The Relationship between Job Strain and Ischemic Heart Disease Mediated by Endothelial Dysfunction Markers and Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Research Samples
2.3. Methods
- A complete clinical examination;
- An ECG, conducted using Heart Screen 80 G (Innomed Medical, Budapest, Hungary);
- A transthoracic echocardiogram, conducted using a Fukuda Denshi 850 XTD (Fukuda Denshi in Tokyo, Japan);
- An ECCT, only for CCS patients. The Agatston ECCT score describes the severity of coronary artery calcification, as detailed in Table 4;
- 5.
- Lipid profile, glycemia, hs-CRP, and AUER, determined by chemistry laboratories;
- 6.
- PHQ-9 questionnaire [17,18]. The PHQ-9 is a psychological tool for depression assessment. The test has nine specific questions. The level of depression is considered mild if the PHQ-9 score is 5–9. These patients should repeat the test after 1 month. The same PHQ-9 score, after 6 months, requires counseling. Moderate (PHQ-9 score = 10–14) and moderately severe (PHQ-9 score = 15–19) depression require counseling and medication. Severe depression (PHQ-9 score) requires immediate and active psychiatric intervention;
- 7.
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Groups (CCS and No-CCS)
3.2. Secondary-Level Testing Results: EKG, Echocardiography, and ECCT
3.3. Questionnaire Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pepine, C.J. ANOCA/INOCA/MINOCA: Open artery ischemia. Am. Heart J. Plus Cardiol. Res. Pract. 2023, 26, 100260. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, W.; Li, Y.; Ang, Y.; Jing, P.; Zhang, B.; Cao, X.; Loerbroks, A.; Zhang, M. Longitudinal associations of work stress with changes in quality of life among patients after acute coronary syndromes—A hospital based study. J. Environ. Res. Public Health 2022, 19, 17018. [Google Scholar] [CrossRef] [PubMed]
- Jaskanval, D.S.; Prasad, M.; Mackram, F.E.; Zhang, M.; Widmer, R.J. Association between work related stress and coronary heart disease: A review of prospective studies through the job strain, effort-reward balance and organizational justice models. J. Am. Heart Assoc. 2018, 7, e0008073. [Google Scholar]
- Tsai, S.S.; Lai, C.H.; Shih, T.S.; Lin, M.H. High job strain is associated with inflammatory markers of disease in young long-haul bus drivers. J. Occup. Health Psychol. 2014, 19, 336. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.B.; Schytz, H.W.; Peres, M.F.; Peres Mercante, J.; Brunoni, A.R.; Wang, Y.P.; Molina, M.; Uchiyama, L.K.; Lotufo, P.A.; Jensen, R.H.; et al. Does physical activity and inflammation mediate the job-stress headache relationship? A sequential mediation analysis in the ELSA-Brasil study. Brain Behav. Immun. 2024, 120, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, V.; Todaro, F.; Cataldi, M.; Tuttolomondo, A. Atherosclerosis and Its Related Laboratory Biomarkers. Int. J. Mol. Sci. 2023, 24, 15546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Speiser, J.L.; Ye, F.; Tsai, M.Y.; Cainzos-Achirica, M.; Nasir, K.; Herrington, D.M.; Shapiro, M.D. High-sensitivity C-Reactive Protein modifies the cardiovascular risk of lipoprotein(a): Multi-ethnic Ssudy of atherosclerosis. J. Am. Coll. Cardiol. 2021, 78, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Denegri, A.; Boriani, G. High sensitivity C reactive protein (hsCRP)and its implications in cardiovascular outcomes. Curr. Farm. Des. 2021, 27, 263–275. [Google Scholar] [CrossRef]
- Naidoo, D.P. The link between microalbuminuria, endothelial dysfunction and cardiovascular disease in diabetes. Cardiovasc. J S. Afr. 2002, 13, 194–199. [Google Scholar] [PubMed]
- Liu, S.; Niu, J.; Wu, S. Urinary albumin-to-creatinine ratio levels are associated with subclinical atherosclerosis and predict CVD events and all-cause deaths: A prospective analysis. BMJ Open 2021, 11, e040890. [Google Scholar] [CrossRef]
