High-Intensity Interval Training vs. Medium-Intensity Continuous Training in Cardiac Rehabilitation Programs: A Narrative Review
Abstract
:1. Introduction
- Not all cardiovascular patients are encouraged to enroll in or simply refuse to register for or follow a rehabilitation program;
- There is still a general misbelief that a cardiovascular patient should rest and avoid any form of physical activity, despite evidence suggesting its benefits;
- The choice of proper physical activity programs together with a specialized team in a rehabilitation center is vital for attaining the best outcomes, instead of choosing to perform different types of effort without proper instruction or understanding of functional capacity;
- Although studies have been published on both types of programs, there are very few publications that actually compare the two.
2. High-Intensity Interval Training
Definitions
3. Medium-Intensity Continuous Training
4. HIIT Versus MICT
4.1. Improvement in Cardiorespiratory Fitness
4.2. Improvement in Vascular Function
4.3. Adherence to Exercise
4.4. Quality of Life
- HIIT and MICT had comparable impacts on quality of life for cardiovascular disease patients overall, but HIIT provided more significant physiological health benefits for CAD patients specifically;
- HIIT was more effective at reducing functional limitations originating from physical problems. It can also restore feelings of energy and enhance social adjustment capabilities;
- HIIT and MICT showed comparable effects in supporting mental health. However, HIIT increased exercise efficiency to a greater degree [70].
4.5. Safety
4.6. Impact on Left Ventricular Ejection Fraction
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cowie, A.; Buckley, J.; Doherty, P.; Furze, G.; Hayward, J.; Hinton, S.; Jones, J.; Speck, L.; Dalal, H.; Mills, J. Standards and core components for cardiovascular disease prevention and rehabilitation. Heart 2019, 105, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.; Sattar, N.; Simpson, I.; Wood, D.; Bradbury, K.; Fox, K.; Boon, N.; Winocour, P.; Feher, M.; Doherty, P.; et al. Joint British Societies’ consensus recommendations for the prevention of cardiovascular disease (JBS3). Heart 2014, 100 (Suppl. S2), ii1–ii67. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Corrà, U.; Adamopoulos, S.; Benzer, W.; Bjarnason-Wehrens, B.; Cupples, M.; Dendale, P.; Doherty, P.; Gaita, D.; Höfer, S.; et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery: A policy statement from the cardiac rehabilitation section of the European Association for Cardiovascular Prevention & Rehabilitation. Endorsed by the Committee for Practice Guidelines of the European Society of Cardiology. Eur. J. Prev. Cardiol. 2014, 21, 664–681. [Google Scholar] [CrossRef] [PubMed]
- Balady, G.J.; Williams, M.A.; Ades, P.A.; Bittner, V.; Comoss, P.; Foody, J.A.; Franklin, B.; Sanderson, B.; Southard, D. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: A scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2007, 27, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Leon, A.S.; Franklin, B.A.; Costa, F.; Balady, G.J.; Berra, K.A.; Stewart, K.J.; Thompson, P.D.; Williams, M.A.; Lauer, M.S. Cardiac rehabilitation and secondary prevention of coronary heart disease: An American Heart Association scientific statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity), in collaboration with the American association of Cardiovascular and Pulmonary Rehabilitation. Circulation 2005, 111, 369–376. [Google Scholar] [CrossRef]
- Bellmann, B.; Lin, T.; Greissinger, K.; Rottner, L.; Rillig, A.; Zimmerling, S. The Beneficial Effects of Cardiac Rehabilitation. Cardiol. Ther. 2020, 9, 35–44. [Google Scholar] [CrossRef]
- Wenger, N.K. Current status of cardiac rehabilitation. J. Am. Coll. Cardiol. 2008, 51, 1619–1631. [Google Scholar] [CrossRef]
- Balady, G.J.; Ades, P.A.; Bittner, V.A.; Franklin, B.A.; Gordon, N.F.; Thomas, R.J.; Tomaselli, G.F.; Yancy, C.W. Referral, enrollment, and delivery of cardiac rehabilitation/secondary prevention programs at clinical centers and beyond: A presidential advisory from the American Heart Association. Circulation 2011, 124, 2951–2960. [Google Scholar] [CrossRef]
