HLA-DR and HLA-DQ Polymorphism Correlation with Sexually Transmitted Infection Caused by Chlamydia trachomatis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Location
Informed Consent and Ethical Approval
2.2. Participants
2.3. Variables
2.3.1. DNA Extraction from Cervical/Urethral Swabs and Urine Sediment and Testing for C. trachomatis
2.3.2. DNA Extraction from Blood and HLA Typing
2.3.3. Statistical Analysis
3. Results
3.1. C. trachomatis and HLA-DR and -DQ Alleles
3.2. C. trachomatis and Genotypes
3.3. C. trachomatis and Haplotypes
4. Discussion
4.1. Study Strengths
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Health Sector Strategies on, Respectively, HIV, Viral Hepatitis and Sexually Transmitted Infections for the Period 2022–2030; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019, 97, 548–562P. [Google Scholar] [CrossRef]
- ECDC. Chlamydia Annual Epidemiological Report 2022. European Centre for Disease Prevention and Control. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/CHLAM_AER_2022_Report.pdf (accessed on 25 March 2024).
- Apanius, V.; Penn, D.; Slev, P.R.; Ruff, L.R.; Potts, W.K. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 1997, 17, 179–224. [Google Scholar] [CrossRef]
- McDermott, D.H.; Zimmerman, P.A.; Guignard, F.; Kleeberger, C.A.; Leitman, S.F.; Murphy, P.M. CCR5 promoter polymorphism and HIV-1 disease progression. Lancet 1998, 352, 866–870. [Google Scholar] [CrossRef]
- Kelley, J.; Trowsdale, J. Features of MHC and NK gene clusters. Transpl. Immunol. 2005, 14, 129–134. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Jamieson, S.E.; Burgner, D. HLA and infectious diseases. Clin. Microbiol. Rev. 2009, 22, 370–385. [Google Scholar] [CrossRef]
- Takashi, S.; Kazuyoshi, H.; Hidetoshi, I.; Jerzy, K. The HLA genomic loci map: Expression, interaction, diversity and disease. J. Hum. Genet. 2009, 54, 15–39. [Google Scholar]
- Madden, K.; Chabot-Richards, D. HLA testing in the molecular diagnostic laboratory. Virchows Archiv. 2019, 474, 139–147. [Google Scholar] [CrossRef]
- Grumet, F.C. HLA and disease associations. Transpl. Proc. 1977, 9, 1839–1844. [Google Scholar]
- Pintea-Trifu, M.L.; Bâlici, Ş.; Siserman, C.V.; Vică, M.L.; Matei, H.V. Chlamydia trachomatis and the HLA involvement in the development of infection and disease: A narrative review. Med. Pharm. Rep. 2023, 96, 335–345. [Google Scholar] [CrossRef]
- Gupta, K.; Wiener, H.W.; Tiwari, H.K.; Geisler, W.M. HLA-DQB1*06 and Select Neighboring HLA Variants Predict Chlamydia Reinfection Risk. Int. J. Mol. Sci. 2023, 24, 15803. [Google Scholar] [CrossRef]
- Geisler, W.M.; Tang, J.; Wang, C.; Wilson, C.M.; Kaslow, R.A. Epidemiological and genetic correlates of incident Chlamydia trachomatis infection in North American adolescents. J. Infect. Dis. 2004, 190, 1723–1729. [Google Scholar] [CrossRef]
- Conway, D.J.; Holland, M.J.; Campbell, A.E.; Bailey, R.L.; Krausa, P.; Peeling, R.W.; Whittle, H.C.; Mabey, D.C. HLA class I and II polymorphisms and trachomatous scarring in a Chlamydia trachomatis-endemic population. J. Infect. Dis. 1996, 174, 643–646. [Google Scholar] [CrossRef]
- Kimani, J.; Maclean, I.W.; Bwayo, J.J.; MacDonald, K.; Oyugi, J.; Maitha, G.M.; Peeling, R.W.; Cheang, M.; Nagelkerke, N.J.D.; Plummer, F.A.; et al. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J. Infect. Dis. 1996, 173, 1437–1444. [Google Scholar] [CrossRef]
