Comparison of Bone Mineral Density Between Veterans and Non-Veterans and Its Impact on Fracture Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrolled Participants
2.2. Comorbidities and Mortality
2.3. Fracture Identification
2.4. BMD Measurements
2.5. Statistical Analysis
3. Result
3.1. Demographic Data
3.2. Conditional Logistic Regression Analysis of Factors Associated with Fractures in Veterans
3.3. Mann–Whitney U Test Results Comparing Veterans and Non-Veterans with Fractures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lane, N.E. Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol. 2006, 194 (Suppl. S2), S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Matía-Martín, P.; Torrego-Ellacuría, M.; Larrad-Sainz, A.; Fernández-Pérez, C.; Cuesta-Triana, F.; Rubio-Herrera, M. Effects of Milk and Dairy Products on the Prevention of Osteoporosis and Osteoporotic Fractures in Europeans and Non-Hispanic Whites from North America: A systematic review and updated meta-analysis. Adv. Nutr. 2019, 10 (Suppl. S2), S120–S143. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, D.; Takahashi, O.; Deshpande, G.A.; Shimbo, T.; Fukui, T. Association between osteoporosis and sleep duration in healthy middle-aged and elderly adults: A large-scale, cross-sectional study in Japan. Sleep Breath. 2012, 16, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, K.A.; Punjabi, N.M. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 2010, 137, 95–101. [Google Scholar] [CrossRef]
- Benedetti, M.G.; Furlini, G.; Zati, A.; Letizia, M.G. The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed. Res. Int. 2018, 2018, 4840531. [Google Scholar] [CrossRef]
- Guzon-Illescas, O.; Perez Fernandez, E.; Crespí Villarias, N.; Quirós Donate, F.J.; Peña, M.; Alonso-Blas, C.; García-Vadillo, A.; Mazzucchelli, R. Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors. J. Orthop. Surg. Res. 2019, 14, 203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, S.A.; Chastek, B.; Sundquist, K.; Barrera-Sierra, S.; Leader, D., Jr.; Weiss, R.J.; Wang, Y.; Curtis, J.R. Economic burden of osteoporotic fractures in US managed care enrollees. Am. J. Manag. Care 2020, 26, e142–e149. [Google Scholar]
- Coassy, A.; Svedbom, A.; Locrelle, H.; Chapurlat, R.; Cortet, B.; Fardellone, P.; Orcel, P.; Roux, C.; Borgström, F.; Kanis, J.A.; et al. Costs of patient management over 18 months following a hip, clinical vertebral, distal forearm, or proximal humerus fragility fracture in France-results from the ICUROS study. Osteoporos. Int. 2022, 33, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Tang, C.H.; Chen, K.C.; Huang, K.C.; Huang, K.C. The mortality and direct medical costs of osteoporotic fractures among postmenopausal women in Taiwan. Osteoporos. Int. 2016, 27, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Kramarow, E.A.; Pastor, P.N. The Health of Male Veterans and Nonveterans Aged 25–64: United States, 2007–2010; National Center for Health Statistics: Hyattsville, MD, USA, 2012; pp. 1–8. [PubMed]
