Lower Arginine Bioavailability, Increased FeNO Levels, and Airway Resistance on Impulse Oscillometry Are Characteristics of Asthma in Children and Young Adults with Sickle Cell Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Description of Study Cases
2.4. Atopy Markers
2.5. Measurement of Arginine Metabolites
2.6. Fractional Exhaled NO Measurement
2.7. Pulmonary Function Tests
2.7.1. Spirometry
2.7.2. Impulse Oscillometry
2.7.3. Plethysmography
2.7.4. Methacholine Bronchial Provocation Test
2.8. Statistical Analysis
3. Results
3.1. Patient Characteristics and Demographics
3.2. Comparison of Lung Function Tests of SCD Patients and Healthy Controls
3.3. Comparison of Serum Arginine and Bioavailability Indices of SCD Patients and Healthy Controls
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, C.R. Asthma management: Reinventing the wheel in sickle cell disease. Am. J. Hematol. 2009, 84, 234–241. [Google Scholar] [CrossRef]
- Koumbourlis, A.C.; Zar, H.J.; Hurlet-Jensen, A.; Goldberg, M.R. Prevalence and reversibility of lower airway obstruction in children with sickle cell disease. J. Pediatr. 2001, 138, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Willen, S.M.; Rodeghier, M.; DeBaun, M.R. Asthma in children with sickle cell disease. Curr. Opin. Pediatr. 2019, 31, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.T.; Klings, E.S.; Strunk, R.C. Sickle cell disease: Wheeze or asthma? Asthma Res. Pract. 2015, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- DeBaun, M.R.; Strunk, R.C. The intersection between asthma and acute chest syndrome in children with sickle-cell anaemia. Lancet 2016, 387, 2545–2553. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, A.E.; Rosch, J.W. Convergence of Inflammatory Pathways in Allergic Asthma and Sickle Cell Disease. Front. Immunol. 2019, 10, 3058. [Google Scholar] [CrossRef] [PubMed]
- Field, J.J.; DeBaun, M.R. Asthma and sickle cell disease: Two distinct diseases or part of the same process? Hematology Am. Soc. Hematol. Educ. Program. 2009, 2009, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Angel, A.; Wandalsen, G.F.; Solé, D.; Lanza, F.C.; Cobra, C.L.N.; Johnston, C.; Braga, J.A.P. Asthma, allergic sensitization and lung function in sickle cell disease. Allergol. Immunopathol. 2020, 48, 450–457. [Google Scholar] [CrossRef]
- Jain, S.; Gladwin, M.T.; Novelli, E.M. Unraveling restrictive chronic lung disease in sickle cell disease. Int. J. Tuberc. Lung Dis. 2013, 17, 1123–1124. [Google Scholar] [CrossRef]
- Koumbourlis, A.C. Lung function in sickle cell disease. Paediatr. Respir. Rev. 2014, 15, 33–37. [Google Scholar] [CrossRef]
- Arteta, M.; Campbell, A.; Nouraie, M.; Rana, S.; Onyekwere, O.C.; Ensing, G.; Sable, C.; Dham, N.; Darbari, D.; Luchtman-Jones, L.; et al. Abnormal pulmonary function and associated risk factors in children and adolescents with sickle cell anemia. J. Pediatr. Hematol. Oncol. 2014, 36, 185–189. [Google Scholar] [CrossRef]
- Komarow, H.D.; Myles, I.A.; Uzzaman, A.; Metcalfe, D.D. Impulse oscillometry in the evaluation of diseases of the airways in children. Ann. Allergy Asthma Immunol. 2011, 106, 191–199. [Google Scholar] [CrossRef]