- Wang, C.; Tang, J.; Geisler, W.M.; Crowley-Nowick, P.A.; Wilson, C.M.; Kaslow, R.A. Human leukocyte antigen and cytokine gene variants as predictors of recurrent Chlamydia trachomatis infection in high-risk adolescents. J. Infect. Dis. 2005, 191, 1084–1092. [Google Scholar] [CrossRef]
- Abbas, M.; Bobo, L.D.; Hsieh, Y.H.; Berka, N.; Dunston, G.; Bonney, G.E.; Apprey, V.; Quinn, T.C.; West, S.K. Human leukocyte antigen (HLA)-B, DRB1, and DQB1 allotypes associated with disease and protection of trachoma endemic villagers. Investig. Opthalmol. Vis. Sci. 2009, 50, 1734–1738. [Google Scholar] [CrossRef]
- Pedraza, L.; Camargo, M.; Moreno-Pérez, D.A.; Sánchez, R.; Del Río-Ospina, L.; Báez-Murcia, I.M.; Patarroyo, M.E. Identifying HLA DRB1-DQB1 alleles associated with Chlamydia trachomatis infection and in silico prediction of potentially-related peptides. Sci. Rep. 2021, 11, 12837. [Google Scholar] [CrossRef]
- Cohen, C.R.; Gichui, J.; Rukaria, R.; Sinei, S.S.; Gaur, L.K.; Brunham, R.C. Immunogenetic correlates for Chlamydia trachomatis- associated tubal infertility. Obstet. Gynecol. 2003, 101, 438–444. [Google Scholar]
- Ness, R.B.; Brunham, R.C.; Shen, C.; Bass, D.C. PID Evaluation Clinical Health (PEACH) Study Investigators. Associations among human leukocyte antigen (HLA) class II DQ variants, bacterial sexually transmitted diseases, endometritis, and fertility among women with clinical pelvic inflammatory disease. Sex Transm. Dis. 2004, 31, 301–304. [Google Scholar] [CrossRef]
- Cohen, C.R.; Sinei, S.S.; Bukusi, E.A.; Bwayo, J.J.; Holmes, K.K.; Brunha, R.C. Human leukocyte antigen class II DQ alleles associated with Chlamydia trachomatis tubal infertility. Obstet. Gynecol. 2000, 95, 72–77. [Google Scholar]
- Lichtenwalner, A.B.; Patton, D.L.; Cosgrove Sweeney, Y.T.; Gaur, L.K.; Stamm, W.E. Evidence of genetic susceptibility to Chlamydia trachomatis-induced pelvic inflammatory disease in the pig-tailed macaque. Infect. Immun. 1997, 65, 2250–2253. [Google Scholar] [CrossRef]
- Rollini, P.; Mach, B.; Gorski, J. Linkage Map of Three HLA-DR Beta-Chain Genes: Evidence for a Recent Duplication Event. Proc. Natl. Acad. Sci. USA. 1985, 82, 7197–7201. [Google Scholar] [CrossRef]
- Tsamadou, C.; Engelhardt, D.; Platzbecker, U.; Sala, E.; Valerius, T.; Wagner-Drouet, E.; Wulf, G.; Kröger, N.; Murawski, N.; Einsele, H.; et al. HLA-DRB3/4/5 Matching Improves Outcome of Unrelated Hematopoietic Stem Cell Transplantation. Front. Immunol. 2021, 12, 771449. [Google Scholar] [CrossRef]
- Mack, S.J.; Cano, P.; Hollenbach, J.A.; He, J.; Hurley, C.K.; Middleton, D.; Moraes, M.E.; Pereira, S.E.; Kempenich, J.H.; Reed, E.F.; et al. Common and Well-Documented HLA Alleles: 2012 Update to the CWD Catalogue. Tissue Antigens 2013, 81, 194–203. [Google Scholar] [CrossRef]
- Sutton, V.R.; Kienzle, B.K.; Knowles, R.W. An Altered Splice Site is Found in the DRB4 Gene That is Not Expressed in HLA-DR7,Dw11 Individuals. Immunogenetics 1989, 29, 317–322. [Google Scholar] [CrossRef]
- Giannitti, C.; Morozzi, G.; D’Alfonso, S.; Bellisai, F.; Galeazzi, M. Associazione tra genotipo virale, HLA e manifestazioni extra-epatiche dell’epatite C [Viral genotype and HLA class II alleles influence on extra-hepatic manifestations of chronic HCV infection]. Reumatismo 2008, 60, 192–198. [Google Scholar]
- Mărculeț, I.; Mărculeț, C. Geodemographic remarks on the reformed cult in Transylvania, 1930–2002. Rev. Rom. Geogr. Polit. 2010, 12. Available online: http://rrgp.uoradea.ro/art/2010-2/13_RRGP-205-Marculet.pdf (accessed on 25 March 2024).
