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020, 142, s2–s27. [Google Scholar] [CrossRef] [PubMed]
- Merchant, R.M.; Topjian, A.A.; Panchal, A.R.; Cheng, A.; Aziz, K.; Berg, K.M.; Lavonas, E.J.; Magid, D.J. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S337–S357. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, M.H.; Greif, R.; Morley, P.T.; Ng, K.C.; Olasveengen, T.M.; Singletary, E.M.; Soar, J.; Cheng, A.; Drennan, I.R.; Liley, H.G.; et al. 2022 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2022, 146, e483–e557. [Google Scholar] [CrossRef]
- The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 2002, 346, 549–556. [Google Scholar] [CrossRef]
- Bernard, S.A.; Gray, T.W.; Buist, M.D.; Jones, B.M.; Silvester, W.; Gutteridge, G.; Smith, K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 2002, 346, 557–563. [Google Scholar] [CrossRef]
- Nielsen, N.; Wetterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N. Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef]
- Dankiewicz, J.; Cronberg, T.; Lilja, G.; Jakobsen, J.C.; Levin, H.; Ullén, S.; Rylander, C.; Wise, M.P.; Oddo, M.; Cariou, A.; et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2021, 384, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Lascarrou, J.B.; Merdji, H.; Le Gouge, A.; Colin, G.; Grillet, G.; Girardie, P.; Coupez, E.; Dequin, P.F.; Cariou, A.; Boulain, T.; et al. Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. N. Engl. J. Med. 2019, 381, 2327–2337. [Google Scholar] [CrossRef]
- Kirkegaard, H.; Søreide, E.; de Haas, I.; Pettilä, V.; Taccone, F.S.; Arus, U.; Storm, C.; Hassager, C.; Nielsen, J.F.; Sørensen, C.A.; et al. Targeted Temperature Management for 48 vs. 24 h and Neurologic Outcome after Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA 2017, 318, 341–350. [Google Scholar] [CrossRef]
- Tahara, Y.; Noguchi, T.; Yonemoto, N.; Nakashima, T.; Yasuda, S.; Kikuchi, M.; Hashiba, K.; Arimoto, H.; Nishioka, K.; Kokubu, N.; et al. Cluster Randomized Trial of Duration of Cooling in Targeted Temperature Management After Resuscitation for Cardiac Arrest. Circ. Rep. 2021, 3, 368–374. [Google Scholar] [CrossRef]
- Minini, A.; Annoni, F.; Peluso, L.; Bogossian, E.G.; Creteur, J.; Taccone, F.S. Which Target Temperature for Post-Anoxic Brain Injury? A Systematic Review from “Real Life” Studies. Brain Sci. 2021, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Humbert, A.; Leroux, B.; Nichol, G.; Kudenchuk, P.; Scales, D.; Baker, A.; Austin, M.; Newgard, C.D.; Radecki, R.; et al. Hospital Variation in the Utilization and Implementation of Targeted Temperature Management in Out-of-Hospital Cardiac Arrest. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004829. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.J.; Danielson, K.R.; Counts, C.R.; Ruark, K.; Scruggs, S.; Hough, C.L.; Maynard, C.; Sayre, M.R.; Carlbom, D.J. Targeted Temperature Management at 33 Versus 36 Degrees: A Retrospective Cohort Study. Crit. Care Med. 2020, 48, 362–369. [Google Scholar] [CrossRef]
- Salter, R.; Bailey, M.; Bellomo, R.; Eastwood, G.; Goodwin, A.; Nielsen, N.; Pilcher, D.; Nichol, A.; Saxena, M.; Shehabi, Y.; et al. Changes in Temperature Management of Cardiac Arrest Patients Following Publication of the Target Temperature Management Trial. Crit. Care Med. 2018, 46, 1722–1730. [Google Scholar] [CrossRef]
- Bailey, E.D.; Wydro, G.C.; Cone, D.C. Termination of resuscitation in the prehospital setting for adult patients suffering nontraumatic cardiac arrest: National Association of EMS Physicians Standards and Clinical Practice Committee. Prehosp. Emerg. Care 2000, 4, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Cummins, R.O.; Chamberlain, D.A.; Abramson, N.S.; Allen, M.; Baskett, P.J.; Becker, L.; Bossaert, L.; Delooz, H.H.; Dick, W.F.; Eisenberg, M.S.; et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: The Utstein Style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation 1991, 84, 960–975. [Google Scholar] [CrossRef]
