Correlation of the FIB-4 Liver Biomarker Score with the Severity of Heart Failure
Abstract
:1. Introduction
2. Methods
3. Result
3.1. Interpretation of Correlations with/Without Diabetes
3.2. Interpretation of Correlations with/Without Hypertension
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lloyd-Jones, D.M.; Larson, M.G.; Leip, E.P.; Beiser, A.; D’Agostino, R.B.; Kannel, W.B.; Murabito, J.M.; Vasan, R.S.; Benjamin, E.J.; Levy, D. Lifetime risk for developing congestive heart failure: The Framingham Heart Study. Circulation 2002, 106, 3068–3072. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Brouwers, F.P.; Voors, A.A.; Hillege, H.L.; de Boer, R.A.; Gansevoort, R.T.; van der Harst, P.; Rienstra, M.; van Gelder, I.C.; van Veldhuisen, D.J.; et al. Sex differences in new-onset heart failure. Clin. Res. Cardiol. 2015, 104, 342–350. [Google Scholar] [CrossRef]
- Brouwers, F.P.; de Boer, R.A.; van der Harst, P.; Voors, A.A.; Gansevoort, R.T.; Bakker, S.J.; Hillege, H.L.; van Veldhuisen, D.J.; van Gilst, W.H. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur. Heart J. 2013, 34, 1424–1431. [Google Scholar] [CrossRef]
- Roger, V.L. Epidemiology of heart failure. Circ. Res. 2013, 113, 646–659. [Google Scholar] [CrossRef]
- Mosterd, A.; Hoes, A.W. Clinical epidemiology of heart failure. Heart 2007, 93, 1137–1146. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- Pazos-López, P.; Peteiro-Vázquez, J.; Carcía-Campos, A.; García-Bueno, L.; de Torres, J.P.; Castro-Beiras, A. The causes, consequences, and treatment of left or right heart failure. Vasc. Health Risk Manag. 2011, 7, 237–254. [Google Scholar] [CrossRef]
- Iglesias-Garriz, I.; Olalla-Gómez, C.; Garrote, C.; López-Benito, M.; Martín, J.; Alonso, D.; Rodríguez, M.A. Contribution of right ventricular dysfunction to heart failure mortality: A meta-analysis. Rev. Cardiovasc. Med. 2012, 13, e62–e69. [Google Scholar] [CrossRef]
- Gorter, T.M.; van Veldhuisen, D.J.; Bauersachs, J.; Borlaug, B.A.; Celutkiene, J.; Coats, A.J.S.; Crespo-Leiro, M.G.; Guazzi, M.; Harjola, V.P.; Heymans, S.; et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: Mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 16–37. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Weston, S.A.; Jacobsen, S.J.; Roger, V.L. Risk factors for heart failure: A population-based case-control study. Am. J. Med. 2009, 122, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Christodorescu, R.; Agbariah, A.; Duda-Seiman, D.; Dahdal, D.; Man, D.; Kundnani, N.R.; Cretu, O.M.; Dragan, S. Cardiovascular Risk Prediction Parameters for Better Management in Rheumatic Diseases. Healthcare 2022, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Rosca, C.I.; Lighezan, D.F.; Nisulescu, D.-D.; Sharma, A.; Neagu, M.N.; Nistor, D.; Georgescu, D.; Kundnani, N.R. Metabolic Syndrome: A Strange Companion of Atrial Fibrillation; A Blessing in Disguise from the Neuropsychiatric Point of View. Biomedicines 2023, 11, 2012. [Google Scholar] [CrossRef]
- Giallourakis, C.C.; Rosenberg, P.M.; Friedman, L.S. The liver in heart failure. Clin. Liver Dis. 2002, 6, 947–967. [Google Scholar] [CrossRef]