- HLA-FluoGene®–The Fluorescence PCR. Available online: https://www.inno-train.de/en/products/hla-typing/hla-real-time-pcr/ (accessed on 24 March 2024).
- Schaid, D.J.; Rowland, C.M.; Tines, D.E.; Jacobson, R.M.; Poland, G.A. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 2002, 70, 425–434. [Google Scholar] [CrossRef]
- Sinnwell, J.P.; Schaid, D.J. Haplo.stats: Statistical Analysis of Haplotypes with Traits and Covariates when Linkage Phase Is Ambiguous, v1.6.0. (Version 1.9.3) 20 January 2023. Available online: https://cran.r-project.org/web/packages/haplo.stats/index.html (accessed on 27 March 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Somani, J.; Bhullar, V.B.; Workowski, K.A.; Farshy, C.E.; Black, C.M. Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J. Infect. Dis. 2000, 181, 1421–1427. [Google Scholar] [CrossRef]
- Elwell, C.; Mirrashidi, K.; Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 2016, 14, 385. [Google Scholar] [CrossRef]
- Shiragannavar, S.; Madagi, S.; Hosakeri, J.; Barot, V. In silico vaccine design against Chlamydia trachomatis infection. Netw Model. Anal Health Inform. Bioinform. 2020, 9, 39. [Google Scholar]
- Rangarajan, S.; He, Y.; Chen, Y.; Kerzic, M.C.; Ma, B.; Gowthaman, R.; Pierce, B.G.; Nussinov, R.; Mariuzza, R.A.; Orban, J. Peptide–MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC-and CD3-binding sites. J. Biol. Chem. 2018, 293, 15991–16005. [Google Scholar] [CrossRef]
- Murthy, A.K.; Cong, Y.; Murphey, C.; Guentzel, M.N.; Forsthuber, T.G.; Zhong, G.; Arulanandam, B.P. Chlamydial protease-like activity factor induces protective immunity against genital chlamydial infection in transgenic mice that express the human HLA- DR4 allele. Infect Immun. 2006, 74, 6722–6729. [Google Scholar] [CrossRef]
Temperature °С | Time | Cycle Repeats | |
---|---|---|---|
Hold | 95 | 15 min | 1 |
Cycling | 95 | 5 s | 5 |
60 | 20 s | ||
72 | 15 s | ||
Cycling 2 | 95 | 5 s | 40 |
60 | 30 s (fluorescence detection) | ||
72 | 15 s |
Group | C. trachomatis (n = 38) | Control (n = 467) | p |
---|---|---|---|
Age (year), median (IQR) | 27 (21–37) | 34 (28–40) | 0.002 |
Sex (f), n (%) | 32 (82.05) | 231 (49.46) | <0.001 |