- Kang, E.K.; Kang, G.H.; Uhm, J.Y.; Choi, Y.G.; Kim, S.Y.; Chang, S.S.; Kim, H.R. Association between shift work and microalbuminuria: Data from KNHANES (2012–2014). Ann. Occup. Environ. Med. 2017, 21, 29–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fauvel, J.P.; Quelin, P.; Duchar, M.; Rakotomalala, H.; Laville, M. Perceived job stress but not individual cardiovascular reactivity to stress is related to higher blood pressure at work. AHA J. Hypertens. 2001, 38, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Kivimaki, K.; Nyberg, S.T.; Fransson, I.; Heikkila, K.; Alfredsson, L.; Sasini, A.; Clays, E.; De Bquer, D.; Dragano, N.; Ferrie, J.E.; et al. Associations of job strain and lifestyle risk factors with risk of coronary artery disease: A meta-analysis of individual participant data. CMAJ 2013, 185, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Emeny, R.T.; Zierer, A.; Lacruz, M.E.; Baumert, J.; Herder, C.; Gornitzka, G.; Koenig, W.; Thorand, B.; Ladwig, K.H.; KORA Investigators. Job strain-associated inflammatory burden and long-term risk of coronary events: Findings from the MONICA/KORA Augsburg case-cohort study. Psychosom. Med. 2013, 75, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Lavigne-Robichaud, M.; Trudel, X.; Talbot, D.; Milot, A.; Gilbert-Ouimet, M.; Vézina, M.; Laurin, D.; Dionne, C.E.; Pearce, N.; Dagenais, G.R.; et al. Psychosocial Stressors at Work and Coronary Heart Disease Risk in Men and Women: 18-Year Prospective Cohort Study of Combined Exposures. Circ. Cardiovasc. Qual. Outcomes 2023, 16, e009700. [Google Scholar] [CrossRef] [PubMed]
- Rumberger, J.A. Using noncontrast cardiac CT and coronary artery calcification measurements for cardiovascular risk assessment and management in asymptomatic adults. Vasc. Health Risk Manag. 2010, 9, 579–591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The Patient Health Questionnaire-2: Validity of a Two-Item Depression Screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef]
- Blais, M.R.; Vallerand, R.J.; Pelletier, L.G.; Brière, N. The satisfaction scale: Canadian-French validation of the Satisfaction with Life Scale. Can. J. Behav. Sci. 1989, 21, 210–223. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fadah, K.; Hechanova, A.; Mukherjee, D. Epidemiology, Pathophysiology, and Management of Coronary Artery Disease in the Elderly. Int. J. Angiol. 2022, 31, 244–250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madhavan, M.V.; Gersh, B.J.; Alexander, K.P.; Granger, C.B.; Stone, G.W. Coronary Artery Disease in Patients ≥80 Years of Age. J. Am. Coll. Cardiol. 2018, 71, 2015–2040. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, e13–e115, Erratum in Hypertension 2018, 71, e140–e144. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Le-Scherban, F.; Taylor, J.; Blotcher, E.; Allison, M.; Michael, Y.L. Associations of job strain, stresfull life events and social strain with coronary heart disease in the Women’s health initiative observational study. J. Am. Heart Assoc. 2021, 10, e017780. [Google Scholar] [CrossRef]
- Vogel, B.; Acevedo, M.; Appelman, Y.; Bairey Merz, C.N.; Chieffo, A.; Figtree, G.A.; Guerrero, M.; Kunadian, V.; Lam, C.S.P.; Maas, A.H.E.M.; et al. The Lancet women and cardiovascular disease Commission: Reducing the global burden by 2030. Lancet 2021, 397, 2385–2438. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, N.; Kaier, T. Gender Disparity in Cardiovascular Disease in the Era of Precision Medicine. JACC Case Rep. 2023, 23, 101985. [Google Scholar] [CrossRef]
- Bossard, M.; Latifi, Y.; Fabbri, M.; Kurman, R.; Brinkert, M.; Wolfrum, M.; Berte, B.; Cuculi, F.; Toggweiler, F.; Kobza, R.; et al. Increasing mortality from premature coronary artery disease in women in the rural United States. J. Am. Heart Assoc. 2020, 9, e015334. [Google Scholar] [CrossRef] [PubMed]
- Martinho, M.; Martinho, M. Women more likely to die after heart attack than men. In Proceedings of the Heart Failure, Congress of European Society of Cardiology, Topics Heart Failure, Prague, Czech Republic, 22 May 2023. [Google Scholar]
