A Double-Blinded Randomized Controlled Trial: Can Pulsed Electromagnetic Field Therapy Be a Novel Method for Treating Chronic Rhinosinusitis?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Randomization
2.3. Participants
2.4. Sample Size Computation
2.5. Evaluation Procedures
2.6. Fatigue Evaluation
2.7. Evaluation of Headache Intensity
2.8. Computerized Tomography (CT)
2.9. Treatment Procedure
2.10. Statistical Analysis
3. Results
3.1. Demographic Data of the Participants
3.2. Fatigue Scale
3.3. Headache Scale
3.4. Sinonasal Outcome Test 22 (SNOT-22)
3.5. Lund–Mackay Score (LMS)
3.6. Sinus Opacification and Ostiomeatal Obstruction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmans, R.; Wagemakers, A.; van Drunen, C.; Hellings, P.; Fokkens, W. Acute and chronic rhinosinusitis and allergic rhinitis in relation to comorbidity, ethnicity and environment. PLoS ONE 2018, 13, e0192330. [Google Scholar] [CrossRef] [PubMed]
- Kijak, K.; Cieślar, G.; Kowacka, M.; Skomro, P.; Gronwald, H.; Garstka, A.; Lietz-Kijak, D. Cone Beam Computed Tomography in the Assessment of the Effectiveness of Physical Therapy with the Use of the Electromagnetic Field Combined with Light Radiation Emitted by LEDs in the Treatment of Inflammation of the Paranasal Sinuses—A Case Study. Int. J. Environ. Res. Public Health 2022, 19, 13570. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-J.; Kim, C.-H. Oxygen matters: Hypoxia as a pathogenic mechanism in rhinosinusitis. BMB Rep. 2018, 51, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Stryjewska-Makuch, G.; Janik, M.A.; Lisowska, G.; Kolebacz, B. Bacteriological analysis of isolated chronic sinusitis without polyps. Adv. Dermatol. Allergol. 2018, 35, 375–380. [Google Scholar] [CrossRef]
- Derbarsegian, A.; Adams, S.M.; Phillips, K.M.; Sedaghat, A.R. The Burden of Migraine on Quality of Life in Chronic Rhinosinusitis. Laryngoscope 2023, 133, 3279–3284. [Google Scholar] [CrossRef]
- Sautter, N.B.; Mace, J.; Chester, A.C.; Smith, T.L. The effects of endoscopic sinus surgery on level of fatigue in patients with chronic rhinosinusitis. Am. J. Rhinol. 2008, 22, 420–426. [Google Scholar] [CrossRef]
- Aaseth, K.; Grande, R.B.; Kvaerner, K.; Lundqvist, C.; Russell, M.B. Chronic rhinosinusitis gives a ninefold increased risk of chronic headache. The Akershus study of chronic headache. Cephalalgia 2010, 30, 152–160. [Google Scholar] [CrossRef]
- Amodu, E.J.; Fasunla, A.J.; Akano, A.O.; Daud Olusesi, A. Chronic rhinosinusitis: Correlation of symptoms with computed tomography scan findings. Pan Afr. Med. J. 2014, 18, 40. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Alobid, I.; Mullol, J. Controversies in the treatment of chronic rhinosinusitis. Expert Rev. Respir. Med. 2010, 4, 463–477. [Google Scholar] [CrossRef]
- Ghogomu, N.; Kern, R. Chronic rhinosinusitis: The rationale for current treatments. Expert Rev. Clin. Immunol. 2017, 13, 259–270. [Google Scholar] [CrossRef]