- Park, S.Y.; Zhu, K.; Potter, J.F.; Kolonel, L.N. Health-related characteristics and dietary intakes of male veterans and non-veterans in the Multiethnic Cohort Study (United States). J. Mil. Veterans’ Health 2011, 19, 4–9. [Google Scholar] [PubMed] [PubMed Central]
- Seeman, T.E.; Crimmins, E. Social environment effects on health and aging: Integrating epidemiologic and demographic approaches and perspectives. Ann. N. Y. Acad. Sci. 2001, 954, 88–117. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Interacting mediators of allostasis and allostatic load: Towards an understanding of resilience in aging. Metab. Clin. Exp. 2003, 52 (Suppl. S2), 10–16. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO Study Group; WHO Technical Report Series 843; World Health Organization: Geneva, Switzerland, 1994; pp. 1–129. [PubMed]
- Oster, C.; Morello, A.; Venning, A.; Redpath, P.; Lawn, S. The health and wellbeing needs of veterans: A rapid review. BMC Psychiatry 2017, 17, 414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grenawalt, T.A.; Lu, J.; Hamner, K.; Gill, C.; Umucu, E. Social isolation and well-being in veterans with mental illness. J. Ment. Health 2023, 32, 407–411. [Google Scholar] [CrossRef] [PubMed]
- LaFleur, J.; Rillamas-Sun, E.; Colón-Emeric, C.S.; Knippenberg, K.A.; Ensrud, K.E.; Gray, S.L.; Cauley, J.A.; LaCroix, A.Z. Fracture Rates and Bone Density Among Postmenopausal Veteran and Non-Veteran Women From the Women’s Health Initiative. Gerontologist 2016, 56 (Suppl. S1), S78–S90. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nelson, D.A.; Wolcott, V.L.; Kurina, L.M. Prediction of all-cause occupational disability among US Army soldiers. Occup. Environ. Med. 2016, 73, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Boyko, E.J.; Trone, D.W.; Peterson, A.V.; Jacobson, I.G.; Littman, A.J.; Maynard, C.; Seelig, A.D.; Crum-Cianflone, N.F.; Bricker, J.B. Longitudinal Investigation of Smoking Initiation and Relapse Among Younger and Older US Military Personnel. Am. J. Public Health 2015, 105, 1220–1229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eversdijk, H.A.J.; Nijdam, T.M.P.; Kusen, J.Q.; Schuijt, H.J.; Smeeing, D.P.J.; van der Velde, D. Predictors of mortality over time in geriatric patients with hip fracture. OTA Int. 2024, 7, e339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ercin, E.; Bilgili, M.G.; Sari, C.; Basaran, S.H.; Tanriverdi, B.; Edipoglu, E.; Celen, K.M.; Cetingok, H.; Kural, C. Risk factors for mortality in geriatric hip fractures: A compressional study of different surgical procedures in 785 consecutive patients. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.X.; Majumdar, S.R.; Dick, D.A.; Moreau, M.; Raso, J.; Otto, D.D.; Johnston, D.W. Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J. Bone Miner. Res. 2005, 20, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Schnell, S.; Friedman, S.M.; Mendelson, D.A.; Bingham, K.W.; Kates, S.L. The 1-year mortality of patients treated in a hip fracture program for elders. Geriatr. Orthop. Surg. Rehabil. 2010, 1, 6–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paksima, N.; Koval, K.J.; Aharanoff, G.; Walsh, M.; Kubiak, E.N.; Zuckerman, J.D.; Egol, K.A. Predictors of mortality after hip fracture: A 10-year prospective study. Bull. NYU Hosp. Jt. Dis. 2008, 66, 111–117. [Google Scholar] [PubMed]
- Bass, E.; French, D.D.; Bradham, D.D.; Rubenstein, L.Z. Risk-adjusted mortality rates of elderly veterans with hip fractures. Ann. Epidemiol. 2007, 17, 514–519. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, E.P.; Ogarek, J.A.; Loomer, L.; Gozalo, P.L.; Mor, V.; Hamel, M.B.; Mitchell, S.L. Hospital Transfer Rates Among US Nursing Home Residents With Advanced Illness Before and After Initiatives to Reduce Hospitalizations. JAMA Intern. Med. 2020, 180, 385–394. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Non-Veterans (n = 1427) | Veterans (n = 1427) | p Value | |||
---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | ||
Age | 76.58 | ±10.92 | 76.58 | ±10.92 | 1.000 |
Bone mineral density(g/cm2) | |||||
Lumbar spine | 1.098 | ±0.225 | 1.077 | ±0.218 | 0.032 * |
Left femoral neck | 0.766 | ±0.151 | 0.759 | ±0.147 | 0.121 |
Right femoral neck | 0.765 | ±0.151 | 0.758 | ±0.146 | 0.156 |
T-score | |||||
Lumbar spine | −0.335 | ±1.857 | −0.326 | ±1.816 | 0.815 |
Left femoral neck | −1.841 | ±1.095 | −1.812 | ±1.084 | 0.635 |
Right femoral neck | −1.851 | ±1.116 | −1.818 | ±1.075 | 0.539 |
Trabecular bone score | |||||
Bone mineral density | 1.336 | ±0.099 | 1.344 | ±0.116 | 0.193 |
T-score | −0.963 | ±0.844 | −0.845 | ±0.876 | 0.056 |
Body mass index (kg/m2) | 23.91 | ±3.81 | 24.31 | ±3.73 | 0.083 |
Laboratory data | |||||
25-OH-Vitamin D | 28.65 | ±10.03 | 24.70 | ±9.30 | 0.179 |
Calcium | 8.90 | ±0.70 | 8.84 | ±0.66 | 0.085 |
Phosphate | 3.61 | ±0.87 | 3.43 | ±0.81 | 0.002 ** |
Creatinine | 1.57 | ±1.92 | 1.28 | ±1.04 | 0.009 ** |
Intact PTH | 139.24 | ±281.22 | 102.10 | ±143.14 | 0.764 |
Albumin | 18.80 | ±243.51 | 8.82 | ±116.17 | 0.624 |
Alkaline phosphatase | 136.04 | ±244.25 | 120.61 | ±117.54 | 0.093 |
Comorbidity | |||||
Osteoarthritis | 167 | (11.70%) | 420 | (29.43%) | <0.001 ** |
Rheumatoid arthritis | 37 | (2.59%) | 34 | (2.38%) | 0.718 |
Diabetes mellitus | 262 | (18.36%) | 348 | (24.39%) | <0.001 ** |
Hypertension | 401 | (28.10%) | 690 | (48.35%) | <0.001 ** |
Stroke | 150 | (10.51%) | 264 | (18.50%) | <0.001 ** |
Cataract | 46 | (3.22%) | 263 | (18.43%) | <0.001 ** |
Chronic kidney disease | 236 | (16.54%) | 290 | (20.32%) | 0.009 ** |
Coronary artery disease | 220 | (15.42%) | 416 | (29.15%) | <0.001 ** |
Peripheral artery disease | 42 | (2.94%) | 77 | (5.40%) | 0.001 ** |
Congestive heart failure | 94 | (6.59%) | 155 | (10.86%) | <0.001 ** |