- Goel, K.; Pack, Q.R.; Lahr, B.; Greason, K.L.; Lopez-Jimenez, F.; Squires, R.W.; Zhang, Z.; Thomas, R.J. Cardiac rehabilitation is associated with reduced long-term mortality in patients undergoing combined heart valve and CABG surgery. Eur. J. Prev. Cardiol. 2015, 22, 159–168. [Google Scholar] [CrossRef]
- Timmis, A.; Aboyans, V.; Vardas, P.; Townsend, N.; Torbica, A.; Kavousi, M.; Boriani, G.; Huculeci, R.; Kazakiewicz, D.; Scherr, D.; et al. European Society of Cardiology: The 2023 Atlas of Cardiovascular Disease Statistics. Eur. Heart J. 2024, 45, 4019–4062. [Google Scholar] [CrossRef]
- Haaf, H. Ergebnisse zur Wirksamkeit der Rehabilitation. Die Rehabil. 2005, 44, e1–e20. [Google Scholar] [CrossRef] [PubMed]
- McCune, C.; McKavanagh, P.; Menown, I.B. A Review of Current Diagnosis, Investigation, and Management of Acute Coronary Syndromes in Elderly Patients. Cardiol. Ther. 2015, 4, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Wienbergen, H.; Gitt, A.K.; Schiele, R.; Juenger, C.; Heer, T.; Vogel, C.; Gottwik, M.; Senges, J. Different treatments and outcomes of consecutive patients with non-ST-elevation myocardial infarction depending on initial electrocardiographic changes (results of the Acute Coronary Syndromes [ACOS] Registry). Am. J. Cardiol. 2004, 93, 1543–1546. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Abbott, R.D.; Savage, D.D.; McNamara, P.M. Epidemiologic features of chronic atrial fibrillation: The Framingham study. N. Engl. J. Med. 1982, 306, 1018–1022. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Wilde, S.; Wild, P.S.; Munzel, T.; Blankenberg, S. Atrial fibrillation: Its prevalence and risk factor profile in the German general population. Dtsch. Arztebl. Int. 2012, 109, 293–299. [Google Scholar] [CrossRef]
- Younis, A.; Shaviv, E.; Nof, E.; Israel, A.; Berkovitch, A.; Goldenberg, I.; Glikson, M.; Klempfner, R.; Beinart, R. The role and outcome of cardiac rehabilitation program in patients with atrial fibrillation. Clin. Cardiol. 2018, 41, 1170–1176. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337, Erratum in Eur. Heart J. 2022, 43, 4468. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Bishop, D.J.; Botella, J.; Genders, A.J.; Lee, M.J.; Saner, N.J.; Kuang, J.; Yan, X.; Granata, C. High-Intensity Exercise and Mitochondrial Biogenesis: Current Controversies and Future Research Directions. Physiology 2019, 34, 56–70. [Google Scholar] [CrossRef]
- Ross, L.M.; Porter, R.R.; Porter, J. Larry Durstine, High-intensity interval training (HIIT) for patients with chronic diseases. J. Sport Health Sci. 2016, 5, 139–144. [Google Scholar] [CrossRef]
- Pescatello, L.S. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2014; pp. 19–38. [Google Scholar]
- Norton, K.; Norton, L.; Sadgrove, D. Position statement on physical activity and exercise intensity terminology. J. Sci. Med. Sport 2010, 13, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Kjelkenes, I.; Thorsen, E. Anticipating maximal or submaximal exercise: No differences in cardiopulmonary responses. Clin. Physiol. Funct. Imaging 2010, 30, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, P.; Tschakert, G.; Stark, M.; Schwaberger, G.; Pokan, R.; Wonisch, M.; Smekal, G.; Seibert, F.; Von Duvillard, S. Estimation Error When Using The %HRR Method Compared To The Lactate Turn Point: 1505. Med. Sci. Sports Exerc. 2009, 41, 34–35. [Google Scholar] [CrossRef]
- Wonisch, M.; Hofmann, P.; Fruhwald, F.M.; Kraxner, W.; Hödl, R.; Pokan, R.; Klein, W. Influence of beta-blocker use on percentage of target heart rate exercise prescription. Eur. J. Cardiovasc. Prev. Rehabil. 2003, 10, 296–301. [Google Scholar] [CrossRef]
- Steele, J.; Plotkin, D.; Van Every, D.; Rosa, A.; Zambrano, H.; Mendelovits, B.; Carrasquillo-Mercado, M.; Grgic, J.; Schoenfeld, B.J. Slow and Steady, or Hard and Fast? A Systematic Review and Meta-Analysis of Studies Comparing Body Composition Changes between Interval Training and Moderate Intensity Continuous Training. Sports 2021, 9, 155. [Google Scholar] [CrossRef]
- Guo, Z.; Li, M.; Cai, J.; Gong, W.; Liu, Y.; Liu, Z. Effect of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Fat Loss and Cardiorespiratory Fitness in the Young and Middle-Aged a Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 4741. [Google Scholar] [CrossRef]