- Brashier, B.; Salvi, S. Measuring lung function using sound waves: Role of the forced oscillation technique and impulse oscillometry system. Breathe 2015, 11, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, K.; Agrawal, A. Impulse oscillometry: The state-of-art for lung function testing. Lung India 2016, 33, 410–416. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Manwani, D.; Rastogi, D. Airway inflammation in sickle cell disease-A translational perspective. Pediatr. Pulmonol. 2018, 53, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.T.; Rodeghier, M.; Kirkham, F.J.; Rosen, C.L.; Kirkby, J.; DeBaun, M.R.; Strunk, R.C. Exhaled nitric oxide: Not associated with asthma, symptoms, or spirometry in children with sickle cell anemia. J. Allergy Clin. Immunol. 2016, 138, 1338–1343.e4. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.J.; Kissoon, N.; Duckworth, L.J.; Sandler, E.; Freeman, B.; Bayne, E.; Sylvester, J.E.; Lima, J.J. Low exhaled nitric oxide and a polymorphism in the NOS I gene is associated with acute chest syndrome. Am. J. Respir. Crit. Care Med. 2001, 164, 2186–2190. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, D.K.; Bendiak, G.N.; Mateos-Corral, D.; Al-Saleh, S.; Bhattacharjee, R.; Kirby-Allen, M.; Grasemann, H. Lower airway nitric oxide is increased in children with sickle cell disease. J. Pediatr. 2012, 160, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.G.; Bernaudin, F.; Strunk, R.C.; Kamdem, A.; Arnaud, C.; Hervé, M.; Delacourt, C.; DeBaun, M.R. Asthma is a distinct comorbid condition in children with sickle cell anemia with elevated total and allergen-specific IgE levels. J. Pediatr. Hematol. Oncol. 2011, 33, e205–e208. [Google Scholar] [CrossRef] [PubMed]
- An, P.; Barron-Casella, E.A.; Strunk, R.C.; Hamilton, R.G.; Casella, J.F.; DeBaun, M.R. Elevation of IgE in children with sickle cell disease is associated with doctor diagnosis of asthma and increased morbidity. J. Allergy Clin. Immunol. 2011, 127, 1440–1446. [Google Scholar] [CrossRef]
- Maarsingh, H.; Zaagsma, J.; Meurs, H. Arginase: A key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br. J. Pharmacol. 2009, 158, 652–664. [Google Scholar] [CrossRef]
- Kraj, L.; Krawiec, M.; Koter, M.; Graboń, W.; Kraj, G.; Chołojczyk, M.; Kulus, M.; Barańczyk-Kuźma, A. Altered L-arginine metabolism in children with controlled asthma. Allergy Asthma Proc. 2014, 35, 80–83. [Google Scholar] [CrossRef]
- Morris, C.R.; Poljakovic, M.; Lavrisha, L.; Machado, L.; Kuypers, F.A.; Morris, S.M., Jr. Decreased arginine bioavailability and increased serum arginase activity in asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Lara, A.; Khatri, S.B.; Wang, Z.; Comhair, S.A.; Xu, W.; Dweik, R.A.; Bodine, M.; Levison, B.S.; Hammel, J.; Bleecker, E.; et al. Alterations of the arginine metabolome in asthma. Am. J. Respir. Crit. Care Med. 2008, 178, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Asher, M.I.; Keil, U.; Anderson, H.R.; Beasley, R.; Crane, J.; Martinez, F.; Mitchell, E.A.; Pearce, N.; Sibbald, B.; Stewart, A.W.; et al. International Study of Asthma and Allergies in Childhood (ISAAC): Rationale and methods. Eur. Respir. J. 1995, 8, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. 2020 GINA Main Report, Global Strategy for Asthma Management and Prevention. 2020. Available online: https://ginasthma.org/wp-content/uploads/2020/06/GINA-2020-report_20_06_04-1-wms.pdf (accessed on 3 January 2024).
- Reponen, T.; Vesper, S.; Levin, L.; Johansson, E.; Ryan, P.; Burkle, J.; Grinshpun, S.A.; Zheng, S.; Bernstein, D.I.; Lockey, J.; et al. High environmental relative moldiness index during infancy as a predictor of asthma at 7 years of age. Ann. Allergy Asthma Immunol. 2011, 107, 120–126. [Google Scholar] [CrossRef]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef]