- Yokoyama, H.; Nagao, K.; Hase, M.; Tahara, Y.; Hazui, H.; Arimoto, H.; Kashiwase, K.; Sawano, H.; Yasuga, Y.; Kuroda, Y.; et al. Impact of therapeutic hypothermia in the treatment of patients with out-of-hospital cardiac arrest from the J-PULSE-HYPO study registry. Circ. J. 2011, 75, 1063–1070. [Google Scholar] [CrossRef]
- Callaway, C.W.; Coppler, P.J.; Faro, J.; Puyana, J.S.; Solanki, P.; Dezfulian, C.; Doshi, A.A.; Elmer, J.; Frisch, A.; Guyette, F.X.; et al. Association of Initial Illness Severity and Outcomes After Cardiac Arrest With Targeted Temperature Management at 36 °C or 33 °C. JAMA Netw. Open 2020, 3, e208215. [Google Scholar] [CrossRef]
- Nishikimi, M.; Ogura, T.; Nishida, K.; Hayashida, K.; Emoto, R.; Matsui, S.; Matsuda, N.; Iwami, T. Outcome Related to Level of Targeted Temperature Management in Postcardiac Arrest Syndrome of Low, Moderate, and High Severities: A Nationwide Multicenter Prospective Registry. Crit. Care Med. 2021, 49, e741–e750. [Google Scholar] [CrossRef]
- Kaneko, T.; Kasaoka, S.; Nakahara, T.; Sawano, H.; Tahara, Y.; Hase, M.; Nishioka, K.; Shirai, S.; Hazui, H.; Arimoto, H.; et al. Effectiveness of lower target temperature therapeutic hypothermia in post-cardiac arrest syndrome patients with a resuscitation interval of ≤30 min. J. Intensive Care 2015, 3, 28. [Google Scholar] [CrossRef]
- Kikutani, K.; Nishikimi, M.; Shimatani, T.; Kyo, M.; Ohshimo, S.; Shime, N. Differential Effectiveness of Hypothermic Targeted Temperature Management According to the Severity of Post-Cardiac Arrest Syndrome. J. Clin. Med. 2021, 10, 5643. [Google Scholar] [CrossRef] [PubMed]
- Mongardon, N.; Dumas, F.; Ricome, S.; Grimaldi, D.; Hissem, T.; Pène, F.; Cariou, A. Postcardiac arrest syndrome: From immediate resuscitation to long-term outcome. Ann. Intensive Care 2011, 1, 45. [Google Scholar] [CrossRef]
- Hassager, C.; Nagao, K.; Hildick-Smith, D. Out-of-hospital cardiac arrest: In-hospital intervention strategies. Lancet 2018, 391, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Polderman, K.H. Mechanisms of action, physiological effects, and complications of hypothermia. Crit. Care Med. 2009, 37, S186–S202. [Google Scholar] [CrossRef]
- ECC Committee, Subcommittees; Task Forces of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2005, 112, Iv1-203. [Google Scholar] [CrossRef]
- Field, J.M.; Hazinski, M.F.; Sayre, M.R.; Chameides, L.; Schexnayder, S.M.; Hemphill, R.; Samson, R.A.; Kattwinkel, J.; Berg, R.A.; Bhanji, F.; et al. Part 1: Executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122, S640–S656. [Google Scholar] [CrossRef] [PubMed]
- Neumar, R.W.; Shuster, M.; Callaway, C.W.; Gent, L.M.; Atkins, D.L.; Bhanji, F.; Brooks, S.C.; de Caen, A.R.; Donnino, M.W.; Ferrer, J.M.; et al. Part 1: Executive Summary: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132, S315–S367. [Google Scholar] [CrossRef]
- Yagi, T.; Nagao, K.; Yonemoto, N.; Gaieski, D.F.; Tachibana, E.; Ito, N.; Shirai, S.; Tahara, Y.; Nonogi, H.; Ikeda, T. Impact of Updating the Cardiopulmonary Resuscitation Guidelines on Out-of-Hospital Shockable Cardiac Arrest: A Population-Based Cohort Study in Japan. J. Am. Heart Assoc. 2024, 13, e031394. [Google Scholar] [CrossRef]
Characteristic | Group A + B | Group C + D | p Value |
---|---|---|---|
Age—yr | 63 ± 15 | 64 ± 12 | 0.802 |
Male sex—no. (%) | 100 (82.6) | 43 (76.8) | 0.357 |
