Cognitive Impairment following Mild Traumatic Brain Injury (mTBI): A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Timeframe and Duration of Cognitive Impairment in mTBI
3.2. Impairment in Global Cognition
3.3. Executive Dysfunction and Episodic Memory Impairment
3.4. Attention and Working Memory
3.5. Subjective Cognitive Decline
3.6. Factors That May Influence Cognitive Impairment in mTBI
3.7. Prognosis of Cognitive Impairment after mTBI
3.8. Brain Areas Involved in Cognitive Decline after mTBI
3.9. Biomarkers of Cognitive Impairment after mTBI
3.10. Treatment and Management
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mavroudis, I.; Kazis, D.; Chowdhury, R.; Petridis, F.; Costa, V.; Balmus, I.M.; Ciobica, A.; Luca, A.C.; Radu, I.; Dobrin, R.P.; et al. Post-Concussion Syndrome and Chronic Traumatic Encephalopathy: Narrative Review on the Neuropathology, Neuroimaging and Fluid Biomarkers. Diagnostics 2022, 12, 740. [Google Scholar] [CrossRef]
- Malec, J.F.; Brown, A.W.; Leibson, C.L.; Flaada, J.T.; Mandrekar, J.N.; Diehl, N.N.; Perkins, P.K. The Mayo classification system for traumatic brain injury severity. J. Neurotrauma 2007, 24, 1417–1424. [Google Scholar] [CrossRef]
- McInnes, K.; Friesen, C.L.; MacKenzie, D.E.; Westwood, D.A.; Boe, S.G. Mild Traumatic Brain Injury (mTBI) and chronic cognitive impairment: A scoping review. PLoS ONE 2017, 12, e0174847. [Google Scholar] [CrossRef] [PubMed]
- de Freitas Cardoso, M.G.; Faleiro, R.M.; de Paula, J.J.; Kummer, A.; Caramelli, P.; Teixeira, A.L.; de Souza, L.C.; Miranda, A.S. Cognitive Impairment Following Acute Mild Traumatic Brain Injury. Front. Neurol. 2019, 10, 198. [Google Scholar] [CrossRef]
- McCrea, M.; Guskiewicz, K.; Doncevic, S.; Helmick, K.; Kennedy, J.; Boyd, C.; Asmussen, S.; Ahn, K.W.; Wang, Y.; Hoelzle, J.; et al. Day of injury cognitive performance on the Military Acute Concussion Evaluation (MACE) by U.S. military service members in OEF/OIF. Mil. Med. 2014, 179, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Spain, A.; Daumas, S.; Lifshitz, J.; Rhodes, J.; Andrews, P.J.; Horsburgh, K.; Fowler, J.H. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury. J. Neurotrauma 2010, 27, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, S.; Machamer, J.; Temkin, N. Mild head injury: Facts and artifacts. J. Clin. Exp. Neuropsychol. 2001, 23, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.R.; Hayes, J.P.; Lafleche, G.; Salat, D.H.; Verfaellie, M. White matter abnormalities are associated with overall cognitive status in blast-related mTBI. Brain Imaging Behav. 2017, 11, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Carroll, L.J.; Cassidy, J.D.; Peloso, P.M.; Borg, J.; von Holst, H.; Holm, L.; Paniak, C.; Pépin, M. WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Prognosis for mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 2004, 43, 84–105. [Google Scholar] [CrossRef]
- Nordström, A.; Edin, B.B.; Lindström, S.; Nordström, P. Cognitive function and other risk factors for mild traumatic brain injury in young men: Nationwide cohort study. BMJ 2013, 346, f723. [Google Scholar] [CrossRef]
- Sport concussion assessment tool for childrens ages 5 to 12 years. Br. J. Sports Med. 2017, 51, 862–869. [CrossRef]
- Laurer, H.L.; Bareyre, F.M.; Lee, V.M.; Trojanowski, J.Q.; Longhi, L.; Hoover, R.; Saatman, K.E.; Raghupathi, R.; Hoshino, S.; Grady, M.S.; et al. Mild head injury increasing the brain’s vulnerability to a second concussive impact. J. Neurosurg. 2001, 95, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Caccese, J.B.; Houck, Z.; Kaminski, T.W.; Clugston, J.R.; Iverson, G.L.; Bryk, K.N.; Oldham, J.R.; Pasquina, P.F.; Broglio, S.P.; McAllister, T.W.; et al. Estimated age of first exposure to American football and outcome from concussion. Neurology 2020, 95, e2935–e2944. [Google Scholar] [CrossRef] [PubMed]