- D’Alleva, M.; Lazzer, S.; Tringali, G.; De Micheli, R.; Bondesan, A.; Abbruzzese, L.; Sartorio, A. Effects of combined training or moderate intensity continuous training during a 3-week multidisciplinary body weight reduction program on cardiorespiratory fitness, body composition, and substrate oxidation rate in adolescents with obesity. Sci. Rep. 2023, 13, 17609. [Google Scholar] [CrossRef]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Hannan, A.; Hing, W.; Simas, V.; Climstein, M.; Coombes, J.; Jayasinghe, R.; Byrnes, J.; Furness, J. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access J. Sports Med. 2018, 9, 1–17. [Google Scholar] [CrossRef]
- Benetti, M.; Araujo, C.L.; Santos, R.Z. Cardiorespiratory fitness and quality of life at different exercise intensities after myocardial infarction. Arq. Bras. Cardiol. 2010, 95, 399–404. [Google Scholar] [CrossRef]
- Rocco, E.A.; Prado, D.M.; Silva, A.G.; Lazzari, J.M.; Bortz, P.C.; Rocco, D.F.; Rosa, C.G.; Furlan, V. Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease. Clinics 2012, 67, 623–628. [Google Scholar] [CrossRef]
- Möbius-Winkler, S.; Uhlemann, M.; Adams, V.; Sandri, M.; Erbs, S.; Lenk, K.; Mangner, N.; Mueller, U.; Adam, J.; Grunze, M.; et al. Coronary Collateral Growth Induced by Physical Exercise: Results of the Impact of Intensive Exercise Training on Coronary Collateral Circulation in Patients with Stable Coronary Artery Disease (EXCITE) Trial. Circulation 2016, 133, 1438–1448; discussion 1448. [Google Scholar] [CrossRef]
- Prado, D.M.; Rocco, E.A.; Silva, A.G.; Rocco, D.F.; Pacheco, M.T.; Silva, P.F.; Furlan, V. Effects of continuous vs interval exercise training on oxygen uptake efficiency slope in patients with coronary artery disease. Braz. J. Med. Biol. Res. 2016, 49, e4890. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Cardozo, G.G.; Oliveira, R.B.; Farinatti, P.T. Effects of high intensity interval versus moderate continuous training on markers of ventilatory and cardiac efficiency in coronary heart disease patients. Sci. World J. 2015, 2015, 192479. [Google Scholar] [CrossRef]
- Moholdt, T.T.; Amundsen, B.H.; Rustad, L.A.; Wahba, A.; Løvø, K.T.; Gullikstad, L.R.; Bye, A.; Skogvoll, E.; Wisløff, U.; Slørdahl, S.A. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: A randomized study of cardiovascular effects and quality of life. Am. Heart J. 2009, 158, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Rognmo, Ø.; Hetland, E.; Helgerud, J.; Hoff, J.; Slørdahl, S.A. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 216–222. [Google Scholar] [CrossRef]
- Conraads, V.M.; Pattyn, N.; De Maeyer, C.; Beckers, P.J.; Coeckelberghs, E.; Cornelissen, V.A.; Denollet, J.; Frederix, G.; Goetschalckx, K.; Hoymans, V.Y.; et al. Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. Int. J. Cardiol. 2015, 179, 203–210. [Google Scholar] [CrossRef]
- Moholdt, T.; Aamot, I.L.; Granøien, I.; Gjerde, L.; Myklebust, G.; Walderhaug, L.; Brattbakk, L.; Hole, T.; Graven, T.; Stølen, T.O.; et al. Aerobic interval training increases peak oxygen uptake more than usual care exercise training in myocardial infarction patients: A randomized controlled study. Clin. Rehabil. 2012, 26, 33–44. [Google Scholar] [CrossRef]
- Currie, K.D.; Dubberley, J.B.; McKelvie, R.S.; MacDonald, M.J. Low-volume, high-intensity interval training in patients with CAD. Med. Sci. Sports Exerc. 2013, 45, 1436–1442. [Google Scholar] [CrossRef]
- Keteyian, S.J.; Hibner, B.A.; Bronsteen, K.; Kerrigan, D.; Aldred, H.A.; Reasons, L.M.; Saval, M.A.; Brawner, C.A.; Schairer, J.R.; Thompson, T.M.; et al. Greater improvement in cardiorespiratory fitness using higher-intensity interval training in the standard cardiac rehabilitation setting. J. Cardiopulm. Rehabil. Prev. 2014, 34, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.; McKenzie, D.C.; Haykowsky, M.J.; Taylor, A.; Shoemaker, P.; Ignaszewski, A.P.; Chan, S.Y. Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am. J. Cardiol. 2005, 95, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Jaureguizar, K.V.; Vicente-Campos, D.; Bautista, L.R.; de la Peña, C.H.; Gómez, M.J.; Rueda, M.J.; Fernández Mahillo, I. Effect of High-Intensity Interval Versus Continuous Exercise Training on Functional Capacity and Quality of Life in Patients with Coronary Artery Disease: A Randomized Clinical Trial. J. Cardiopulm. Rehabil. Prev. 2016, 36, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Choi, H.E.; Lim, M.H. Effect of High Interval Training in Acute Myocardial Infarction Patients with Drug-Eluting Stent. Am. J. Phys. Med. Rehabil. 2015, 94, 879–886. [Google Scholar] [CrossRef]