Allele, n (%) | C. trachomatis (n = 38) | Control (n = 467) | OR (95% CI), p-Value |
---|---|---|---|
DRB1*01 | 8 (10.53) | 88 (9.42) | 1.13 (95% CI 0.53–2.43), 0.752 |
DRB1*03 | 4 (5.26) | 115 (12.31) | 0.4 (95% CI 0.14–1.1), 0.067 |
DRB1*04 | 5 (6.58) | 90 (9.64) | 0.66 (95% CI 0.26–1.68), 0.38 |
DRB1*07 | 12 (15.79) | 92 (9.85) | 1.72 (95% CI 0.89–3.3), 0.101 |
DRB1*08 | 1 (1.32) | 12 (1.28) | 1.02 (95% CI 0.13–7.99), 1 |
DRB1*09 | 0 (0) | 4 (0.43) | 0 (95% CI 0–NaN), 1 |
DRB1*10 | 0 (0) | 17 (1.82) | 0 (95% CI 0–NaN), 0.632 |
DRB1*11 | 15 (19.74) | 176 (18.84) | 1.06 (95% CI 0.59–1.91), 0.848 |
DRB1*12 | 1 (1.32) | 11 (1.18) | 1.12 (95% CI 0.14–8.78), 0.611 |
DRB1*13 | 14 (18.42) | 91 (9.74) | 2.09 (95% CI 1.13–3.88), 0.017 |
DRB1*14 | 3 (3.95) | 53 (5.67) | 0.68 (95% CI 0.21–2.24), 0.793 |
DRB1*15 | 7 (9.21) | 107 (11.46) | 0.78 (95% CI 0.35–1.75), 0.552 |
DRB1*16 | 2 (2.63) | 78 (8.35) | 0.3 (95% CI 0.07–1.23), 0.076 |
DQB1*02 | 9 (11.84) | 185 (19.81) | 0.54 (95% CI 0.27–1.11), 0.09 |
DQB1*03 | 24 (31.58) | 319 (34.15) | 0.89 (95% CI 0.54–1.47), 0.648 |
DQB1*04 | 2 (2.63) | 12 (1.28) | 2.08 (95% CI 0.46–9.45), 0.284 |
DQB1*05 | 15 (19.74) | 259 (27.73) | 0.64 (95% CI 0.36–1.15), 0.132 |
DQB1*06 | 16 (21.05) | 159 (17.02) | 1.3 (95% CI 0.73–2.32), 0.372 |
Genotype, n (%) | C. trachomatis (n = 38) | Control (n = 467) | p-Value | Genotype, n (%) | C. trachomatis (n = 38) | Control (n = 467) | p-Value |
---|---|---|---|---|---|---|---|
DQB1 02/02 | 1 (2.63) | 19 (4.07) | 1 | DRB1 04/14 | 0 (0) | 3 (0.64) | 1 |
DQB1 02/03 | 3 (7.89) | 65 (13.92) | 0.296 | DRB1 04/15 | 0 (0) | 4 (0.86) | 1 |
DQB1 02/04 | 1 (2.63) | 1 (0.21) | 0.145 | DRB1 04/16 | 0 (0) | 5 (1.07) | 1 |
DQB1 02/05 | 2 (5.26) | 55 (11.78) | 0.293 | DRB1 07/07 | 1 (2.63) | 5 (1.07) | 0.376 |
DQB1 02/06 | 0 (0) | 26 (5.57) | 0.246 | DRB1 07/10 | 0 (0) | 4 (0.86) | 1 |
DQB1 03/03 | 1 (2.63) | 62 (13.28) | 0.07 | DRB1 07/11 | 2 (5.26) | 22 (4.71) | 0.7 |
DQB1 03/04 | 0 (0) | 3 (0.64) | 1 | DRB1 07/12 | 1 (2.63) | 1 (0.21) | 0.145 |
DQB1 03/05 | 5 (13.16) | 81 (17.34) | 0.509 | DRB1 07/13 | 2 (5.26) | 5 (1.07) | 0.091 |
DQB1 03/06 | 8 (21.05) | 46 (9.85) | 0.05 | DRB1 07/14 | 0 (0) | 5 (1.07) | 1 |
DQB1 04/05 | 0 (0) | 5 (1.07) | 1 | DRB1 07/15 | 2 (5.26) | 11 (2.36) | 0.255 |