- Xanthopoulos, A.; Starling, R.C.; Kitai, T.; Triposkiadis, F. Heart Failure and Liver Disease: Cardiohepatic Interactions. JACC Heart Fail. 2019, 7, 87–97. [Google Scholar] [CrossRef]
- Farias, A.Q.; Silvestre, O.M.; Garcia-Tsao, G.; da Costa Seguro, L.F.; de Campos Mazo, D.F.; Bacal, F.; Andrade, J.L.; Gonçalves, L.L.; Strunz, C.; Ramos, D.S.; et al. Serum B-type natriuretic peptide in the initial workup of patients with new onset ascites: A diagnostic accuracy study. Hepatology 2014, 59, 1043–1051. [Google Scholar] [CrossRef]
- Lemmer, A.; VanWagner, L.B.; Ganger, D. Assessment of Advanced Liver Fibrosis and the Risk for Hepatic Decompensation in Patients With Congestive Hepatopathy. Hepatology 2018, 68, 1633–1641. [Google Scholar] [CrossRef]
- Aune, D.; Schlesinger, S.; Neuenschwander, M.; Feng, T.; Janszky, I.; Norat, T.; Riboli, E. Diabetes mellitus, blood glucose and the risk of heart failure: A systematic review and meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1081–1091. [Google Scholar] [CrossRef]
- Ohkuma, T.; Komorita, Y.; Peters, S.A.E.; Woodward, M. Diabetes as a risk factor for heart failure in women and men: A systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetologia 2019, 62, 1550–1560. [Google Scholar] [CrossRef]
- Rosca, C.I.; Branea, H.S.; Sharma, A.; Nicoras, V.A.; Borza, C.; Lighezan, D.F.; Morariu, S.I.; Kundnani, N.R. Rhythm Disturbances in Post-Acute COVID-19 Syndrome in Young Men without Pre-Existing Known Cardiovascular Disease—A Case Series. Biomedicines 2023, 11, 1146. [Google Scholar] [CrossRef]
- Duda-Seiman, D.; Kundnani, N.R.; Dugaci, D.; Man, D.E.; Velimirovici, D.; Dragan, S.R. COVID-19 Related Myocarditis and Myositis in a Patient with Undiagnosed Antisynthetase Syndrome. Biomedicines 2022, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, V.; Bhagwani, D.; Sharma, A.; Borza, C.; Rosca, C.I.; Stelian, M.; Bhagwani, S.; Haidar, L.; Kshtriya, L.; Kundnani, N.R.; et al. COVID-19 and the Human Eye: Conjunctivitis, a Lone COVID-19 Finding—A Case-Control Study. Med. Princ. Pract. 2022, 31, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Casipit, B.A.; Al-Sudani, H.; Khan, A.; Akuna, E.; Amanullah, A. Retrospective analyses of the outcomes among hospitalized liver cirrhosis patients with heart failure and COVID-19 infection: Insight from the National Inpatient Sample. Am. Heart J. Plus Cardiol. Res. Pract. 2023, 27, 100271. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Bao, L.; Song, Z.; Zhang, L.; Yu, P.; Xu, Y.; Wang, J.; Zhao, W.; Zhang, X.; Han, Y.; et al. Infection with SARS-CoV-2 can cause pancreatic impairment. Signal Transduct. Target. Ther. 2024, 9, 98. [Google Scholar] [CrossRef]
- Qadir, M.M.F.; Bhondeley, M.; Beatty, W.; Gaupp, D.D.; Doyle-Meyers, L.A.; Fischer, T.; Bandyopadhyay, I.; Blair, R.V.; Bohm, R.; Rappaport, J.; et al. SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight 2021, 6, 151551. [Google Scholar] [CrossRef]
- Tang, X.; Uhl, S.; Zhang, T.; Xue, D.; Li, B.; Vandana, J.J.; Acklin, J.A.; Bonnycastle, L.L.; Narisu, N.; Erdos, M.R.; et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 2021, 33, 1577–1591.e1577. [Google Scholar] [CrossRef]