- Currie, K.D.; Bailey, K.J.; Jung, M.E.; McKelvie, R.S.; MacDonald, M.J. Effects of resistance training combined with moderate-intensity endurance or low-volume high-intensity interval exercise on cardiovascular risk factors in patients with coronary artery disease. J. Sci. Med. Sport 2015, 18, 637–642. [Google Scholar] [CrossRef]
- Thijssen, D.H.J.; Bruno, R.M.; van Mil, A.C.C.M.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef]
- Ross, R.M. ATS/ACCP statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 1451. [Google Scholar] [CrossRef]
- McGregor, G.; Powell, R.; Begg, B.; Birkett, S.T.; Nichols, S.; Ennis, S.; McGuire, S.; Prosser, J.; Fiassam, O.; Hee, S.W.; et al. High-intensity interval training in cardiac rehabilitation: A multi-centre randomized controlled trial. Eur. J. Prev. Cardiol. 2023, 30, 745–755. [Google Scholar] [CrossRef]
- Versari, D.; Daghini, E.; Virdis, A.; Ghiadoni, L.; Taddei, S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 2009, 32 (Suppl. S2), S314–S321. [Google Scholar] [CrossRef]
- Green, D.J.; Hopman, M.T.; Padilla, J.; Laughlin, M.H.; Thijssen, D.H. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol. Rev. 2017, 97, 495–528. [Google Scholar] [CrossRef]
- Donelli da Silveira, A.; Beust de Lima, J.; da Silva Piardi, D.; Dos Santos Macedo, D.; Zanini, M.; Nery, R.; Laukkanen, J.A.; Stein, R. High-intensity interval training is effective and superior to moderate continuous training in patients with heart failure with preserved ejection fraction: A randomized clinical trial. Eur. J. Prev. Cardiol. 2020, 27, 1733–1743. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Keating, S.E.; Holland, D.J.; Green, D.J.; Coombes, J.S.; Bailey, T.G. Comparison of high intensity interval training with standard cardiac rehabilitation on vascular function. Scand. J. Med. Sci. Sports 2022, 32, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Keating, S.E.; Leveritt, M.D.; Holland, D.J.; Gomersall, S.R.; Coombes, J.S. Study protocol for the FITR Heart Study: Feasibility, safety, adherence, and efficacy of high intensity interval training in a hospital-initiated rehabilitation program for coronary heart disease. Contemp. Clin. Trials Commun. 2017, 8, 181–191. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement From the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Biddle, S.J. Extraordinary claims in the literature on high-intensity interval training (HIIT): IV. Is HIIT associated with higher long-term exercise adherence? Psychol. Sport Exerc. 2023, 64, 102295. [Google Scholar] [CrossRef]
- Taylor, J.L.; Holland, D.J.; Keating, S.E.; Bonikowske, A.R.; Coombes, J.S. Adherence to High-Intensity Interval Training in Cardiac Rehabilitation: A Review and Recommendations. J. Cardiopulm. Rehabil. Prev. 2021, 41, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Holland, D.J.; Keating, S.E.; Leveritt, M.D.; Gomersall, S.R.; Rowlands, A.V.; Bailey, T.G.; Coombes, J.S. Short-term and Long-term Feasibility, Safety, and Efficacy of High-Intensity Interval Training in Cardiac Rehabilitation: The FITR Heart Study Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 1382–1389. [Google Scholar] [CrossRef]
- Jayo-Montoya, J.A.; Maldonado-Martín, S.; Aispuru, G.R.; Gorostegi-Anduaga, I.; Gallardo-Lobo, R.; Matajira-Chia, T.; Villar-Zabala, B.; Blanco-Guzmán, S. Low-Volume High-Intensity Aerobic Interval Training Is an Efficient Method to Improve Cardiorespiratory Fitness After Myocardial Infarction: Pilot Study from the Interfarct Project. J. Cardiopulm. Rehabil. Prev. 2020, 40, 48–54. [Google Scholar] [CrossRef]
- Pedersen, L.R.; Olsen, R.H.; Jürs, A.; Astrup, A.; Chabanova, E.; Simonsen, L.; Wisløff, U.; Haugaard, S.B.; Prescott, E. A randomised trial comparing weight loss with aerobic exercise in overweight individuals with coronary artery disease: The CUT-IT trial. Eur. J. Prev. Cardiol. 2014, 22, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Aamot, I.L.; Forbord, S.H.; Gustad, K.; Løckra, V.; Stensen, A.; Berg, A.T.; Dalen, H.; Karlsen, T.; Støylen, A. Home-based versus hospital-based high-intensity interval training in cardiac rehabilitation: A randomized study. Eur. J. Prev. Cardiol. 2014, 21, 1070–1078. [Google Scholar] [CrossRef]