- Lee, C.-G.; Park, C.; Hwang, S.; Hong, J.-E.; Jo, M.; Eom, M.; Lee, Y.; Rhee, K.-J. Pulsed Electromagnetic Field (PEMF) Treatment Reduces Lipopolysaccharide-Induced Septic Shock in Mice. Int. J. Mol. Sci. 2022, 23, 5661. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.L.; Siriwardane, M.; Almeida-Porada, G.; Porada, C.D.; Brink, P.; Christ, G.J.; Harrison, B.S. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 2015, 15, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Funk, R.H. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell. Am. J. Transl. Res. 2018, 10, 1260–1272. [Google Scholar] [PubMed]
- Rosado, M.M.; Simkó, M.; Mattsson, M.-O.; Pioli, C. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity. Front. Public Health 2018, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.L.; Ang, D.C.; Almeida-Porada, G. Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis. Front. Immunol. 2019, 10, 266. [Google Scholar] [CrossRef]
- Markov, M.S. Therapeutic application of static magnetic fields. Environmentalist 2007, 27, 457–463. [Google Scholar] [CrossRef]
- Foley-Nolan, D.; Barry, C.; Coughlan, R.J.; O’Connor, P.; Roden, D. Pulsed high frequency (27MHz) electromagnetic therapy for persistent neck pain. A double blind, placebo-controlled study of 20 patients. Orthopedics 1990, 13, 445–451. [Google Scholar] [CrossRef]
- Kroeling, P.; Gross, A.R.; Goldsmith, C.H.; Cervical Overview Group. A Cochrane review of electrotherapy for mechanical neck disorders. Spine 2005, 30, E641–E648. [Google Scholar] [CrossRef]
- Hug, K.; Röösli, M. Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): A systematic literature review. Bioelectromagnetics 2012, 33, 95–105. [Google Scholar] [CrossRef]
- Elshiwi, A.M.; Hamada, H.A.; Mosaad, D.; Ragab, I.M.A.; Koura, G.M.; Alrawaili, S.M. Effect of pulsed electromagnetic field on nonspecific low back pain patients: A randomized controlled trial. Braz. J. Phys. Ther. 2019, 23, 244–249. [Google Scholar] [CrossRef]
- Hu, H.; Yang, W.; Zeng, Q.; Chen, W.; Zhu, Y.; Liu, W.; Wang, S.; Wang, B.; Shao, Z.; Zhang, Y. Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders. Biomed. Pharmacother. 2020, 131, 110767. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Bever, C.; Bowen, J.; Bowling, A.; Weinstock-Guttman, B.; Cameron, M.; Bourdette, D.; Gronseth, G.S.; Narayanaswami, P. Summary of evidence-based guideline: Complementary and alternative medicine in multiple sclerosis: Report of the guideline development subcommittee of the American Academy of Neurology. Neurology 2014, 82, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Funk, R.H.W.; Fähnle, M. A short review on the influence of magnetic fields on neurological diseases. Front. Biosci.-Sch. 2021, 13, 181–189. [Google Scholar] [CrossRef]
- Moya Gómez, A.; Font, L.P.; Brône, B.; Bronckaers, A. Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke. Front. Mol. Biosci. 2021, 8, 742596. [Google Scholar] [CrossRef] [PubMed]
- Granja-Domínguez, A.; Hochsprung, A.; Luque-Moreno, C.; Magni, E.; Escudero-Uribe, S.; Heredia-Camacho, B.; Izquierdo-Ayuso, G.; Heredia-Rizo, A.M. Effects of pulsed electromagnetic field therapy on fatigue, walking performance, depression, and quality of life in adults with multiple sclerosis: A randomized placebo-controlled trial. Braz. J. Phys. Ther. 2022, 26, 100449. [Google Scholar] [CrossRef]