- Wu, C.T.; Lidsky, P.V.; Xiao, Y.; Lee, I.T.; Cheng, R.; Nakayama, T.; Jiang, S.; Demeter, J.; Bevacqua, R.J.; Chang, C.A.; et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021, 33, 1565–1576.e1565. [Google Scholar] [CrossRef]
- Steenblock, C.; Richter, S.; Berger, I.; Barovic, M.; Schmid, J.; Schubert, U.; Jarzebska, N.; von Mässenhausen, A.; Linkermann, A.; Schürmann, A.; et al. Viral infiltration of pancreatic islets in patients with COVID-19. Nat. Commun. 2021, 12, 3534. [Google Scholar] [CrossRef]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e310. [Google Scholar] [CrossRef]
- Dulai, P.S.; Singh, S.; Patel, J.; Soni, M.; Prokop, L.J.; Younossi, Z.; Sebastiani, G.; Ekstedt, M.; Hagstrom, H.; Nasr, P.; et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 2017, 65, 1557–1565. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, M.; Chen, T.; Zhou, Y. Correlation Between Liver Stiffness and Diastolic Function, Left Ventricular Hypertrophy, and Right Cardiac Function in Patients With Ejection Fraction Preserved Heart Failure. Front. Cardiovasc. Med. 2021, 8, 748173. [Google Scholar] [CrossRef] [PubMed]
- Yoshitani, T.; Asakawa, N.; Sakakibara, M.; Noguchi, K.; Tokuda, Y.; Kamiya, K.; Iwano, H.; Yamada, S.; Kudou, Y.; Nishida, M.; et al. Value of Virtual Touch Quantification Elastography for Assessing Liver Congestion in Patients with Heart Failure. Circ. J. 2016, 80, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Sakata, Y.; Ohtani, T.; Mizote, I.; Takeda, Y.; Asano, Y.; Masuda, M.; Minamiguchi, H.; Kanzaki, M.; Ichibori, Y.; et al. Usefulness of transient elastography for noninvasive and reliable estimation of right-sided filling pressure in heart failure. Am. J. Cardiol. 2014, 113, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kato, M.; Nagashima, K.; Monno, K.; Aizawa, Y.; Okumura, Y.; Matsumoto, N.; Moriyama, M.; Hirayama, A. Prognostic Relevance of Liver Stiffness Assessed by Transient Elastography in Patients with Acute Decompensated Heart Failure. Circ. J. 2018, 82, 1822–1829. [Google Scholar] [CrossRef] [PubMed]
- Adamson, C.; Cowan, L.M.; de Boer, R.A.; Diez, M.; Drożdż, J.; Dukát, A.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Ljungman, C.E.A.; et al. Liver tests and outcomes in heart failure with reduced ejection fraction: Findings from DAPA-HF. Eur. J. Heart Fail. 2022, 24, 1856–1868. [Google Scholar] [CrossRef]
- Shirakabe, A.; Okazaki, H.; Matsushita, M.; Shibata, Y.; Shigihara, S.; Nishigoori, S.; Sawatani, T.; Sasamoto, N.; Kiuchi, K.; Atsukawa, M.; et al. Type III procollagen peptide level can indicate liver dysfunction associated with volume overload in acute heart failure. ESC Heart Fail. 2022, 9, 1832–1843. [Google Scholar] [CrossRef]
- Rosca, C.I.; Kundnani, N.R.; Tudor, A.; Rosca, M.-S.; Nicoras, V.-A.; Otiman, G.; Ciurariu, E.; Ionescu, A.; Stelian, M.; Sharma, A.; et al. Benefits of prescribing low-dose digoxin in atrial fibrillation. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211051955. [Google Scholar] [CrossRef]
- Ouyang, X.; Han, S.N.; Zhang, J.Y.; Dioletis, E.; Nemeth, B.T.; Pacher, P.; Feng, D.; Bataller, R.; Cabezas, J.; Stärkel, P.; et al. Digoxin Suppresses Pyruvate Kinase M2-Promoted HIF-1α Transactivation in Steatohepatitis. Cell Metab. 2018, 27, 339–350.e333. [Google Scholar] [CrossRef]