- Broadway, J.M.; Rieger, R.E.; Campbell, R.A.; Quinn, D.K.; Mayer, A.R.; Yeo, R.A.; Wilson, J.K.; Gill, D.; Fratzke, V.; Cavanagh, J.F. Executive function predictors of delayed memory deficits after mild traumatic brain injury. Cortex 2019, 120, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.L.; Worthington, A. Neurobehavioral Abnormalities Associated with Executive Dysfunction after Traumatic Brain Injury. Front. Behav. Neurosci. 2017, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Kurowski, B.G.; Wade, S.L.; Kirkwood, M.W.; Brown, T.M.; Stancin, T.; Taylor, H.G. Online problem-solving therapy for executive dysfunction after child traumatic brain injury. Pediatrics 2013, 132, e158–e166. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Anderson, V.; Morawakage, T.; Khan, N.; Shapiro, J.S.; Ignjatovic, V.; Takagi, M. Post-traumatic headache pathophysiology in paediatric concussion: A systematic review. Neurosci. Biobehav. Rev. 2024, 156, 105498. [Google Scholar] [CrossRef]
- Begasse de Dhaem, O.; Robbins, M.S. Cognitive Impairment in Primary and Secondary Headache Disorders. Curr. Pain. Headache Rep. 2022, 26, 391–404. [Google Scholar] [CrossRef]
- Ashina, H.; Al-Khazali, H.M.; Iljazi, A.; Ashina, S.; Amin, F.M.; Lipton, R.B.; Schytz, H.W. Psychiatric and cognitive comorbidities of persistent post-traumatic headache attributed to mild traumatic brain injury. J. Headache Pain. 2021, 22, 83. [Google Scholar] [CrossRef]
- Arciniega, H.; Shires, J.; Furlong, S.; Kilgore-Gomez, A.; Cerreta, A.; Murray, N.G.; Berryhill, M.E. Impaired visual working memory and reduced connectivity in undergraduates with a history of mild traumatic brain injury. Sci. Rep. 2021, 11, 2789. [Google Scholar] [CrossRef]
- Chung, S.; Wang, X.; Fieremans, E.; Rath, J.F.; Amorapanth, P.; Foo, F.A.; Morton, C.J.; Novikov, D.S.; Flanagan, S.R.; Lui, Y.W. Altered Relationship between Working Memory and Brain Microstructure after Mild Traumatic Brain Injury. AJNR Am. J. Neuroradiol. 2019, 40, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Flynn, F.G. Memory impairment after mild traumatic brain injury. Contin. Lifelong Learn. Neurol. 2010, 16, 79–109. [Google Scholar] [CrossRef]
- Wylie, G.R.; Freeman, K.; Thomas, A.; Shpaner, M.; Okeefe, M.; Watts, R.; Naylor, M.R. Cognitive Improvement after Mild Traumatic Brain Injury Measured with Functional Neuroimaging during the Acute Period. PLoS ONE 2015, 10, e0126110. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, J.; Karr, J.E.; Terry, D.P.; Håberg, A.K.; Vik, A.; Skandsen, T.; Iverson, G.L. Change in self-reported cognitive symptoms after mild traumatic brain injury is associated with changes in emotional and somatic symptoms and not changes in cognitive performance. Neuropsychology 2020, 34, 560–568. [Google Scholar] [CrossRef]
- Si, T.; Xing, G.; Han, Y. Subjective Cognitive Decline and Related Cognitive Deficits. Front. Neurol. 2020, 11, 247. [Google Scholar] [CrossRef]
- Rabinowitz, A.R.; Watanabe, T.K. Pharmacotherapy for Treatment of Cognitive and Neuropsychiatric Symptoms after mTBI. J. Head. Trauma. Rehabil. 2020, 35, 76–83. [Google Scholar] [CrossRef]
- Kubang, K.; Malaysia, K.; Sabarisah, H.; Nurshazwin, R.; Nasir, M.; Azrin, M.; Che, Y. Association between pre-injury and injury-related factors and cognitive impairment of post-traumatic brain injury patients in a Hospital University Sains Malaysia cohort. IeJSME 2021, 15, 27–36. [Google Scholar] [CrossRef]