- Bragin, D.E.; Statom, G.L.; Hagberg, S.; Nemoto, E.M. Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain. J. Neurosurg. 2015, 122, 1239–1247. [Google Scholar] [CrossRef]
- Novickij, V.; Stanevičienė, R.; Vepštaitė-Monstavičė, I.; Gruškienė, R.; Krivorotova, T.; Sereikaitė, J.; Novickij, J.; Servienė, E. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields. Front. Microbiol. 2018, 8, 2678. [Google Scholar] [CrossRef]
- Juncker, R.B.; Lazazzera, B.A.; Billi, F. Pulsed Electromagnetic Fields Disrupt Staphylococcus epidermidis Biofilms and Enhance the Antibiofilm Efficacy of Antibiotics. Microbiol. Spectr. 2022, 10, e01949-22. [Google Scholar] [CrossRef]
- Gossili, R.; Niknezhad, A.; Samadifar, M.; Sheykhahmad, F.R. Effects of electromagnetic therapy in chronic sinusitis with antibiotics (case study: Children 6 to 12 years). Biomed. Pharmacol. J. 2015, 8, 1059–1067. [Google Scholar] [CrossRef]
- Afify Abdulrashid, N.; Ayoub, H.E.-S.; AbdelKader, A.M. Laser Therapy Versus Electromagnetic Field on Mucosal Membrane Thickening in Children With Chronic Rhinosinusitis. J. Lasers Med. Sci. 2019, 10, 230–234. [Google Scholar] [CrossRef]
- Toma, S.; Hopkins, C. Stratification of SNOT-22 scores into mild, moderate or severe and relationship with other subjective instruments. Rhinol. J. 2016, 54, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Abdulrashid, N.A.; Ali, O.I.; Elsharkawy, M.A. Effect of photobiomodulation therapy on headache, and fatigue in patients with chronic rhinosinusitis: A randomized controlled study. Lasers Med. Sci. 2024, 39, 62. [Google Scholar] [CrossRef] [PubMed]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F. Fatigue assessments in rheumatoid arthritis: Comparative performance of visual analog scales and longer fatigue questionnaires in 7760 patients. J. Rheumatol. 2004, 31, 1896–1902. [Google Scholar] [PubMed]
- Tseng, B.Y.; Gajewski, B.J.; Kluding, P.M. Reliability, responsiveness, and validity of the visual analog fatigue scale to measure exertion fatigue in people with chronic stroke: A preliminary study. Stroke Res. Treat. 2010, 2010, 412964. [Google Scholar] [CrossRef]
- Kwong, W.J.; Pathak, D.S. Validation of the eleven-point pain scale in the measurement of migraine headache pain. Cephalalgia 2007, 27, 336–342. [Google Scholar] [CrossRef]
- Hong, C.-K.; Joo, J.-Y.; Shim, Y.S.; Sim, S.Y.; Kwon, M.A.; Kim, Y.B.; Chung, J. The course of headache in patients with moderate-to-severe headache due to mild traumatic brain injury: A retrospective cross-sectional study. J. Headache Pain 2017, 18, 48. [Google Scholar] [CrossRef]
- Kendrick, D.B.; Strout, T.D. The minimum clinically significant difference in Patient-Assigned 11-Point numeric pain scale scores for pain. Ann. Emerg. Med. 2004, 44, S86–S87. [Google Scholar] [CrossRef]
- Phillips, K.M.; Hoehle, L.P.; Caradonna, D.S.; Gray, S.T.; Sedaghat, A.R. Minimal clinically important difference for the 22-item Sinonasal Outcome Test in medically managed patients with chronic rhinosinusitis. Clin. Otolaryngol. 2018, 43, 1328–1334. [Google Scholar] [CrossRef]
- Thwin, M.; Weitzel, E.K.; McMains, K.C.; Athanasiadis, T.; Psaltis, A.; Field, J.; Wormald, P.-J. Validating the use of report-derived Lund-MacKay scores. Am. J. Rhinol. Allergy 2009, 23, 33–35. [Google Scholar] [CrossRef]