- Li, M.; Itzel, T.; Montagut, N.E.; Falconer, T.; Daza, J.; Park, J.; Cheong, J.Y.; Park, R.W.; Wiest, I.; Ebert, M.P.; et al. Impact of concomitant cardiovascular medications on overall survival in patients with liver cirrhosis. Scand. J. Gastroenterol. 2023, 58, 1505–1513. [Google Scholar] [CrossRef]
- Barman, H.A.; Şahin, I.; Atıcı, A.; Durmaz, E.; Yurtseven, E.; Ikitimur, B.; Okuyan, E.; Keleş, I. Prognostic significance of brain-derived neurotrophic factor levels in patients with heart failure and reduced left ventricular ejection fraction. Anatol. J. Cardiol. 2019, 22, 309–316. [Google Scholar] [CrossRef]
- Stoll, P.; Plessow, A.; Bratke, K.; Virchow, J.C.; Lommatzsch, M. Differential effect of clopidogrel and aspirin on the release of BDNF from platelets. J. Neuroimmunol. 2011, 238, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B.A.; Penninx, B.W.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: Evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol. Psychiatry 2014, 19, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Laske, C.; Stransky, E.; Leyhe, T.; Eschweiler, G.W.; Maetzler, W.; Wittorf, A.; Soekadar, S.; Richartz, E.; Koehler, N.; Bartels, M.; et al. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J. Psychiatr. Res. 2007, 41, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.A.; Kato, T.S.; Shulman, B.P.; Takayama, H.; Farr, M.; Jorde, U.P.; Mancini, D.M.; Naka, Y.; Schulze, P.C. Liver dysfunction as a predictor of outcomes in patients with advanced heart failure requiring ventricular assist device support: Use of the Model of End-stage Liver Disease (MELD) and MELD eXcluding INR (MELD-XI) scoring system. J. Heart Lung Transplant. 2012, 31, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Bosch, D.E.; Koro, K.; Richards, E.; Hoch, B.L.; Jalikis, F.; Koch, L.K.; Swanson, P.E.; Truong, C.D.; Liou, I.; Yu, L.; et al. Validation of a Congestive Hepatic Fibrosis Scoring System. Am. J. Surg. Pathol. 2019, 43, 766–772. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Takae, M.; Fujisue, K.; Yamamoto, E.; Egashira, K.; Komorita, T.; Oike, F.; Nishihara, T.; Yamamoto, M.; Hirakawa, K.; Tabata, N.; et al. Prognostic significance of liver stiffness assessed by fibrosis-4 index in patients with heart failure. ESC Heart Fail. 2021, 8, 3809–3821. [Google Scholar] [CrossRef]
- Yang, K.; Song, M. New Insights into the Pathogenesis of Metabolic-Associated Fatty Liver Disease (MAFLD): Gut-Liver-Heart Crosstalk. Nutrients 2023, 15, 3970. [Google Scholar] [CrossRef]
- Maeda, D.; Kanzaki, Y.; Sakane, K.; Tsuda, K.; Akamatsu, K.; Hourai, R.; Okuno, T.; Tokura, D.; Nakayama, S.; Hasegawa, H.; et al. Prognostic value of the liver fibrosis marker fibrosis-5 index in patients with acute heart failure. ESC Heart Fail. 2022, 9, 1380–1387. [Google Scholar] [CrossRef]