- Boidin, M.; Gayda, M.; Henri, C.; Hayami, D.; Trachsel, L.D.; Besnier, F.; Lalongé, J.; Juneau, M.; Nigam, A. Effects of interval training on risk markers for arrhythmic death: A randomized controlled trial. Clin. Rehabil. 2019, 33, 1320–1330. [Google Scholar] [CrossRef]
- Choi, H.Y.; Han, H.J.; Choi, J.W.; Jung, H.Y.; Joa, K.L. Superior Effects of High-Intensity Interval Training Compared to Conventional Therapy on Cardiovascular and Psychological Aspects in Myocardial Infarction. Ann. Rehabil. Med. 2018, 42, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Dun, Y.; Thomas, R.J.; Medina-Inojosa, J.R.; Squires, R.W.; Huang, H.; Smith, J.R.; Liu, S.; Olson, T.P. High-Intensity Interval Training in Cardiac Rehabilitation: Impact on Fat Mass in Patients with Myocardial Infarction. Mayo Clin. Proc. 2019, 94, 1718–1730. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, B.B.; Lunde, P.; Grøgaard, H.K.; Holm, I. Long-Term Results of High-Intensity Exercise-Based Cardiac Rehabilitation in Revascularized Patients for Symptomatic Coronary Artery Disease. Am. J. Cardiol. 2018, 121, 21–26. [Google Scholar] [CrossRef]
- Way, K.L.; Vidal-Almela, S.; Keast, M.L.; Hans, H.; Pipe, A.L.; Reed, J.L. The feasibility of implementing high-intensity interval training in cardiac rehabilitation settings: A retrospective analysis. BMC Sports Sci. Med. Rehabil. 2020, 12, 38. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, X.; Wu, X.; Yang, J.; Wang, J.; Hou, L. High-intensity interval training versus moderate-intensity continuous training on patient quality of life in cardiovascular disease: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 13915. [Google Scholar] [CrossRef]
- Pattyn, N.; Vanhees, L.; Cornelissen, V.A.; Coeckelberghs, E.; De Maeyer, C.; Goetschalckx, K.; Possemiers, N.; Wuyts, K.; Van Craenenbroeck, E.M.; Beckers, P.J. The long-term effects of a randomized trial comparing aerobic interval versus continuous training in coronary artery disease patients: 1-year data from the SAINTEX-CAD study. Eur. J. Prev. Cardiol. 2016, 23, 1154–1164. [Google Scholar] [CrossRef]
- Novaković, M.; Prokšelj, K.; Rajkovič, U.; Vižintin Cuderman, T.; Janša Trontelj, K.; Fras, Z.; Jug, B. Exercise training in adults with repaired tetralogy of Fallot: A randomized controlled pilot study of continuous versus interval training. Int. J. Cardiol. 2018, 255, 37–44. [Google Scholar] [CrossRef]
- Koufaki, P.; Mercer, T.H.; George, K.P.; Nolan, J. Low-volume high-intensity interval training vs continuous aerobic cycling in patients with chronic heart failure: A pragmatic randomised clinical trial of feasibility and effectiveness. J. Rehabil. Med. 2014, 46, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Nytrøen, K.; Rolid, K.; Andreassen, A.K.; Yardley, M.; Gude, E.; Dahle, D.O.; Bjørkelund, E.; Relbo Authen, A.; Grov, I.; Philip Wigh, J.; et al. Effect of High-Intensity Interval Training in De Novo Heart Transplant Recipients in Scandinavia. Circulation 2019, 139, 2198–2211. [Google Scholar] [CrossRef]
- Okur, I.; Aksoy, C.C.; Yaman, F.; Sen, T. Which high-intensity interval training program is more effective in patients with coronary artery disease. Int. J. Rehabil. Res. 2022, 45, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.L.; Terada, T.; Cotie, L.M.; Tulloch, H.; Leenen, F.H.H.; Mistura, M.; Hans, H.; Wang, H.; Vidal-Almela, S.; Reid, R.D.; et al. The effects of high-intensity interval training, Nordic walking and moderate-to-vigorous intensity continuous training on functional capacity, depression and quality of life in patients with coronary artery disease enrolled in cardiac rehabilitation: A randomized controlled trial (CRX study). Prog. Cardiovasc. Dis. 2022, 70, 73–83. [Google Scholar] [CrossRef]
- Schönfelder, M.; Oberreiter, H.; Egger, A.; Tschentscher, M.; Droese, S.; Niebauer, J. Effect of Different Endurance Training Protocols During Cardiac Rehabilitation on Quality of Life. Am. J. Med. 2021, 134, 805–811. [Google Scholar] [CrossRef]
- Villafaina, S.; Pérez, M.J.G.; Fuentes-García, J.P. Comparative Effects of High-Intensity Interval Training vs Moderate-Intensity Continuous Training in Phase III of a Tennis-Based Cardiac Rehabilitation Program: A Pilot Randomized Controlled Trial. Sustainability 2020, 12, 4134. [Google Scholar] [CrossRef]