- Hopkins, C.; Browne, J.P.; Slack, R.; Lund, V.; Brown, P. The Lund-Mackay staging system for chronic rhinosinusitis: How is it used and what does it predict? Otolaryngol.-Head Neck Surg. 2007, 137, 555–561. [Google Scholar] [CrossRef] [PubMed]
- LUND, V.J.; KENNEDY, D.W. Staging for rhinosinusitis. Otolaryngol.-Head Neck Surg. 1997, 117, S35–S40. [Google Scholar] [CrossRef] [PubMed]
- Beule, A.G. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2010, 9, Doc07. [Google Scholar] [CrossRef]
- Saibene, A.M.; Vassena, C.; Pipolo, C.; Trimboli, M.; De Vecchi, E.; Felisati, G.; Drago, L. Odontogenic and rhinogenic chronic sinusitis: A modern microbiological comparison. Int. Forum Allergy Rhinol. 2016, 6, 41–45. [Google Scholar] [CrossRef]
- Wade, B. A Review of Pulsed Electromagnetic Field (PEMF) Mechanisms at a Cellular Level: A Rationale for Clinical Use. Am. J. Health Res. 2013, 1, 51. [Google Scholar] [CrossRef]
- Vadalà, M.; Vallelunga, A.; Palmieri, L.; Palmieri, B.; Morales-Medina, J.C.; Iannitti, T. Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behav. Brain Funct. 2015, 11, 26. [Google Scholar] [CrossRef]
- Santini, M.; Ferrante, A.; Romano, R.; Rainaldi, G.; Motta, A.; Donelli, G.; Vecchia, P.; Indovina, P. A 700 MHz 1 H-NMR study reveals apoptosis-like behavior in human K562 erythroleukemic cells exposed to a 50 Hz sinusoidal magnetic field. Int. J. Radiat. Biol. 2005, 81, 97–113. [Google Scholar] [CrossRef]
- Pilla, A.; Fitzsimmons, R.; Muehsam, D.; Wu, J.; Rohde, C.; Casper, D. Electromagnetic fields as first messenger in biological signaling: Application to calmodulin-dependent signaling in tissue repair. Biochim. Biophys. Acta 2011, 1810, 1236–1245. [Google Scholar] [CrossRef]
- Delle Monache, S.; Angelucci, A.; Sanità, P.; Iorio, R.; Bennato, F.; Mancini, F.; Gualtieri, G.; Colonna, R.C. Inhibition of angiogenesis mediated by extremely low-frequency magnetic fields (ELF-MFs). PLoS ONE 2013, 8, e79309. [Google Scholar] [CrossRef]
- Strauch, B.; Herman, C.; Dabb, R.; Ignarro, L.J.; Pilla, A.A. Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery. Aesthetic Surg. J. 2009, 29, 135–143. [Google Scholar] [CrossRef]
- Ross, C.L.; Harrison, B.S. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. J. Inflamm. Res. 2013, 6, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.L.; Zhou, Y.; McCall, C.E.; Soker, S.; Criswell, T.L. The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review. Bioelectricity 2019, 1, 247–259. [Google Scholar] [CrossRef]
Magnetic Group (n = 23) Mean ± SD | Control Group (n = 24) Mean ± SD | p-Value | |
---|---|---|---|
Age (years) | 30.26 ± 7.27 | 26.46 ± 6.6 | 0.067 |
Sex, no. (F:M) % | 17 (73.9%) 6 (26.1%) | 14 (58.3%) 10 (41.7%) | 0.260 |
Weight (kg) | 71.02 ± 9.7 | 66.95 ± 9.5 | 0.153 |
Height (cm) | 170.17 ± 9.87 | 166.75 ± 10.53 | 0.252 |
BMI (Kg/m2) | 24.5 ± 1.9 | 23.97 ± 1.5 | 0.331 |
Parameters | Magnetic Group (n = 23) | Control Group (n = 24) | p-Value |
---|---|---|---|
Fatigue | |||
Baseline | 6.72 ± 1.5 | 7.15 ± 1.3 | 0.297 |
Post | 3.15 ± 1.9 | 7.25 ± 0.9 | (<0.001) |
MD (95% CI) | 3.6 (2.51–4.6) | 0.11 (−0.58–0.37) | |