- Beydon, N.; Davis, S.D.; Lombardi, E.; Allen, J.L.; Arets, H.G.; Aurora, P.; Bisgaard, H.; Davis, G.M.; Ducharme, F.M.; Eigen, H.; et al. An official American Thoracic Society/European Respiratory Society statement: Pulmonary function testing in preschool children. Am. J. Respir. Crit. Care Med. 2007, 175, 1304–1345. [Google Scholar] [CrossRef]
- Stocks, J.; Godfrey, S.; Beardsmore, C.; Bar-Yishay, E.; Castile, R. Plethysmographic measurements of lung volume and airway resistance. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/ American Thoracic Society. Eur. Respir. J. 2001, 17, 302–312. [Google Scholar] [CrossRef]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; Hankinson, J.L.; Irvin, C.G.; MacIntyre, N.R.; McKay, R.T.; Wanger, J.S.; Anderson, S.D.; et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am. J. Respir. Crit. Care Med. 2000, 161, 309–329. [Google Scholar] [CrossRef]
- Gomez, E.; Morris, C.R. Asthma management in sickle cell disease. Biomed. Res. Int. 2013, 2013, 604140. [Google Scholar] [CrossRef]
- Strunk, R.C.; Cohen, R.T.; Cooper, B.P.; Rodeghier, M.; Kirkham, F.J.; Warner, J.O.; Stocks, J.; Kirkby, J.; Roberts, I.; Rosen, C.L.; et al. Wheezing symptoms and parental asthma are associated with a physician diagnosis of asthma in children with sickle cell anemia. J. Pediatr. 2014, 164, 821–826.e1. [Google Scholar] [CrossRef]
- Boyd, J.H.; Macklin, E.A.; Strunk, R.C.; DeBaun, M.R. Asthma is associated with acute chest syndrome and pain in children with sickle cell anemia. Blood 2006, 108, 2923–2927. [Google Scholar] [CrossRef]
- Scott, J.A.; Grasemann, H. Arginine metabolism in asthma. Immunol. Allergy Clin. N. Am. 2014, 34, 767–775. [Google Scholar] [CrossRef]
- Benson, R.C.; Hardy, K.A.; Morris, C.R. Arginase and arginine dysregulation in asthma. J. Allergy 2011, 2011, 736319. [Google Scholar] [CrossRef]
- Scott, J.A.; North, M.L.; Rafii, M.; Huang, H.; Pencharz, P.; Subbarao, P.; Belik, J.; Grasemann, H. Asymmetric dimethylarginine is increased in asthma. Am. J. Respir. Crit. Care Med. 2011, 184, 779–785. [Google Scholar] [CrossRef]
- Cardounel, A.J.; Cui, H.; Samouilov, A.; Johnson, W.; Kearns, P.; Tsai, A.L.; Berka, V.; Zweier, J.L. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J. Biol. Chem. 2007, 282, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.H.; Comhair, S.A.; Zheng, S.; Dweik, R.A.; Eissa, N.T.; Thomassen, M.J.; Calhoun, W.; Erzurum, S.C. Molecular mechanisms of increased nitric oxide (NO) in asthma: Evidence for transcriptional and post-translational regulation of NO synthesis. J. Immunol. 2000, 164, 5970–5980. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.F.; Fang, K.; Malik, R.; Snyder, A.; Malhotra, N.; Platts-Mills, T.A.; Gaston, B. Endogenous airway acidification. Implications for asthma pathophysiology. Am. J. Respir. Crit. Care Med. 2000, 161, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Dweik, R.A.; Gelb, A.F.; Gibson, P.G.; George, S.C.; Grasemann, H.; Pavord, I.D.; Ratjen, F.; Silkoff, P.E.; Taylor, D.R.; et al. Exhaled nitric oxide in pulmonary diseases: A comprehensive review. Chest 2010, 138, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Strunk, R.C.; Szefler, S.J.; Phillips, B.R.; Zeiger, R.S.; Chinchilli, V.M.; Larsen, G.; Hodgdon, K.; Morgan, W.; Sorkness, C.A.; Lemanske, R.F., Jr. Relationship of exhaled nitric oxide to clinical and inflammatory markers of persistent asthma in children. J. Allergy Clin. Immunol. 