- Nelson, L.D.; Guskiewicz, K.M.; Barr, W.B.; Hammeke, T.A.; Randolph, C.; Ahn, K.W.; Wang, Y.; McCrea, M.A. Age Differences in Recovery After Sport-Related Concussion: A Comparison of High School and Collegiate Athletes. J. Athl. Train. 2016, 51, 142–152. [Google Scholar] [CrossRef]
- Covassin, T.; Stearne, D.; Elbin, R. Concussion history and postconcussion neurocognitive performance and symptoms in collegiate athletes. J. Athl. Train. 2008, 43, 119–124. [Google Scholar] [CrossRef]
- Gardner, R.C.; Burke, J.F.; Nettiksimmons, J.; Kaup, A.; Barnes, D.E.; Yaffe, K. Dementia risk after traumatic brain injury vs. nonbrain trauma: The role of age and severity. JAMA Neurol. 2014, 71, 1490–1497. [Google Scholar] [CrossRef]
- Crane, P.K.; Gibbons, L.E.; Dams-O’Connor, K.; Trittschuh, E.; Leverenz, J.B.; Keene, C.D.; Sonnen, J.; Montine, T.J.; Bennett, D.A.; Leurgans, S.; et al. Association of Traumatic Brain Injury with Late-Life Neurodegenerative Conditions and Neuropathologic Findings. JAMA Neurol. 2016, 73, 1062–1069. [Google Scholar] [CrossRef]
- Keatley, E.S.; Bombardier, C.H.; Watson, E.; Kumar, R.G.; Novack, T.; Monden, K.R.; Dams-O’Connor, K. Cognitive Performance, Depression, and Anxiety 1 Year After Traumatic Brain Injury. J. Head. Trauma. Rehabil. 2023, 38, E195–E202. [Google Scholar] [CrossRef]
- Tanev, K.S.; Pentel, K.Z.; Kredlow, M.A.; Charney, M.E. PTSD and TBI co-morbidity: Scope, clinical presentation and treatment options. Brain Inj. 2014, 28, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Kroes, M.C.; Rugg, M.D.; Whalley, M.G.; Brewin, C.R. Structural brain abnormalities common to posttraumatic stress disorder and depression. J. Psychiatry Neurosci. 2011, 36, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.A.; Bradson, M.L.; Riegler, K.E.; Arnett, P.A. Affective Disturbance and Neurocognitive Variability in College Athletes. Arch. Clin. Neuropsychol. 2023, 38, 1623–1634. [Google Scholar] [CrossRef]
- Veliz, P.T.; Berryhill, M.E. Gender Differences in Adolescents’ Affective Symptoms and Behavioral Disorders after Mild Traumatic Brain Injury. J. Head. Trauma. Rehabil. 2023, 38, 308–318. [Google Scholar] [CrossRef]
- Delmonico, R.L.; Tucker, L.Y.; Theodore, B.R.; Camicia, M.; Filanosky, C.; Haarbauer-Krupa, J. Mild Traumatic Brain Injuries and Risk for Affective and Behavioral Disorders. Pediatrics. 2024, 153, e2023062340. [Google Scholar] [CrossRef]
- Walker, W.C.; O’Neil, M.E.; Ou, Z.; Pogoda, T.K.; Belanger, H.G.; Scheibel, R.S.; Presson, A.P.; Miles, S.R.; Wilde, E.A.; Tate, D.F.; et al. Can mild traumatic brain injury alter cognition chronically? A LIMBIC-CENC multicenter study. Neuropsychology 2023, 37, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lu, L.; Shang, S.; Hu, L.; Chen, H.; Wang, P.; Zhang, H.; Chen, Y.C.; Yin, X. Disrupted functional network connectivity predicts cognitive impairment after acute mild traumatic brain injury. CNS Neurosci. Ther. 2020, 26, 1083–1091. [Google Scholar] [CrossRef]
- Dunkley, B.T.; Da Costa, L.; Bethune, A.; Jetly, R.; Pang, E.W.; Taylor, M.J.; Doesburg, S.M. Low-frequency connectivity is associated with mild traumatic brain injury. Neuroimage Clin. 2015, 7, 611–621. [Google Scholar] [CrossRef]
- Alhourani, A.; Wozny, T.A.; Krishnaswamy, D.; Pathak, S.; Walls, S.A.; Ghuman, A.S.; Krieger, D.N.; Okonkwo, D.O.; Richardson, R.M.; Niranjan, A. Magnetoencephalography-based identification of functional connectivity network disruption following mild traumatic brain injury. J. Neurophysiol. 2016, 116, 1840–1847. [Google Scholar] [CrossRef]