- Badalica, M.; Munteanu, M.; Sturza, A.; Noveanu, L.; Streian, C.G.; Socaciu, C.; Muntean, D.; Timar, R.; Dragan, S. Characterization of the Effects of Two Polyphenols-Rich Plant Extracts on Isolated Diabetic Human Mammary Arteries. Rev. Chim. 2014, 65, 861–864. [Google Scholar]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Saxena, A. Surrogate markers of insulin resistance: A review. World J. Diabetes 2010, 1, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhao, L.; Mo, F.; Peng, C.; Li, L.; Xu, Y.; Guo, W.; Sun, A.; Yan, H.; Wang, L. The prognostic value of the triglyceride glucose index in patients with chronic heart failure and type 2 diabetes: A retrospective cohort study. Diabetes Res. Clin. Pract. 2021, 177, 108786. [Google Scholar] [CrossRef]
- Huang, R.; Lin, Y.; Ye, X.; Zhong, X.; Xie, P.; Li, M.; Zhuang, X.; Liao, X. Triglyceride-glucose index in the development of heart failure and left ventricular dysfunction: Analysis of the ARIC study. Eur. J. Prev. Cardiol. 2022, 29, 1531–1541. [Google Scholar] [CrossRef]
- Cho, Y.R.; Ann, S.H.; Won, K.B.; Park, G.M.; Kim, Y.G.; Yang, D.H.; Kang, J.W.; Lim, T.H.; Kim, H.K.; Choe, J.; et al. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes. Sci. Rep. 2019, 9, 6129. [Google Scholar] [CrossRef]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef]
- Matsuoka, M.; Inoue, T.; Shinjo, T.; Miiji, A.; Tamashiro, M.; Oba, K.; Arima, H.; Arasaki, O. Cardiovascular risk profile and frailty in Japanese outpatients: The Nambu Cohort Study. Hypertens Res. 2020, 43, 817–823. [Google Scholar] [CrossRef]
- Nakai, H.; Takeuchi, M.; Nishikage, T.; Lang, R.M.; Otsuji, Y. Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: Correlation with diabetic duration. Eur. J. Echocardiogr. 2009, 10, 926–932. [Google Scholar] [CrossRef]
- Frimodt-Møller, K.E.; Olsen, F.J.; Biering-Sørensen, S.R.; Lassen, M.C.H.; Møgelvang, R.; Schnohr, P.; Jensen, G.; Gislason, G.; Marcus, G.M.; Biering-Sørensen, T. Regional longitudinal strain patterns according to left ventricular hypertrophy in the general population. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1436–1444. [Google Scholar] [CrossRef]
- Bolognese, L.; Neskovic, A.N.; Parodi, G.; Cerisano, G.; Buonamici, P.; Santoro, G.M.; Antoniucci, D. Left ventricular remodeling after primary coronary angioplasty: Patterns of left ventricular dilation and long-term prognostic implications. Circulation 2002, 106, 2351–2357. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Braun, L.T.; Ndumele, C.E.; Smith, S.C., Jr.; Sperling, L.S.; Virani, S.S.; Blumenthal, R.S. Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A Special Report From the American Heart Association and American College of Cardiology. Circulation 2019, 139, e1162–e1177. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.G.; Sharpe, N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 2000, 101, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Zeiher, A.M.; Drexler, H.; Wollschläger, H.; Just, H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991, 84, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.D.; Lee, C.M.; Wu, C.C.; Lee, T.M.; Chen, W.J.; Chen, M.F.; Liau, C.S.; Sung, F.C.; Lee, Y.T. The effects of dyslipidemia on left ventricular systolic function in patients with stable angina pectoris. Atherosclerosis 1999, 146, 117–124. [Google Scholar] [CrossRef]