2003, 112, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Saito, J.; Inoue, K.; Sugawara, A.; Yoshikawa, M.; Watanabe, K.; Ishida, T.; Ohtsuka, Y.; Munakata, M. Exhaled nitric oxide as a marker of airway inflammation for an epidemiologic study in schoolchildren. J. Allergy Clin. Immunol. 2004, 114, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Chaudry, R.A.; Rosenthal, M.; Bush, A.; Crowley, S. Reduced forced expiratory flow but not increased exhaled nitric oxide or airway responsiveness to methacholine characterises paediatric sickle cell airway disease. Thorax 2014, 69, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Lunt, A.; Ahmed, N.; Rafferty, G.F.; Dick, M.; Rees, D.; Height, S.; Thein, S.L.; Greenough, A. Airway and alveolar nitric oxide production, lung function, and pulmonary blood flow in sickle cell disease. Pediatr. Res. 2016, 79, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Koumbourlis, A.C.; Hurlet-Jensen, A.; Bye, M.R. Lung function in infants with sickle cell disease. Pediatr. Pulmonol. 1997, 24, 277–281. [Google Scholar] [CrossRef]
- Boyd, J.H.; DeBaun, M.R.; Morgan, W.J.; Mao, J.; Strunk, R.C. Lower airway obstruction is associated with increased morbidity in children with sickle cell disease. Pediatr. Pulmonol. 2009, 44, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Criée, C.P.; Sorichter, S.; Smith, H.J.; Kardos, P.; Merget, R.; Heise, D.; Berdel, D.; Köhler, D.; Magnussen, H.; Marek, W.; et al. Body plethysmography--its principles and clinical use. Respir. Med. 2011, 105, 959–971. [Google Scholar] [CrossRef]
- Mondal, P.; Yirinec, A.; Midya, V.; Sankoorikal, B.J.; Smink, G.; Khokhar, A.; Abu-Hasan, M.; Bascom, R. Diagnostic value of spirometry vs impulse oscillometry: A comparative study in children with sickle cell disease. Pediatr. Pulmonol. 2019, 54, 1422–1430. [Google Scholar] [CrossRef]
- Goldman, M.D.; Saadeh, C.; Ross, D. Clinical applications of forced oscillation to assess peripheral airway function. Respir. Physiol. Neurobiol. 2005, 148, 179–194. [Google Scholar] [CrossRef]
- Wedderburn, C.J.; Rees, D.; Height, S.; Dick, M.; Rafferty, G.F.; Lunt, A.; Greenough, A. Airways obstruction and pulmonary capillary blood volume in children with sickle cell disease. Pediatr. Pulmonol. 2014, 49, 716–722. [Google Scholar] [CrossRef] [PubMed]
- McDowell, K.M. Recent Diagnosis Techniques in Pediatric Asthma: Impulse Oscillometry in Preschool Asthma and Use of Exhaled Nitric Oxide. Immunol. Allergy Clin. N. Am. 2019, 39, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Zaidan, M.F.; Reddy, A.P.; Duarte, A. Impedance Oscillometry: Emerging Role in the Management of Chronic Respiratory Disease. Curr. Allergy Asthma Rep. 2018, 18, 3. [Google Scholar] [CrossRef] [PubMed]
Variable | SCD with Asthma (SCD-A) n = 24 | SCD without Asthma (SCD-NA) n = 28 | Healthy Controls n = 40 | p-Value |
---|---|---|---|---|
Age in years | 15.0 (12.0–17.0) | 15.0 (12.0–18.7) | 15.0 (11.0–20.2) | 0.937 |
Male sex n (%) | 15.0 (62.5) | 20.0 (71.4) | 21.0 (52.5) | 0.273 |
BMI (kg/m2) | 18.1 (17.3–21.9) | 18.1 (16.2–22.5) | 20.1 (17.5–23.4) | 0.344 |
Hb (g/dL) | 9.2 (8.1–9.9) a | 9.0 (8.2–10.2) b | 13.1 (12.5–14.1) | <0.001 |
Serum absolute eosinophil count (cells/mm3) | 187.5 (93.5–357.7) | 154.5 (95.5–349.7) | 134.5 (70.0–268.3) | 0.389 |
Serum total IgE (IU/mL) | 71.0 (28.0–130.0) | 54.5 (21.5–113.2) | 41.5 (22.0–70.0) | 0.262 |
FeNO (ppb) | ||||
<20 ppb n (%) | 18 (75.0) | 20 (71.4) | 37 (92.5) | 0.056 |
>35 ppb n (%) | 4 (23.5) a,c | 0 (0) | 0 (0) | 0.001 |