- Yakut, H.; Dursun, H.; Felekoğlu, E.; Başkurt, A.A.; Alpaydın, A.Ö.; Özalevli, S. Effect of home-based high-intensity interval training versus moderate-intensity continuous training in patients with myocardial infarction: A randomized controlled trial. Ir. J. Med. Sci. 2022, 191, 2539–2548. [Google Scholar] [CrossRef]
- Dall, C.H.; Gustafsson, F.; Christensen, S.B.; Dela, F.; Langberg, H.; Prescott, E. Effect of moderate- versus high-intensity exercise on vascular function, biomarkers and quality of life in heart transplant recipients: A randomized, crossover trial. J. Heart Lung Transplant. 2015, 34, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Fu, T.C.; Huang, S.C.; Chen, C.P.; Wang, J.S. Increased serum brain-derived neurotrophic factor with high-intensity interval training in stroke patients: A randomized controlled trial. Ann. Phys. Rehabil. Med. 2021, 64, 101385. [Google Scholar] [CrossRef]
- Ellingsen, Ø.; Halle, M.; Conraads, V.; Støylen, A.; Dalen, H.; Delagardelle, C.; Larsen, A.I.; Hole, T.; Mezzani, A.; Van Craenenbroeck, E.M.; et al. High-Intensity Interval Training in Patients with Heart Failure with Reduced Ejection Fraction. Circulation 2017, 135, 839–849. [Google Scholar] [CrossRef]
- Tous-Espelosín, M.; Gorostegi-Anduaga, I.; Corres, P.; MartinezAguirre-Betolaza, A.; Maldonado-Martín, S. Impact on Health-Related Quality of Life after Different Aerobic Exercise Programs in Physically Inactive Adults with Overweight/Obesity and Primary Hypertension: Data from the EXERDIET-HTA Study. Int. J. Environ. Res. Public Health 2020, 17, 9349. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, J.V.; Petrov, I.; Tokmakova, M.P.; Dimitrova, D.D.; Spasov, L.; Dzhafer, N.S.; Tsekoura, D.; Dionyssiotis, Y.; Ferreira, A.S.; Lopes, A.J.; et al. Group-based cardiac rehabilitation interventions. A challenge for physical and rehabilitation medicine physicians: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2020, 56, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Wisløff, U.; Støylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, Ø.; Haram, P.M.; Tjønna, A.E.; Helgerud, J.; Slørdahl, S.A.; Lee, S.J.; et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation 2007, 115, 3086–3094. [Google Scholar] [CrossRef]
- Reed, J.L.; Terada, T.; Vidal-Almela, S.; Tulloch, H.E.; Mistura, M.; Birnie, D.H.; Wells, G.A.; Nair, G.M.; Hans, H.; Way, K.L.; et al. Effect of High-Intensity Interval Training in Patients with Atrial Fibrillation: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2239380. [Google Scholar] [CrossRef]
- Dunford, E.C.; Valentino, S.E.; Dubberley, J.; Oikawa, S.Y.; McGlory, C.; Lonn, E.; Jung, M.E.; Gibala, M.J.; Phillips, S.M.; MacDonald, M.J. Brief Vigorous Stair Climbing Effectively Improves Cardiorespiratory Fitness in Patients with Coronary Artery Disease: A Randomized Trial. Front. Sports Act. Living 2021, 3, 630912. [Google Scholar] [CrossRef]
- Bärtsch, P. Platelet activation with exercise and risk of cardiac events. Lancet 1999, 354, 1747–1748. [Google Scholar] [CrossRef]
- Cadroy, Y.; Pillard, F.; Sakariassen, K.S.; Thalamas, C.; Boneu, B.; Riviere, D. Strenuous but not moderate exercise increases the thrombotic tendency in healthy sedentary male volunteers. J. Appl. Physiol. 2002, 93, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, T.; Menzel, K.; Gläser, D.; Zimmermann, S.; Gabriel, H.H. Exercise intensity: Platelet function and platelet-leukocyte conjugate formation in untrained subjects. Thromb. Res. 2008, 122, 77–84. [Google Scholar] [CrossRef]
- Ikarugi, H.; Shibata, M.; Shibata, S.; Ishii, H.; Taka, T.; Yamamoto, J. High intensity exercise enhances platelet reactivity to shear stress and coagulation during and after exercise. Pathophysiol. Haemost. Thromb. 2003, 33, 127–133. [Google Scholar] [CrossRef]
- Thompson, P.D.; Franklin, B.A.; Balady, G.J.; Blair, S.N.; Corrado, D.; Estes, N.A.; Fulton, J.E.; Gordon, N.F.; Haskell, W.L.; Link, M.S.; et al. Exercise and acute cardiovascular events placing the risks into perspective: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation 2007, 115, 2358–2368. [Google Scholar] [CrossRef]
- Pavy, B.; Iliou, M.C.; Meurin, P.; Tabet, J.Y.; Corone, S. Safety of exercise training for cardiac patients: Results of the French registry of complications during cardiac rehabilitation. Arch. Intern. Med. 2006, 166, 2329–2334. [Google Scholar] [CrossRef] [PubMed]