- Mayala, H.A.; Mafuru, M.; Mkangala, A.; Mayala, M.; Pallangyo, P.; Minja, D.; Janabi, M.; Zhao-Hui, W. Factors influencing left ventricular ejection fraction in patients with coronary microvascular disease and obstructive coronary artery disease. BMC Res. Notes 2020, 13, 157. [Google Scholar] [CrossRef]
- Yoon, H.J.; Jeong, M.H.; Bae, J.H.; Kim, K.H.; Ahn, Y.; Cho, J.G.; Park, J.C.; Kang, J.C. Dyslipidemia, low left ventricular ejection fraction and high wall motion score index are predictors of progressive left ventricular dilatation after acute myocardial infarction. Korean Circ. J. 2011, 41, 124–129. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, D.Y.; Park, J.Y.; Ahn, S.H.; Chon, C.Y.; Kim, J.K.; Paik, Y.H.; Lee, K.S.; Park, Y.N.; Han, K.H. Validation of FIB-4 and comparison with other simple noninvasive indices for predicting liver fibrosis and cirrhosis in hepatitis B virus-infected patients. Liver Int. 2010, 30, 546–553. [Google Scholar] [CrossRef]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef]
- Sumida, Y.; Yoneda, M.; Hyogo, H.; Itoh, Y.; Ono, M.; Fujii, H.; Eguchi, Y.; Suzuki, Y.; Aoki, N.; Kanemasa, K.; et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012, 12, 2. [Google Scholar] [CrossRef]
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef]
- Poynard, T.; Bedossa, P. Age and platelet count: A simple index for predicting the presence of histological lesions in patients with antibodies to hepatitis C virus. METAVIR and CLINIVIR Cooperative Study Groups. J. Viral Hepat. 1997, 4, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.G.; Flamm, S.L.; Gordon, F.D.; Chopra, S. AST/ALT ratio predicts cirrhosis in patients with chronic hepatitis C virus infection. Am. J. Gastroenterol. 1998, 93, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Pohl, A.; Behling, C.; Oliver, D.; Kilani, M.; Monson, P.; Hassanein, T. Serum aminotransferase levels and platelet counts as predictors of degree of fibrosis in chronic hepatitis C virus infection. Am. J. Gastroenterol. 2001, 96, 3142–3146. [Google Scholar] [CrossRef] [PubMed]
- Bissell, D.M. Assessing fibrosis without a liver biopsy: Are we there yet? Gastroenterology 2004, 127, 1847–1849. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Berentzen, T.L.; Nitze, L.M.; Jara, M.; Jensen, A.B.; Kjær, M.S.; Mangla, K.K.; Tarp, J.M.; Khunti, K. Prognostic utility of Fibrosis-4 Index for risk of subsequent liver and cardiovascular events, and all-cause mortality in individuals with obesity and/or type 2 diabetes: A longitudinal cohort study. Lancet Reg. Health Eur. 2024, 36, 100780. [Google Scholar] [CrossRef]
- Kamada, Y.; Munekage, K.; Nakahara, T.; Fujii, H.; Sawai, Y.; Doi, Y.; Hyogo, H.; Sumida, Y.; Imai, Y.; Miyoshi, E.; et al. The FIB-4 Index Predicts the Development of Liver-Related Events, Extrahepatic Cancers, and Coronary Vascular Disease in Patients with NAFLD. Nutrients 2022, 15, 66. [Google Scholar] [CrossRef]
- McPherson, S.; Hardy, T.; Dufour, J.F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef]