- Cenko, E.; Manfrini, O.; Fabin, N.; Dorobantu, M.; Milicic, D. Clinical determinants of ischemic heart disease in Eastern Europe. Lancet 2023, 33, 100698. [Google Scholar] [CrossRef]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk factors for coronary artery disease. In StatPearls; Stat Pearls Publishing: Treasure Island, Finland, 2024. [Google Scholar]
- Fahed, A.C.; Wang, M.; Patel, A.P.; Ajufo, E.; Maamari, D.J.; Aragam, K.G.; Brockman, D.G.; Vosburg, T.; Ellinor, P.T.; Ng, K.; et al. Association of the Interaction Between Familial Hypercholesterolemia Variants and Adherence to a Healthy Lifestyle with Risk of Coronary Artery Disease. JAMA Netw. Open 2022, 5, e222687. [Google Scholar] [CrossRef]
- Rana, J.S.; Virani, S.S.; Moffet, H.H.; Liu, J.Y.; Coghlan, L.A.; Vasadia, J.; Ballantyne, C.M.; Karter, A.J. Association of Low-Density Lipoprotein Testing After an Atherosclerotic Cardiovascular Event with Subsequent Statin Adherence and Intensification. Am. J. Med. 2022, 135, 603–606. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Poli, A.; Catapano, A.L.; Corsini, A.; Manzato, E.; Wrerba, J.P. LDL-cholesterol control in the primary prevention of cardiovascular diseases: An expert opinion for clinicians and health professionals. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Bienstock, S.; Lee, S.E.; Blankstein, R.; Leipsic, J.; Patel, K.; Narula, J.; Chandrashekhar, Y.S.; Fuster, V.; Shaw, L.J. Systemic inflammation and high sensitivity C reactive protein and atherosclerotic plaque progression. Cardiovasc. Imaging 2024, 17, 212–213. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Suresh, M.V.; Voleti, B.; Agrawal, A. The connection between C-reactive protein and atherosclerosis. Ann. Med. 2008, 40, 110–120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banait, T.; Wanjari, A.; Danade, V.; Banait, S.; Jain, J. Role of High-Sensitivity C-reactive Protein (Hs-CRP) in Non-communicable Diseases: A Review. Cureus 2022, 14, e30225. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Feldt-Rasmussen, B. Microalbuminuria, endothelial dysfunction and cardiovascular risk. Diabetes Metab. 2000, 26, 64–66. [Google Scholar] [PubMed]
- Barzilay, J.I.; Farag, Y.M.K.; Durthaler, J. Albuminuria-an underappreciated risk factor for cardiovascular disease. J. Am. Heart Assoc. 2024, 13, e030131. [Google Scholar] [CrossRef] [PubMed]
- Ärnlöv, J.; Nowak, C. Association between albuminuria, incident cardiovascular events, and mortality in persons without hypertension, diabetes, and cardiovascular disease. Eur. J. Prev. Cardiol. 2022, 29, e4–e6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Virzi, N.E.; Krantz, D.S.; Bittner, V.A.; Merz, C.N.B.; Reis, S.E.; Handberg, E.M.; Pepine, C.J.; Vaccarino, V.; Rutledge, T. Depression Symptom Patterns as Predictors of Metabolic Syndrome and Cardiac Events in Symptomatic Women with Suspected Myocardial Ischemia: The Women’s Ischemia Syndrome Evaluation (WISE and WISE-CVD) Projects. Heart Mind 2022, 6, 254–261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shreya, D.; Zamora, D.I.; Patel, G.S.; Grossmann, I.; Rodriguez, K.; Soni, M.; Joshi, P.K.; Patel, S.C.; Sange, I. Coronary Artery Calcium Score—A Reliable Indicator of Coronary Artery Disease? Cureus 2021, 3, e20149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pizzi, C.; Santarella, L.; Costa, M.G.; Manfrini, O.; Flacco, M.E.; Capasso, L.; Chiarini, S.; Di Baldassarre, A.; Manzoli, L. Pathophysiological mechanisms linking depression and atherosclerosis: An overview. J. Biol. Regul. Homeost. Agents 2012, 26, 775–782. [Google Scholar] [PubMed]
- Shimbo, D.; Cohen, M.T.; McGoldrick, M.; Ensari, I.; Diaz, K.M.; Fu, J.; Duran, A.T.; Zhao, S.; Suls, J.M.; Burg, M.M.; et al. Translational Research of the Acute Effects of Negative Emotions on Vascular Endothelial Health: Findings From a Randomized Controlled Study. J. Am. Heart Assoc. 2024, 13, e032698. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Denollet, J. Type D personality, cardiac events and impaired quality of life: A review. Eur. J. Prev. Cardiol. 2003, 10, 241–248. [Google Scholar] [CrossRef] [PubMed]