- Quindry, J.C.; Franklin, B.A.; Chapman, M.; Humphrey, R.; Mathis, S. Benefits and Risks of High-Intensity Interval Training in Patients with Coronary Artery Disease. Am. J. Cardiol. 2019, 123, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Abreu, A.; Ambrosetti, M.; Cornelissen, V.; Gevaert, A.; Kemps, H.; Laukkanen, J.A.; Pedretti, R.; Simonenko, M.; Wilhelm, M.; et al. Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: Why and how: A position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 29, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.E.; Schmid, J.P.; Vigorito, C.; et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2020, 28, 460–495. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.P.; Sokol, S.I.; Wang, Y.; Rathore, S.S.; Ko, D.T.; Jadbabaie, F.; Portnay, E.L.; Marshalko, S.J.; Radford, M.J.; Krumholz, H.M. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J. Am. Coll. Cardiol. 2003, 42, 736–742. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Cheng, Y.; Zhang, M.; Zhao, Y.; Zhang, T.; Dong, J.; Xing, J.; Zhen, Y.; Wang, C. High intensity interval training vs. moderate intensity continuous training on aerobic capacity and functional capacity in patients with heart failure: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2024, 11, 1302109. [Google Scholar] [CrossRef]
- Hornikx, M.; Buys, R.; Cornelissen, V.; Deroma, M.; Goetschalckx, K. Effectiveness of high intensity interval training supplemented with peripheral and inspiratory resistance training in chronic heart failure: A pilot study. Acta Cardiol. 2020, 75, 339–347. [Google Scholar] [CrossRef]
- Besnier, F.; Labrunée, M.; Richard, L.; Faggianelli, F.; Kerros, H.; Soukarié, L.; Bousquet, M.; Garcia, J.L.; Pathak, A.; Gales, C.; et al. Short-term effects of a 3-week interval training program on heart rate variability in chronic heart failure. A randomised controlled trial. Ann. Phys. Rehabil. Med. 2019, 62, 321–328. [Google Scholar] [CrossRef]
- Benda, N.M.; Seeger, J.P.; Stevens, G.G.; Hijmans-Kersten, B.T.; van Dijk, A.P.; Bellersen, L.; Lamfers, E.J.; Hopman, M.T.; Thijssen, D.H. Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients. PLoS ONE 2015, 10, e0141256. [Google Scholar] [CrossRef]
- Iellamo, F.; Caminiti, G.; Sposato, B.; Vitale, C.; Massaro, M.; Rosano, G.; Volterrani, M. Effect of High-Intensity interval training versus moderate continuous training on 24-h blood pressure profile and insulin resistance in patients with chronic heart failure. Intern. Emerg. Med. 2014, 9, 547–552. [Google Scholar] [CrossRef]
- Fu, T.C.; Wang, C.H.; Lin, P.S.; Hsu, C.C.; Cherng, W.J.; Huang, S.C.; Liu, M.H.; Chiang, C.L.; Wang, J.S. Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int. J. Cardiol. 2013, 167, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Freyssin, C.; Verkindt, C.; Prieur, F.; Benaich, P.; Maunier, S.; Blanc, P. Cardiac rehabilitation in chronic heart failure: Effect of an 8-week, high-intensity interval training versus continuous training. Arch. Phys. Med. Rehabil. 2012, 93, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Hadley, D.; Oswald, U.; Bruner, K.; Kottman, W.; Hsu, L.; Dubach, P. Effects of exercise training on heart rate recovery in patients with chronic heart failure. Am. Heart J. 2007, 153, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Dalal, H.M.; McDonagh, S.T.J. The role of cardiac rehabilitation in improving cardiovascular outcomes. Nat. Rev. Cardiol. 2022, 19, 180–194. [Google Scholar] [CrossRef]
- Mahindru, A.; Patil, P.; Agrawal, V. Role of Physical Activity on Mental Health and Well-Being: A Review. Cureus 2023, 15, e33475. [Google Scholar] [CrossRef]
- Franklin, B.A.; Quindry, J. High level physical activity in cardiac rehabilitation: Implications for exercise training and leisure-time pursuits. Prog. Cardiovasc. Dis. 2022, 70, 22–32. [Google Scholar] [CrossRef]
- Tschentscher, M.; Eichinger, J.; Egger, A.; Droese, S.; Schönfelder, M.; Niebauer, J. High-intensity interval training is not superior to other forms of endurance training during cardiac rehabilitation. Eur. J. Prev. Cardiol. 2016, 23, 14–20. [Google Scholar] [CrossRef]
- Abdelhalem, A.M.; Shabana, A.M.; Onsy, A.M.; Gaafar, A.E. High intensity interval training exercise as a novel protocol for cardiac rehabilitation program in ischemic Egyptian patients with mild left ventricular dysfunction. Egypt. Heart J. 2018, 70, 287–294. [Google Scholar] [CrossRef]