Cirrhosis | 15 | (1.05%) | 14 | (0.98%) | 0.852 |
Calcium supplement | |||||
Carbonate | 51 | (3.57%) | 105 | (7.36%) | <0.001 ** |
Acetate | 277 | (19.41%) | 398 | (27.89%) | <0.001 ** |
Phosphate | 226 | (15.84%) | 219 | (15.35%) | 0.718 |
Vitamin D supplement | 125 | (8.76%) | 159 | (11.14%) | 0.033 * |
Death | 333 | (23.34%) | 533 | (37.35%) | <0.001 ** |
Fracture sites | 743 | (52.07%) | 918 | (64.33%) | <0.001 ** |
Hip | 175 | (23.55%) | 248 | (27.02%) | 0.107 |
Spine | 507 | (68.24%) | 624 | (67.97%) | 0.909 |
Radius | 22 | (2.96%) | 46 | (5.01%) | 0.036 * |
Simple Model | Multiple Model | |||||
---|---|---|---|---|---|---|
OR | (95% CI) | p Value | OR | (95% CI) | p Value | |
Veterans | 1.24 | (1.12–1.36) | <0.001 ** | 1.20 | (1.06–1.36) | 0.005 ** |
Age | - | |||||
Bone mineral density(g/cm2) | ||||||
Lumbar spine | 0.42 | (0.29–0.61) | <0.001 ** | 0.39 | (0.27–0.58) | <0.001 ** |
Left femoral neck | 0.16 | (0.09–0.29) | <0.001 ** | |||
Right femoral neck | 0.18 | (0.10–0.32) | <0.001 ** | |||
T-score | ||||||
Lumbar spine | 0.91 | (0.87–0.95) | <0.001 ** | |||
Left femoral neck | 0.79 | (0.73–0.85) | <0.001 ** | |||
Right femoral neck | 0.80 | (0.75–0.87) | <0.001 ** | |||
Comorbidity | ||||||
Osteoarthritis | 1.18 | (1.01–1.38) | 0.042 * | 1.03 | (0.84–1.28) | 0.748 |
Rheumatoid arthritis | 1.08 | (0.70–1.67) | 0.739 | |||
Diabetes mellitus | 1.11 | (0.94–1.30) | 0.205 | |||
Hypertension | 1.25 | (1.09–1.43) | 0.002 ** | 1.11 | (0.91–1.35) | 0.296 |
Stroke | 1.24 | (1.04–1.48) | 0.019 * | 1.17 | (0.93–1.47) | 0.172 |
Cataract | 1.18 | (0.97–1.44) | 0.106 | |||
Chronic kidney disease | 1.20 | (1.01–1.42) | 0.035 * | 1.11 | (0.90–1.38) | 0.339 |
Coronary artery disease | 1.20 | (1.03–1.40) | 0.020 * | 1.06 | (0.87–1.30) | 0.548 |
Peripheral artery disease | 1.46 | (1.07–2.00) | 0.018 * | 1.28 | (0.87–1.88) | 0.206 |
Congestive heart failure | 1.19 | (0.95–1.49) | 0.124 | |||
Cirrhosis | 1.50 | (0.80–2.82) | 0.209 | |||
Calcium supplement | ||||||
Carbonate | 1.08 | (0.81–1.45) | 0.601 | |||
Acetate | 1.44 | (1.23–1.67) | <0.001 ** | |||
Phosphate | 1.54 | (1.29–1.84) | <0.001 ** | |||
Vitamin D supplement | 1.33 | (1.07–1.65) | 0.009 ** |
Non-Veterans (n = 743) | Veterans (n = 918) | p Value | |||
---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | ||
Age | 80.05 | ±9.22 | 78.66 | ±10.00 | 0.010 * |
Bone mineral density (g/cm2) | |||||
Lumbar spine | 1.023 | ±0.212 | 1.048 | ±0.220 | 0.024 * |
Left femoral neck | 0.704 | ±0.144 | 0.728 | ±0.141 | 0.002 ** |
Right femoral neck | 0.703 | ±0.142 | 0.729 | ±0.139 | <0.001 ** |
T-score | |||||
Lumbar spine | −0.96 | ±1.77 | −0.56 | ±1.83 | <0.001 ** |
Left femoral neck | −2.29 | ±1.04 | −2.04 | ±1.04 | <0.001 ** |
Right femoral neck | −2.30 | ±1.04 | −2.02 | ±1.06 | <0.001 ** |
Trabecular bone score | |||||
Bone mineral density | 1.314 | ±0.099 | 1.326 | ±0.128 | 0.079 |
T-score | −1.183 | ±0.861 | −0.979 | ±0.905 | 0.010 * |