Subjects with atopy * n (%) | 2.0 (8.3) | 3.0 (10.7) | 5.0 (12.5) | 0.916 |
A family history of atopy/asthma n (%) | 6.0 (25.0) | 2.0 (7.1) | 2.0 (5.0) | 0.059 |
A history of ACS in the last year n (%) | 5.0 (20.8) | 7.0 (25.0) | - | 0.722 |
A history of painful crisis in the last year n (%) | 18.0 (75.0) | 19.0 (67.9) | - | 0.571 |
Current hydroxyurea use n (%) | 17.0 (70.8) | 21.0 (75.0) | - | 0.736 |
HbSS Genotype n (%) | 21.0 (87.5) | 21.0 (75.0) | - | 0.309 |
Variable | SCD with Asthma (SCD-A) n = 24 | SCD without Asthma (SCD-NA) n = 28 | Healthy Controls n = 40 | p-Value |
---|---|---|---|---|
Spirometry | ||||
FEV1% predicted | 94.2 ± 16.1 a | 102.1 ± 11.9 | 109.6 ± 15.3 | <0.001 |
∆ FEV1% | 5.7 (1.5–8.1) | 2.5 (0.5–4.3) | – | 0.021 |
FEV1/FVC | 85.4 ± 5.6 | 86.7 ± 4.0 | 87.7 ± 7.6 | 0.868 |
MMEF% predicted | 85.2 ± 21.2 a | 95.9 ± 16.5 | 103.0 ± 30.8 | 0.025 |
∆ MMEF% | 22.8 (10.6–32.2) | 7.8 (3.2–15.8) | – | <0.001 |
Impulse oscillometry | ||||
R5% predicted | 133.0 (108.3–160.6) a | 131.9 (111.6–154.6) b | 105.9 (89.6–132.9) | 0.001 |
∆R5% | −20.5 (−28.4–−14.5) | −10.3 (−18.1–−6.2) | – | 0.003 |
(R5-20/R5)% | 30.9 ± 16.8 a | 22.9 ± 13.9 | 20.4 ± 15.1 | 0.028 |
Plethysmography | ||||
TLC% predicted | 91.9 ± 16.8 a | 95.0 ± 12.8 | 103.0 ± 12.6 | 0.006 |
RV/TLC % | 91.4 (80.3–103.2) | 80.6 (66.9–91.5) | 90.6 (75.3–98.9) | 0.108 |
Bronchial provocation test | ||||
DRS methacholine | 1.7 (0.4–3.7) | 0.1 (−0.1–0.3) | – | <0.001 |
Variable | SCD with Asthma (SCD-A) n = 24 | SCD without Asthma (SCD-NA) n = 28 | Healthy Controls n = 40 | p-Value |
---|---|---|---|---|
Log arginine | 2.2 (1.4–2.9) a,b | 3.4 (1.9–3.5) | 3.0 (2.6–3.6) | 0.003 |
Log arginine/spermine | 2.2 (0.8–3.1) a,b | 3.5 (1.9–3.7) | 3.1 (2.6–3.8) | 0.005 |
Log arginine/ornitine + citrulline | 1.5 (1.0–2.1) a,b | 2.4 (1.8–2.5) | 2.4 (2.3–2.5) | <0.001 |
Log arginine/ADMA | 2.1 (1.4–2.6) a,b | 2.9 (1.8–3.1) | 3.1 (2.8–3.2) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozhan, A.K.; Arikoglu, T.; Er, M.; Unal, S.; Yıldırım, D.D.; Erkasar, F.; Balcı, Ş.; Tamer, L.; Kuyucu, S. Lower Arginine Bioavailability, Increased FeNO Levels, and Airway Resistance on Impulse Oscillometry Are Characteristics of Asthma in Children and Young Adults with Sickle Cell Disease. Medicina 2024, 60, 446. https://doi.org/10.3390/medicina60030446
Ozhan AK, Arikoglu T, Er M, Unal S, Yıldırım DD, Erkasar F, Balcı Ş, Tamer L, Kuyucu S. Lower Arginine Bioavailability, Increased FeNO Levels, and Airway Resistance on Impulse Oscillometry Are Characteristics of Asthma in Children and Young Adults with Sickle Cell Disease. Medicina. 2024; 60(3):446. https://doi.org/10.3390/medicina60030446
Chicago/Turabian StyleOzhan, Aylin Kont, Tugba Arikoglu, Melih Er, Selma Unal, Didem Derici Yıldırım, Funda Erkasar, Şenay Balcı, Lulufer Tamer, and Semanur Kuyucu. 2024. "Lower Arginine Bioavailability, Increased FeNO Levels, and Airway Resistance on Impulse Oscillometry Are Characteristics of Asthma in Children and Young Adults with Sickle Cell Disease" Medicina 60, no. 3: 446. https://doi.org/10.3390/medicina60030446
APA StyleOzhan, A. K., Arikoglu, T., Er, M., Unal, S., Yıldırım, D. D., Erkasar, F., Balcı, Ş., Tamer, L., & Kuyucu, S. (2024). Lower Arginine Bioavailability, Increased FeNO Levels, and Airway Resistance on Impulse Oscillometry Are Characteristics of Asthma in Children and Young Adults with Sickle Cell Disease. Medicina, 60(3), 446. https://doi.org/10.3390/medicina60030446