DQB1 04/06 | 1 (2.63) | 3 (0.64) | 0.269 | DRB1 07/16 | 0 (0) | 7 (1.5) | 1 |
DQB1 05/05 | 0 (0) | 34 (7.28) | 0.097 | DRB1 08/11 | 0 (0) | 2 (0.43) | 1 |
DQB1 05/06 | 6 (15.79) | 50 (10.71) | 0.416 | DRB1 08/13 | 1 (2.63) | 3 (0.64) | 0.269 |
DQB1 06/06 | 0 (0) | 17 (3.64) | 0.63 | DRB1 08/15 | 0 (0) | 2 (0.43) | 1 |
DRB1 01/01 | 0 (0) | 5 (1.07) | 1 | DRB1 08/16 | 0 (0) | 2 (0.43) | 1 |
DRB1 01/03 | 1 (2.63) | 14 (3) | 1 | DRB1 09/11 | 0 (0) | 1 (0.21) | 1 |
DRB1 01/04 | 0 (0) | 14 (3) | 0.614 | DRB1 09/16 | 0 (0) | 2 (0.43) | 1 |
DRB1 01/07 | 1 (2.63) | 6 (1.28) | 0.424 | DRB1 10/11 | 0 (0) | 3 (0.64) | 1 |
DRB1 01/08 | 0 (0) | 1 (0.21) | 1 | DRB1 10/13 | 0 (0) | 2 (0.43) | 1 |
DRB1 01/10 | 0 (0) | 3 (0.64) | 1 | DRB1 10/14 | 0 (0) | 1 (0.21) | 1 |
DRB1 01/11 | 2 (5.26) | 16 (3.43) | 0.637 | DRB1 10/15 | 0 (0) | 1 (0.21) | 1 |
DRB1 01/13 | 4 (10.53) | 7 (1.5) | 0.006 | DRB1 10/16 | 0 (0) | 2 (0.43) | 1 |
DRB1 01/14 | 0 (0) | 4 (0.86) | 1 | DRB1 11/11 | 0 (0) | 15 (3.21) | 0.617 |
DRB1 01/15 | 0 (0) | 10 (2.14) | 1 | DRB1 11/12 | 0 (0) | 1 (0.21) | 1 |
DRB1 01/16 | 0 (0) | 3 (0.64) | 1 | DRB1 11/13 | 2 (5.26) | 18 (3.85) | 0.656 |
DRB1 03/03 | 0 (0) | 6 (1.28) | 1 | DRB1 11/14 | 3 (7.89) | 10 (2.14) | 0.066 |
DRB1 03/04 | 1 (2.63) | 12 (2.57) | 1 | DRB1 11/15 | 2 (5.26) | 17 (3.64) | 0.646 |
DRB1 03/07 | 1 (2.63) | 12 (2.57) | 1 | DRB1 11/16 | 0 (0) | 10 (2.14) | 1 |
DRB1 03/08 | 0 (0) | 1 (0.21) | 1 | DRB1 12/13 | 0 (0) | 1 (0.21) | 1 |
DRB1 03/10 | 0 (0) | 1 (0.21) | 1 | DRB1 12/14 | 0 (0) | 1 (0.21) | 1 |
DRB1 03/11 | 0 (0) | 23 (4.93) | 0.244 | DRB1 12/15 | 0 (0) | 1 (0.21) | 1 |
DRB1 03/12 | 0 (0) | 2 (0.43) | 1 | DRB1 12/16 | 0 (0) | 2 (0.43) | 1 |
DRB1 03/13 | 1 (2.63) | 8 (1.71) | 0.508 | DRB1 13/13 | 0 (0) | 8 (1.71) | 1 |
DRB1 03/14 | 0 (0) | 9 (1.93) | 1 | DRB1 13/14 | 0 (0) | 2 (0.43) | 1 |
DRB1 03/15 | 0 (0) | 11 (2.36) | 1 | DRB1 13/15 | 1 (2.63) | 8 (1.71) | 0.508 |
DRB1 03/16 | 0 (0) | 10 (2.14) | 1 | DRB1 13/16 | 2 (5.26) | 13 (2.78) | 0.313 |
DRB1 04/04 | 0 (0) | 4 (0.86) | 1 | DRB1 14/14 | 0 (0) | 2 (0.43) | 1 |
DRB1 04/07 | 1 (2.63) | 9 (1.93) | 0.546 | DRB1 14/15 | 0 (0) | 10 (2.14) | 1 |
DRB1 04/08 | 0 (0) | 1 (0.21) | 1 | DRB1 14/16 | 0 (0) | 4 (0.86) | 1 |