Body mass index (kg/m2) | 23.44 | ±4.11 | 24.00 | ±3.76 | 0.062 |
Laboratory data | |||||
25-OH-Vitamin D (mg/dL) | 27.73 | ±11.20 | 22.76 | ±6.31 | 0.309 |
Calcium (mg/dL) | 8.79 | ±0.75 | 8.71 | ±0.65 | 0.242 |
Phosphate (mg/dL) | 3.50 | ±0.85 | 3.39 | ±0.79 | 0.295 |
Creatinine(mg/dL) | 1.53 | ±1.63 | 1.26 | ±0.93 | 0.006 ** |
Intact PTH (mg/dL) | 116.34 | ±245.74 | 93.81 | ±109.57 | 0.610 |
Albumin (mg/dL) | 18.95 | ±207.09 | 11.58 | ±146.40 | 0.012 * |
Alkaline phosphatase (mg/dL) | 136.80 | ±96.23 | 124.05 | ±130.54 | <0.001 ** |
Comorbidity | |||||
Osteoarthritis | 107 | (14.40%) | 317 | (34.53%) | <0.001 ** |
Rheumatoid arthritis | 17 | (2.29%) | 25 | (2.72%) | 0.574 |
Diabetes mellitus | 147 | (19.78%) | 245 | (26.69%) | 0.001 ** |
Hypertension | 245 | (32.97%) | 493 | (53.70%) | <0.001 ** |
Stroke | 113 | (15.21%) | 203 | (22.11%) | <0.001 ** |
Cataract | 36 | (4.85%) | 195 | (21.24%) | <0.001 ** |
Chronic kidney disease | 155 | (20.86%) | 218 | (23.75%) | 0.161 |
Coronary artery disease | 130 | (17.50%) | 307 | (33.44%) | <0.001 ** |
Peripheral artery disease | 31 | (4.17%) | 67 | (7.30%) | 0.007 ** |
Congestive heart failure | 71 | (9.56%) | 115 | (12.53%) | 0.056 |
Cirrhosis | 12 | (1.62%) | 12 | (1.31%) | 0.601 |
Calcium supplement | |||||
Carbonate | 29 | (3.90%) | 72 | (7.84%) | 0.001 ** |
Acetate | 203 | (27.32%) | 320 | (34.86%) | 0.001 ** |
Phosphate | 191 | (25.71%) | 192 | (20.92%) | 0.021 * |
Vitamin D supplement | 86 | (11.57%) | 130 | (14.16%) | 0.119 |
Death | 237 | (31.90%) | 366 | (39.87%) | 0.001 ** |
Fracture sites | |||||
Hip | 175 | (23.55%) | 248 | (27.02%) | 0.107 |
Spine | 507 | (68.24%) | 624 | (67.97%) | 0.909 |
Radius | 22 | (2.96%) | 46 | (5.01%) | 0.036 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.-L.; Hsu, C.-S.; Chen, Y.-M.; Lin, S.-Y.; Chen, T.-Y.; Li, C.-R.; Lee, H.-T.; Wu, Y.-C. Comparison of Bone Mineral Density Between Veterans and Non-Veterans and Its Impact on Fracture Risk Assessment. Medicina 2024, 60, 1811. https://doi.org/10.3390/medicina60111811
Deng Y-L, Hsu C-S, Chen Y-M, Lin S-Y, Chen T-Y, Li C-R, Lee H-T, Wu Y-C. Comparison of Bone Mineral Density Between Veterans and Non-Veterans and Its Impact on Fracture Risk Assessment. Medicina. 2024; 60(11):1811. https://doi.org/10.3390/medicina60111811
Chicago/Turabian StyleDeng, Ya-Lien, Chun-Sheng Hsu, Yi-Ming Chen, Shih-Yi Lin, Tse-Yu Chen, Chi-Ruei Li, Hsu-Tung Lee, and Ying-Chia Wu. 2024. "Comparison of Bone Mineral Density Between Veterans and Non-Veterans and Its Impact on Fracture Risk Assessment" Medicina 60, no. 11: 1811. https://doi.org/10.3390/medicina60111811
APA StyleDeng, Y. -L., Hsu, C. -S., Chen, Y. -M., Lin, S. -Y., Chen, T. -Y., Li, C. -R., Lee, H. -T., & Wu, Y. -C. (2024). Comparison of Bone Mineral Density Between Veterans and Non-Veterans and Its Impact on Fracture Risk Assessment. Medicina, 60(11), 1811. https://doi.org/10.3390/medicina60111811