Medical history Hypertension—no (%) | 68 (56.2) | 31 (55.4) | 0.917 |
Medical history Diabetes—no (%) | 45 (37.2) | 12 (21.8) | 0.043 |
Medical history Myocardial infarction—no (%) | 31 (25.6) | 14 (25.0) | 0.930 |
Medical history Heart failure—no (%) | 19 (33.9) | 30 (24.8) | 0.207 |
Witness Cardiac Arrest—no (%) | 78 (60.9) | 38 (59.4) | 0.835 |
Bystander CPR 1—no (%) | 68 (53.1) | 26 (40.6) | 0.102 |
Shockable rhythm—no (%) | 94 (74.0) | 44 (68.8) | 0.443 |
Location Place of residence—no (%) | 55 (43.0) | 31 (48.4) | 0.473 |
Location Public place—no (%) | 58 (45.3) | 27 (42.2) | 0.681 |
Location Hospital—no (%) | 16 (12.5) | 5 (7.8) | 0.327 |
Duration of cardiac arrest—min | 31 ± 20 | 28 ± 20 | 0.188 |
Ejection fraction—% | 46 ± 17 | 50 ± 18 | 0.179 |
Blood gas analysis Ph 2 | 7.09 ± 0.21 | 7.12 ± 0.23 | 0.300 |
Blood gas analysis Lactate 3—mmol/L | 9.61 ± 3.68 | 11.28 ± 0.14 | 0.317 |
Cause of Cardiac arrest | 0.044 | ||
Acute Coronary Syndorome—no (%) | 55 (43.0) | 16 (25.0) | |
Congestive Heart Failure—no (%) | 12 (9.4) | 11 (17.2) | |
Old Myocardial Infarction—no (%) | 19 (14.8) | 12 (18.8) | |
Arrhythmia—no (%) | 9 (7.0) | 10 (15.6) | |
Cardiomyopathy—no (%) | 12 (9.4) | 5 (7.8) | |
Pulmonary Embolism—no (%) | 2 (1.6) | 3 (4.7) | |
Vasospastic Angina—no (%) | 10 (7.8) | 1 (1.6) | |
Others—no (%) | 9 (7.0) | 6 (9.4) | |
Urgent coronary angiography—no (%) | 104 (81.3) | 30 (46.9) | <0.001 |
Urgent PCI 4—no (%) | 52 (40.6) | 11 (17.2) | 0.001 |
IABP 5—no (%) | 91 (71.1) | 19 (30.2) | <0.001 |
VA-ECMO 6—no (%) | 17 (13.3) | 2 (3.1) | 0.026 |
Variable | Adjusted OR | 95% CI | p Value |
---|---|---|---|
Age | 0.948 | 0.906–0.992 | 0.022 |
Male sex (Reference Female) | 1.432 | 0.385–5.327 | 0.592 |
Witness Cardiac Arrest | 0.586 | 0.165–2.076 | 0.407 |
Bystander CPR 1 | 0.482 | 0.155–1.500 | 0.208 |
Shockable rhythm (Reference Non-shockable rhythm) | 7.128 | 1.744–29.13 | 0.006 |
Location Out of Hospital (Reference in Hospital) | 28.27 | 2.103–379.9 | 0.012 |
Duration of cardiac arrest | 0.882 | 0.832–0.935 | <0.001 |
Ejection fraction | 1.013 | 0.981–1.046 | 0.430 |
Ph | 185.2 | 4.467–7681.3 | <0.001 |
Lactate | 1.202 | 0.984–1.468 | 0.071 |
Urgent coronary angiography | 4.392 | 0.440–43.89 | 0.208 |
Urgent PCI 2 | 1.582 | 0.423–5.911 | 0.495 |
IABP 3 | 0.254 | 0.031–2.050 | 0.198 |
VA-ECMO 4 | 2.014 | 0.111–36.55 | 0.636 |
Group A + B (Reference Group C + D) | 0.502 | 0.133–1.896 | 0.310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagi, T.; Tachibana, E.; Atsumi, W.; Kuronuma, K.; Iso, K.; Hayashida, S.; Sugai, S.; Sasa, Y.; Shoji, Y.; Kunimoto, S.; et al. Optimal Targeted Temperature Management for Patients with Post-Cardiac Arrest Syndrome. Medicina 2024, 60, 1575. https://doi.org/10.3390/medicina60101575
Yagi T, Tachibana E, Atsumi W, Kuronuma K, Iso K, Hayashida S, Sugai S, Sasa Y, Shoji Y, Kunimoto S, et al. Optimal Targeted Temperature Management for Patients with Post-Cardiac Arrest Syndrome. Medicina. 2024; 60(10):1575. https://doi.org/10.3390/medicina60101575
Chicago/Turabian StyleYagi, Tsukasa, Eizo Tachibana, Wataru Atsumi, Keiichiro Kuronuma, Kazuki Iso, Satoshi Hayashida, Shonosuke Sugai, Yusuke Sasa, Yoshikuni Shoji, Satoshi Kunimoto, and et al. 2024. "Optimal Targeted Temperature Management for Patients with Post-Cardiac Arrest Syndrome" Medicina 60, no. 10: 1575. https://doi.org/10.3390/medicina60101575
APA StyleYagi, T., Tachibana, E., Atsumi, W., Kuronuma, K., Iso, K., Hayashida, S., Sugai, S., Sasa, Y., Shoji, Y., Kunimoto, S., Tani, S., Matsumoto, N., & Okumura, Y. (2024). Optimal Targeted Temperature Management for Patients with Post-Cardiac Arrest Syndrome. Medicina, 60(10), 1575. https://doi.org/10.3390/medicina60101575