- Lau, G.T.; Tan, H.C.; Kritharides, L. Type of liver dysfunction in heart failure and its relation to the severity of tricuspid regurgitation. Am. J. Cardiol. 2002, 90, 1405–1409. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, S.; Dong, Y.; Liu, C.; Zhu, W. Comparison of liver fibrosis scores for predicting mortality and morbidity in heart failure with preserved ejection fraction. ESC Heart Fail. 2023, 10, 1771–1780. [Google Scholar] [CrossRef]
LVEF > 50% (n = 198) | LVEF 49–40% (n = 54) | LVEF < 40% (n = 51) | p-Value | p-Value 1 | p-Value 2 | p-Value 3 | |
---|---|---|---|---|---|---|---|
Age (years) | |||||||
Mean (SD) | 75.35 (9.385) | 74.31 (10.731) | 70.04 (12.625) | 0.005 | NS | S | NS |
Min; Max | 47; 96 | 46; 96 | 47; 94 | ||||
Median (Q1; Q3) | 76.0 (69.0; 83.0) | 77.0 (67.0; 82.0) | 70.0 (60.5; 80.0) | ||||
Gender | |||||||
Male | 75 (37.88%) | 27 (50.00%) | 38 (74.51%) | <0.001 | NS | S | S |
Female | 123 (62.12%) | 27 (50.00%) | 13 (25.49%) | ||||
NYHA class | |||||||
I | 2 (1.03%) | 0 (0%) | 0 (0%) | <0.001 | NS | NoP | NoP |
II | 140 (70.71%) | 32 (59.26%) | 16 (31.37%) | NS | S | S | |
III | 53 (26.77%) | 19 (35.19%) | 25 (49.02%) | NS | S | NS | |
IV | 3 (1.52%) | 3 (5.56%) | 10 (19.61%) | NS | S | NS | |
Death | |||||||
No | 186 (93.94%) | 52 (96.30%) | 43 (84.31%) | 0.033 | NS | NS | NS |
Yes | 12 (6.06%) | 2 (3.70%) | 8 (15.69%) |
History of: | LVEF >50% (n = 198) | LVEF 49–40% (n = 54) | LVEF <40% (n = 51) | p-Value | p-Value 1 | p-Value 2 | p-Value 3 |
---|---|---|---|---|---|---|---|
History of T2DM | |||||||
No | 129 (65.15%) | 33 (61.11%) | 20 (39.22%) | 0.003 | NS | S | NS |
Yes | 69 (34.85%) | 21 (38.89%) | 31 (60.78%) | ||||
H/of CAD | |||||||
No | 103 (52.02%) | 25 (46.30%) | 20 (39.22%) | 0.243 | NS | NS | NS |
Yes | 95 (47.98%) | 29 (53.70%) | 31 (60.78%) | ||||
H/of arrhythmias | |||||||
No | 86 (43.43%) | 22 (40.74%) | 23 (45.10%) | 0.899 | NS | NS | NS |
Yes | 112 (56.57%) | 32 (59.26%) | 28 (54.90%) |
LVEF >50% (n = 198) | LVEF 49–40% (n = 54) | LVEF <40% (n = 51) | p-Value | p-Value 1 | p-Value 2 | p-Value 3 | |
---|---|---|---|---|---|---|---|
Na+ (mmol/L) | |||||||
Mean (SD) | 139.35 (4.950) | 139.54 (5.255) | 138.92 (5.176) | 0.808 | NS | NS | NS |
Min; Max | 122; 152 | 116; 147 | 124; 148 | ||||
Median (Q1; Q3) | 140.0 (138.0; 142.0) | 141.0 (138.0; 143.0) | 140.0 (137.0; 141.5) | ||||
K+ (mmol/L) | |||||||
Mean (SD) | 4.327 (0.7717) | 4.463 (0.7088) | 4.418 (0.8021) | 0.027 | NS | S | NS |
Min; Max | 1.7; 7.5 | 3.3; 6.2 | 2.7; 6.4 | ||||
Median (Q1; Q3) | 4.40 (3.90; 4.80) | 4.50 (3.90; 5.00) | 4.60 (3.95; 5.25) | ||||
Creatinine (mg/dL) | |||||||
Mean (SD) | 1.5941 (0.75901) | 1.6957 (0.61205) | 1.9080 (0.95739) | 0.035 | NS | S | NS |
Min; Max | 0.52; 4.97 | 0.90; 3.50 | 0.71; 7.23 | ||||
Median (Q1; Q3) | 1.420 (1.060; 1.860) | 1.585 (1.230; 1.930) | 1.710 (1.445; 2.170) | ||||
eGFR (MDRD) (mL/min) | |||||||
Mean(SD) | 46.535 (21.2707) | 42.222 (16.7025) | 42.143 (17.3025) | 0.196 | NS | NS | NS |
Min; Max | 8.3; 124.6 | 13.2; 87.2 | 8.3; 83.6 | ||||
Median (Q1; Q3) | 43.90 (32.10; 57.70) | 43.35 (28.30; 50.40) | 39.90 (30.20; 51.40) | ||||
Uric acid (mg/dL) | |||||||
Mean (SD) | 7.328 (2.5407) | 7.091 (2.0394) | 7.798 (2.5859) | 0.004 | NS | S | S |
Min; Max | 1.7; 17.2 | 4.0; 12.8 | 5.1; 17.1 | ||||