- Lee, L.S.; Tsai, M.; Brooks, D.; Oh, P. Randomised controlled trial in women with coronary artery disease investigating the effects of aerobic interval training versus moderate intensity continuous exercise in cardiac rehabilitation: CAT versus MICE study. BMJ Open Sport Exerc. Med. 2019, 5, e000589. [Google Scholar] [CrossRef]
- Bozkurt, B.; Fonarow, G.C.; Goldberg, L.R.; Guglin, M.; Josephson, R.A.; Forman, D.E.; Lin, G.; Lindenfeld, J.; O’Connor, C.; Panjrath, G.; et al. Cardiac Rehabilitation for Patients with Heart Failure: JACC Expert Panel. J. Am. Coll. Cardiol. 2021, 77, 1454–1469. [Google Scholar] [CrossRef]
- de Oliveira-Nunes, S.G.; Castro, A.; Sardeli, A.V.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. HIIT vs. SIT: What Is the Better to Improve O2max? A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 13120. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, S.; Maloberti, A.; Peretti, A.; Garatti, L.; Palazzini, M.; Occhi, L.; Bassi, I.; Sioli, S.; Biolcati, M.; Giani, V.; et al. Determinants of Functional Improvement After Cardiac Rehabilitation in Acute Coronary Syndrome. High Blood Press. Cardiovasc. Prev. 2021, 28, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Tang, H.; Zhang, L.; Ying, C.; Luo, H. Exploration of therapeutic models for psycho-cardiology: From cardiac to psychological rehabilitation. Heliyon 2024, 10, e27484. [Google Scholar] [CrossRef] [PubMed]
Number of Cycles | Low-Intensity | High-Intensity | Work-to-Recovery Ratio |
---|---|---|---|
3 | 15 s recovery between each activity | 30 s each: push-ups squats triceps dips lunges (all types) jumping jacks crunches | 2:1 |
4 | 20 s between every other activity; 1 min for each cycle | 20 s each: push-ups with oblique knee (alternating) star jumps mountain climbers burpees high knees jumping lunges | 2:1 |
4 | 4, 5 min low-intensity jog) | Running: 30 s maximal effort sprint | 1:9 |
6 | 50 m slow—breaststroke | Swimming: 50 m sprint—freestyle | 1:1 |
5 | 15 s rest between each distance; 1 min between each cycle | Basketball: sprint from baseline to a given point on the court and back |
Disease | Effect | MICT | HIIT |
---|---|---|---|
Heart failure | Similarity to lifestyle exercises | x | |
Time required | x | ||
Suitability for frail individuals or with very low fitness | x | ||
CR team involvement | x | ||
Cardiometabolic benefit | x | ||
Fitness level obtained (VO2 improvement) | x | ||
Suitability for a broader range of patients | x | ||
Safety | x | ||
Hypertension | Systolic blood pressure reduction | x | |
Diastolic blood pressure reduction | x | ||
Coronary syndrome | Short-term fitness improvement | x | |
Long-term fitness improvement | x | x | |
Adherence | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costache, A.D.; Maștaleru, A.; Leon, M.M.; Roca, M.; Gavril, R.S.; Cosău, D.E.; Rotundu, A.; Amagdalinei, A.I.; Mitu, O.; Costache Enache, I.I.; et al. High-Intensity Interval Training vs. Medium-Intensity Continuous Training in Cardiac Rehabilitation Programs: A Narrative Review. Medicina 2024, 60, 1875. https://doi.org/10.3390/medicina60111875
Costache AD, Maștaleru A, Leon MM, Roca M, Gavril RS, Cosău DE, Rotundu A, Amagdalinei AI, Mitu O, Costache Enache II, et al. High-Intensity Interval Training vs. Medium-Intensity Continuous Training in Cardiac Rehabilitation Programs: A Narrative Review. Medicina. 2024; 60(11):1875. https://doi.org/10.3390/medicina60111875
Chicago/Turabian StyleCostache, Alexandru Dan, Alexandra Maștaleru, Maria Magdalena Leon, Mihai Roca, Radu Sebastian Gavril, Diana Elena Cosău, Andreea Rotundu, Alice Ioana Amagdalinei, Ovidiu Mitu, Irina Iuliana Costache Enache, and et al. 2024. "High-Intensity Interval Training vs. Medium-Intensity Continuous Training in Cardiac Rehabilitation Programs: A Narrative Review" Medicina 60, no. 11: 1875. https://doi.org/10.3390/medicina60111875
APA StyleCostache, A. D., Maștaleru, A., Leon, M. M., Roca, M., Gavril, R. S., Cosău, D. E., Rotundu, A., Amagdalinei, A. I., Mitu, O., Costache Enache, I. I., & Mitu, F. (2024). High-Intensity Interval Training vs. Medium-Intensity Continuous Training in Cardiac Rehabilitation Programs: A Narrative Review. Medicina, 60(11), 1875. https://doi.org/10.3390/medicina60111875