% of change | 53.57% | 1.54% | |
p value * | (<0.001) | 0.654 | |
Headache | |||
Baseline | 6.9 ± 1.6 | 7.33 ± 1.2 | 0.328 |
Post | 2.3 ± 1.75 | 7.16 ± 1.67 | (<0.001) |
MD (95% CI) | 4.6 (3.65–6.5) | 0.17 (−0.18–0.51) | |
% of change | 66.67% | 2.32% | |
p value * | (<0.001) | 0.328 | |
SNOT22 | |||
Baseline | 32.43 ± 9.9 | 33.04 ± 10.28 | 0.838 |
Post | 16.83 ± 4.94 | 33.17 ± 10.29 | (<0.001) |
MD (95% CI) | 15.7 (13.33–17.88) | 0.6 (−0.61–0.35) | |
% of change | 48.1% | 0.4% | |
p value * | (<0.001) | 0.588 | |
LMS | |||
Baseline | 8.04 ± 1.02 | 7.75 ± 1.19 | 0.370 |
Post | 2.3 ± 1.7 | 8.25 ± 2.4 | (<0.001) |
MD (95% CI) | 5.74 (5.01–6.47) | −0.5 (−1.44–0.44) | |
% of change | 71.4% | 6.4% | |
p value * | (<0.001) | 0.283 |
Sinus Types | Magnetic Therapy Group | Control Group | p-Value | Magnetic Therapy Group | Control Group | p-Value |
---|---|---|---|---|---|---|
Pre Treatment | Post Treatment | |||||
Rt Ethmoid sinus opacification | 4 (17.4.%) | 4 (16.7%) | 0.947 | 1 (4.3%) | 4 (16.7%) | 0.157 |
Lt Ethmoid sinus opacification | 4 (17.4%) | 3 (12.5%) | 0.681 | 1 (4.3%) | 3 (12.5%) | 0.285 |
Rt Sphenoid sinus opacification | 3 (18.8%) | 4 (26.7%) | 0.685 | 1 (5%) | 4 (26.7%) | |
1 (6.2%) | 0.172 | |||||
Lt Sphenoid sinus opacification | 2 (12.5%) | 4 (26.7%) | 0.394 | 0 (0%) | 4 (26.7%) | 0.043 |
Rt Frontal sinus opacification | 1 (4.3%) | 1 (4.2%) | 0.975 | 0 (0%) | 1 (4.2%) | 0.243 |
Lt Frontal sinus opacification | 1 (4.3%) | 1 (4.2%) | 0.975 | 0 (0%) | 1 (4.2%) | 0.243 |
Rt Maxillary sinus opacification | 4(17.4%) | 5(20.8%) | 0.764 | 0 (0%) | 5 (20.8%) | 0.007 |
Lt Maxillary sinus opacification | 5 (21.7%) | 5 (20.8%) | 0.940 | 0 (0%) | 5 (20.8%) | 0.007 |
Rt Ostiomeatal Obstruction | 6 (26.1%) | 3 (12.5%) | 0.233 | 0 (0%) | 3 (12.5%) | 0.040 |
Lt Ostiomeatal Obstruction | 7 (30.4%) | 4 (17.4%) | 0.297 | 0 (0%) | 4 (17.4%) | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abed Elrashid, N.A.; Ali, O.I.; Ibrahim, Z.M.; El Sharkawy, M.A.; Bin sheeha, B.; Amin, W.M. A Double-Blinded Randomized Controlled Trial: Can Pulsed Electromagnetic Field Therapy Be a Novel Method for Treating Chronic Rhinosinusitis? Medicina 2024, 60, 1868. https://doi.org/10.3390/medicina60111868
Abed Elrashid NA, Ali OI, Ibrahim ZM, El Sharkawy MA, Bin sheeha B, Amin WM. A Double-Blinded Randomized Controlled Trial: Can Pulsed Electromagnetic Field Therapy Be a Novel Method for Treating Chronic Rhinosinusitis? Medicina. 2024; 60(11):1868. https://doi.org/10.3390/medicina60111868
Chicago/Turabian StyleAbed Elrashid, Nessrien Afify, Olfat Ibrahim Ali, Zizi M. Ibrahim, Mohammed A. El Sharkawy, Bodor Bin sheeha, and Wafaa Mahmoud Amin. 2024. "A Double-Blinded Randomized Controlled Trial: Can Pulsed Electromagnetic Field Therapy Be a Novel Method for Treating Chronic Rhinosinusitis?" Medicina 60, no. 11: 1868. https://doi.org/10.3390/medicina60111868
APA StyleAbed Elrashid, N. A., Ali, O. I., Ibrahim, Z. M., El Sharkawy, M. A., Bin sheeha, B., & Amin, W. M. (2024). A Double-Blinded Randomized Controlled Trial: Can Pulsed Electromagnetic Field Therapy Be a Novel Method for Treating Chronic Rhinosinusitis? Medicina, 60(11), 1868. https://doi.org/10.3390/medicina60111868