- Irimia, A.; Ngo, V.; Chaudhari, N.; Zhang, F.; Joshi, S.; O’Donnell, L.; Sheikh-Bahaei, N.; Chui, H. White Matter Change Near Cerebral Microbleeds After mTBI Involves Age and Sex Dependent Cognitive Decline. Innov. Aging. 2022, 6 (Suppl. 1), 784–785. [Google Scholar] [CrossRef]
- D’Souza, M.M.; Kumar, M.; Choudhary, A.; Kaur, P.; Kumar, P.; Rana, P.; Trivedi, R.; Sekhri, T.; Singh, A.K. Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study. Neuroradiol. J. 2020, 33, 186–197. [Google Scholar] [CrossRef]
- Kinnunen, K.M.; Greenwood, R.; Powell, J.H.; Leech, R.; Hawkins, P.C.; Bonnelle, V.; Patel, M.C.; Counsell, S.J.; Sharp, D.J. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011, 134 Pt 2, 449–463. [Google Scholar] [CrossRef]
- Niogi, S.N.; Mukherjee, P.; Ghajar, J.; Johnson, C.E.; Kolster, R.; Lee, H.; Suh, M.; Zimmerman, R.D.; Manley, G.T.; McCandliss, B.D. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain. 2008, 131 Pt 12, 3209–3221. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liang, J.; Fu, H. An update on the association between traumatic brain injury and Alzheimer’s disease: Focus on Tau pathology and synaptic dysfunction. Neurosci. Biobehav. Rev. 2021, 120, 372–386. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.; Yu, J.; Kirstein, C.; Kindy, M.S. Combined Effects of Repetitive Mild Traumatic Brain Injury and Alcohol Drinking on the Neuroinflammatory Cytokine Response and Cognitive Behavioral Outcomes. Brain Sci. 2020, 10, 876. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Wu, C.H.; Liao, Y.P.; Hsu, H.L.; Tseng, Y.C.; Liu, H.L.; Chiu, W.T. Working memory in patients with mild traumatic brain injury: Functional MR imaging analysis. Radiology 2012, 264, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Rostami, E.; Davidsson, J.; Ng, K.C.; Lu, J.; Gyorgy, A.; Walker, J.; Wingo, D.; Plantman, S.; Bellander, B.M.; Agoston, D.V.; et al. A Model for Mild Traumatic Brain Injury that Induces Limited Transient Memory Impairment and Increased Levels of Axon Related Serum Biomarkers. Front. Neurol. 2012, 3, 115. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, K.D.; Goldin, Y.; Ganci, K.; Rosenbaum, A.; Wethe, J.V.; Langenbahn, D.M.; Malec, J.F.; Bergquist, T.F.; Kingsley, K.; Nagele, D.; et al. Evidence-Based Cognitive Rehabilitation: Systematic Review of the Literature from 2009 through 2014. Arch Phys Med Rehabil. 2019, 100, 1515–1533. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.C.; Collins, M.; Lovell, M.; Kontos, A.P. Efficacy of amantadine treatment on symptoms and neurocognitive performance among adolescents following sports-related concussion. J. Head. Trauma. Rehabil. 2013, 28, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.J.B.; Skandsen, T.; Zetterberg, H.; Follestad, T.; Einarsen, C.E.; Vik, A.; Mollnes, T.E.; Pischke, S.E.; Blennow, K.; Håberg, A.K. Longitudinal Associations Between Persistent Post-Concussion Symptoms and Blood Biomarkers of Inflammation and CNS-Injury After Mild Traumatic Brain Injury. J. Neurotrauma 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bazarian, J.J.; Abar, B.; Merchant-Borna, K.; Pham, D.L.; Rozen, E.; Mannix, R.; Kawata, K.; Chou, Y.; Stephen, S.; Gill, J.M. Effects of Physical Exertion on Early Changes in Blood-Based Brain Biomarkers: Implications for the Acute Point of Care Diagnosis of Concussion. J. Neurotrauma. 2023, 40, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.-L.; Feng, D.-F. Biomarkers of cognitive dysfunction in traumatic brain injury. J. Neural Transm. 2013, 121, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, M.N.; Winston, C.N.; Levin, N.; Rissman, R.A.; Risbrough, V.B. Developing Biomarkers of Mild Traumatic Brain Injury: Promise and Progress of CNS-Derived Exosomes. Front. Neurol. 2022, 12, 698206. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, A.; Galetta, S. Editors’ Note: Blood Biomarkers of Traumatic Brain Injury and Cognitive Impairment in Older Veterans. Neurology 2021, 97, 100. [Google Scholar] [CrossRef]