Median (Q1; Q3) | 7.05 (5.40; 8.60) | 6.65 (5.40; 8.70) | 8.20 (6.50; 9.90) | ||||
NT-pro BNP | |||||||
Mean (SD) | 2422.86 (1491.644) | 3699.20 (1731.444) | 6667.92 (2714.724) | <0.001 | S | S | S |
Min; Max | 155; 10,209 | 1654; 9120 | 1884; 11,640 | ||||
Median (Q1; Q3) | 1770 (1524; 3128) | 3075 (2613; 4800) | 6430 (4617; 9130) | ||||
Left atrial volume | |||||||
Mean (SD) | 62.41 (10.752) | 80.85 (5.839) | 102.39 (12.405) | <0.001 | S | S | S |
Min; Max | 35; 91 | 69; 90 | 84; 130 | ||||
Median (Q1; Q3) | 64.0 (53.0; 70.0) | 81.0 (75.0; 87.0) | 99.0 (93.0; 113.5) | ||||
LDL | |||||||
Mean (SD) | 111.14 (28.300) | 137.04 (30.148) | 146.78 (26.532) | <0.001 | S | S | NS |
Min; Max | 50; 190 | 70; 190 | 76; 190 | ||||
Median (Q1; Q3) | 110.0 (90.0; 130.0) | 133.0 (114.0; 165.0) | 150.0 (131.0; 168.0) | ||||
HDL | |||||||
Mean (SD) | 43.52 (6.705) | 41.02 (6.257) | 38.61 (6.422) | <0.001 | S | S | NS |
Min; Max | 31; 60 | 30; 60 | 25; 52 | ||||
Median (Q1; Q3) | 44.0 (38.0; 48.0) | 40.0 (38.0; 45.0) | 38.0 (33.0; 43.0) | ||||
TG | |||||||
Mean (SD) | 157.34 (52.341) | 164.91 (58.606) | 184.71 (59.069) | 0.007 | NS | S | NS |
Min; Max | 80; 304 | 90; 290 | 100; 308 | ||||
Median (Q1; Q3) | 145.0 (112.0; 190.0) | 154.0 (117.0; 200.0) | 190.0 (133.0; 205.5) |
Patients with Diabetes | FIB-4 | |
---|---|---|
LVEF | Correlation Coefficient (r) | 0.378 |
p-value | <0.001 | |
NT-pro BNP | Correlation Coefficient (r) | 0.045 |
p-value | 0.621 | |
Patients without diabetes | FIB-4 | |
LVEF | Correlation Coefficient (r) | 0.344 |
p-value | <0.001 | |
NT-pro BNP | Correlation Coefficient (r) | 0.001 |
p-value | 0.993 | |
Patients with hypertension | FIB-4 | |
LVEF | Correlation Coefficient (r) | 0.355 |
p-value | <0.001 | |
NT-pro BNP | Correlation Coefficient (r) | 0.002 |
p-value | 0.979 | |
Patients without hypertension | FIB-4 | |
LVEF | Correlation Coefficient (r) | 0.506 |
p-value | 0.003 | |
NT-pro BNP | Correlation Coefficient (r) | −0.100 |
p-value | 0.580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzas, R.; Ciubotaru, P.; Faur, A.C.; Preda, M.; Ardelean, M.; Georgescu, D.; Dumitrescu, P.; Lighezan, D.F.; Popa, M.-D. Correlation of the FIB-4 Liver Biomarker Score with the Severity of Heart Failure. Medicina 2024, 60, 1943. https://doi.org/10.3390/medicina60121943
Buzas R, Ciubotaru P, Faur AC, Preda M, Ardelean M, Georgescu D, Dumitrescu P, Lighezan DF, Popa M-D. Correlation of the FIB-4 Liver Biomarker Score with the Severity of Heart Failure. Medicina. 2024; 60(12):1943. https://doi.org/10.3390/medicina60121943
Chicago/Turabian StyleBuzas, Roxana, Paul Ciubotaru, Alexandra Corina Faur, Marius Preda, Melania Ardelean, Doina Georgescu, Patrick Dumitrescu, Daniel Florin Lighezan, and Mihaela-Diana Popa. 2024. "Correlation of the FIB-4 Liver Biomarker Score with the Severity of Heart Failure" Medicina 60, no. 12: 1943. https://doi.org/10.3390/medicina60121943
APA StyleBuzas, R., Ciubotaru, P., Faur, A. C., Preda, M., Ardelean, M., Georgescu, D., Dumitrescu, P., Lighezan, D. F., & Popa, M. -D. (2024). Correlation of the FIB-4 Liver Biomarker Score with the Severity of Heart Failure. Medicina, 60(12), 1943. https://doi.org/10.3390/medicina60121943