DRB1 04/09 | 0 (0) | 1 (0.21) | 1 | DRB1 15/15 | 0 (0) | 10 (2.14) | 1 |
DRB1 04/11 | 2 (5.26) | 23 (4.93) | 1 | DRB1 15/16 | 0 (0) | 12 (2.57) | 1 |
DRB1 04/12 | 0 (0) | 2 (0.43) | 1 | DRB1 16/16 | 0 (0) | 3 (0.64) | 1 |
DRB1 04/13 | 1 (2.63) | 8 (1.71) | 0.508 |
Variables | OR Adjusted | (95% CI) | p |
---|---|---|---|
Model 1 | |||
DRB1 01/13 | 14.28 | (1.88–296.03) | 0.023 |
Age >= 34 years | 0.33 | (0.14–0.7) | 0.005 |
Sex (m vs. f) | 0.21 | (0.08–0.51) | 0.001 |
Model 2 | |||
DQB1 03/06 | 2.13 | (0.78–5.51) | 0.127 |
Age >= 34 years | 0.34 | (0.15–0.71) | 0.005 |
Sex (m vs. f) | 0.19 | (0.07–0.44) | <0.001 |
C. trachomatis | Control | ||||
---|---|---|---|---|---|
DRB1 | DQB1 | Probability | DRB1 | DQB1 | Probability |
11 | 3 | 0.20044931 | 11 | 3 | 0.18189007 |
13 | 6 | 0.17280171 | 3 | 2 | 0.12312634 |
1 | 5 | 0.12460800 | 1 | 5 | 0.09421840 |
7 | 2 | 0.09766620 | 4 | 3 | 0.08973657 |
15 | 6 | 0.09389683 | 15 | 6 | 0.08454623 |
4 | 3 | 0.06782375 | 13 | 6 | 0.08024561 |
7 | 3 | 0.06511080 | 16 | 5 | 0.07815326 |
14 | 5 | 0.04672800 | 7 | 2 | 0.06506893 |
3 | 2 | 0.04069425 | 14 | 5 | 0.05563832 |
16 | 5 | 0.03115200 | 7 | 3 | 0.03343214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintea-Trifu, M.-L.; Vică, M.L.; Bâlici, S.-Ș.; Leucuța, D.-C.; Coman, H.G.; Nemeș, B.; Trifu, D.-M.; Siserman, C.-V.; Matei, H.-V. HLA-DR and HLA-DQ Polymorphism Correlation with Sexually Transmitted Infection Caused by Chlamydia trachomatis. Medicina 2024, 60, 808. https://doi.org/10.3390/medicina60050808
Pintea-Trifu M-L, Vică ML, Bâlici S-Ș, Leucuța D-C, Coman HG, Nemeș B, Trifu D-M, Siserman C-V, Matei H-V. HLA-DR and HLA-DQ Polymorphism Correlation with Sexually Transmitted Infection Caused by Chlamydia trachomatis. Medicina. 2024; 60(5):808. https://doi.org/10.3390/medicina60050808
Chicago/Turabian StylePintea-Trifu, Martina-Luciana, Mihaela Laura Vică, Silvia-Ștefana Bâlici, Daniel-Corneliu Leucuța, Horia George Coman, Bogdan Nemeș, Dragoș-Mihail Trifu, Costel-Vasile Siserman, and Horea-Vladi Matei. 2024. "HLA-DR and HLA-DQ Polymorphism Correlation with Sexually Transmitted Infection Caused by Chlamydia trachomatis" Medicina 60, no. 5: 808. https://doi.org/10.3390/medicina60050808