- Peltz, C.B.; Kenney, K.; Gill, J.; Diaz-Arrastia, R.; Gardner, R.C.; Yaffe, K. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology 2020, 95, e1126–e1133. [Google Scholar] [CrossRef]
- Shen, X.; Li, A.; Zhang, Y.; Dong, X.; Shan, T.; Wu, Y.; Jia, J.; Hu, Y. The effect of different intensities of treadmill exercise on cognitive function deficit following a severe controlled cortical impact in rats. Int. J. Mol. Sci. 2013, 14, 21598–21612. [Google Scholar] [CrossRef]
- Traeger, J.; Hoffman, B.; Misencik, J.; Hoffer, A.; Makii, J. Pharmacologic Treatment of Neurobehavioral Sequelae Following Traumatic Brain Injury. Crit. Care Nurs. Q. 2020, 43, 172–190. [Google Scholar] [CrossRef]
- Prins, M.L.; Hovda, D.A. The effects of age and ketogenic diet on local cerebral metabolic rates of glucose after controlled cortical impact injury in rats. J. Neurotrauma. 2009, 26, 1083–1093. [Google Scholar] [CrossRef]
- Markovic, S.J.; Fitzgerald, M.; Peiffer, J.J.; Scott, B.R.; Rainey-Smith, S.R.; Sohrabi, H.R.; Brown, B.M. The impact of exercise, sleep, and diet on neurocognitive recovery from mild traumatic brain injury in older adults: A narrative review. Ageing Res. Rev. 2021, 68, 101322. [Google Scholar] [CrossRef] [PubMed]
Cognitive Impairment Type | Timeframe |
---|---|
Global cognition | Acute |
Executive function | Acute |
Episodic memory | Acute |
Attention and working memory | Acute to chronic |
Decision making | Acute to chronic |
Reaction times | Acute to chronic |
Subjective cognitive decline | Chronic |
Brain Area | Cognitive Impairment Type |
---|---|
Prefrontal cortex | Executive function, attention, working memory, decision making |
Hippocampus | Episodic memory |
Corpus callosum | Global cognition |
Basal ganglia | Reaction times |
Management Strategy | Effectiveness |
---|---|
Cognitive rehabilitation therapy | Effective for executive function, attention, working memory, and episodic memory |
Pharmacological intervention | Limited effectiveness |
Exercise | Effective for global cognition, attention, and executive function |
Mindfulness-based interventions | Effective for attention and working memory |
Sleep hygiene | Effective for attention and working memory |
Dietary interventions | Limited effectiveness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavroudis, I.; Ciobica, A.; Bejenariu, A.C.; Dobrin, R.P.; Apostu, M.; Dobrin, I.; Balmus, I.-M. Cognitive Impairment following Mild Traumatic Brain Injury (mTBI): A Review. Medicina 2024, 60, 380. https://doi.org/10.3390/medicina60030380
Mavroudis I, Ciobica A, Bejenariu AC, Dobrin RP, Apostu M, Dobrin I, Balmus I-M. Cognitive Impairment following Mild Traumatic Brain Injury (mTBI): A Review. Medicina. 2024; 60(3):380. https://doi.org/10.3390/medicina60030380
Chicago/Turabian StyleMavroudis, Ioannis, Alin Ciobica, Andreea Cristina Bejenariu, Romeo Petru Dobrin, Mihai Apostu, Irina Dobrin, and Ioana-Miruna Balmus. 2024. "Cognitive Impairment following Mild Traumatic Brain Injury (mTBI): A Review" Medicina 60, no. 3: 380. https://doi.org/10.3390/medicina60030380
APA StyleMavroudis, I., Ciobica, A., Bejenariu, A. C., Dobrin, R. P., Apostu, M., Dobrin, I., & Balmus, I.-M. (2024). Cognitive Impairment following Mild Traumatic Brain Injury (mTBI): A Review. Medicina, 60(3), 380. https://doi.org/10.3390/medicina60030380