Objective | Description |
---|---|
1 | Establish the prevalence of job distress in CCS patients compared with no-CCS patients. |
2 | Discover the role of hs-CRP and AUER as possible mediators in this relationship. |
3 | Determine the association between secondary-level testing and job strain. |
Inclusion Criteria | |
---|---|
1 | Age ≥ 18 years |
2 | Informed consent and consent for publication |
3 | CCS diagnosis/no-CCS diagnosis with cardiovascular risk factors: smoking/obesity/hypercholesterolemia/arterial hypertension/diabetes mellitus. |
Exclusion Criteria | |
---|---|
1 | Progressive cancer |
2 | Autoimmune disorder |
3 | Pregnancy |
4 | Difficult transportation to cardiology center |
5 | Acute myocardial infarction |
6 | Unstable angina pectoris (de novo/worsened) |
Scoring | Interpretation |
---|---|
0 | No measurable calcified plaque |
1–10 | Minimal |
11–100 | Mild |
100–400 | Moderate |
>400 | Extensive |
Affirmation |
---|
a. “Generally speaking, my work corresponds with what I want in my life” |
b. “My working conditions are excellent” |
c. “I am satisfied with my work” |
d. “I have achieved things important to me at work, until now” |
e. “If I could change something at my workplace, I wouldn’t change anything” |
Likert Score | Patient’s Answer |
---|---|
1 | “totally disagree” |
2 | “partially disagree” |
3 | “almost agree” |
4 | “agree” |
5 | “totally agree” |
Characteristics | Total (210) | CCS (105) | No-CCS (105) | p Value |
---|---|---|---|---|
Age, years, median (IQR) | 60 (22) | 69 (16) | 52 (18) | 0.01 |
Sex, female, n (%) | 130 (61.9) | 58 (55.2) | 74 (70.5) | 0.03 |
Education n (%) | 1. Elementary school 42 (20) 2. High school 128 (61) 3. Higher education 40 (19) | 1. Elementary school 28 (26.6) 2. High school 59 (56.2) 3. Higher education 18 (17.2) | 1. Elementary school 14 (13.3) 2. High school 69 (65.7) 2. Higher education 22 (21) | 0.04 |
Total cholesterol (mg/dL) median (IQR) | 248 (55) | 260 (59) | 246 (52) | 0.16 |
LDL cholesterol (mg/dL) median (IQR) | 182 (61) | 186 (52) | 177.5 (59.75) | 0.03 |
Smoking n (%) | 50 (23.8) | 21 (20) | 29 (27.6) | 0.032 |
Obesity n (%) | 124 (59) | 66 (62.8) | 58 (55.2) | 0.04 |
Arterial hypertension n (%) | 119 (56.6) | 67 (63.8) | 52 (49.5) | 0.03 |
Diabetes mellitus n (%) | 77 (36.6) | 43 (41) | 34 (32.4) | 0.02 |
AUER/24 h | hs-CRP | ||||
---|---|---|---|---|---|
Likert Score | n | Mean ± SD | ANOVA Test | Mean ± SD | ANOVA Test |
1 | 35 | 50.943 ± 11.0302 | p < 0.001 ** | 0.6260 ± 0.20291 | p < 0.001 ** |
2 | 52 | 42.917 ± 10.6151 | 0.4283 ± 0.16049 | ||
3 | 46 | 31.546 ± 8.4571 | 0.3135 ± 0.10382 | ||
4 | 50 | 25.014 ± 7.6477 | 0.2270 ± 0.08981 | ||
5 | 27 | 20.363 ± 8.0228 | 0.1804 ± 0.10607 | ||
Total | 210 | 34.601 ± 14.0203 | 0.3563 ± 0.20116 |
Likert Score | n | hs-CRP | ||||
---|---|---|---|---|---|---|
CCS | no CCS | |||||
Mean ± SD | ANOVA Test | n | Mean ± SD | ANOVA Test | ||
1 | 22 | 0.7477 ± 0.14105 | p < 0.001 ** | 13 | 0.4200 ± 0.09327 | p < 0.001 ** |
2 | 28 | 0.5489 ± 0.11561 | 24 | 0.2875 ± 0.05495 | ||
3 | 21 | 0.4105 ± 0.05714 | 25 | 0.2320 ± 0.04839 | ||
4 | 20 | 0.3245 ± 0.04936 | 30 | 0.1620 ± 0.03326 | ||
5 | 14 | 0.2757 ± 0.03797 | 13 | 0.0777 ± 0.02803 | ||
Total | 105 | 0.4837 ± 0.19082 | 105 | 0.2289 ± 0.11009 |
Likert Score | n | AUER/24 h | |||
---|---|---|---|---|---|
CCS | no CCS | ||||
Mean ± SD | ANOVA Test | Mean ± SD | ANOVA Test | ||
1 | 35 | 57.200 ± 7.8104 | p < 0.001 ** | 40.354 ± 6.6866 | p < 0.001 ** |
2 | 52 | 50.104 ± 8.6739 | 34.533 ± 5.0315 | ||
3 | 46 | 38.719 ± 6.7456 | 25.520 ± 3.6522 | ||
4 | 50 | 31.915 ± 5.1729 | 20.413 ± 5.1528 | ||
5 | 27 | 27.014 ± 4.1203 | 13.200 ± 3.7240 | ||
Total | 210 | 42.770 ± 12.8658 | 26.432 ± 9.7338 |
Likert Score | ST Depression and Negative T-Waves | Total | Pearson Chi-Square Test | ||||
---|---|---|---|---|---|---|---|
Absent | Present | ||||||
n | % | n | % | n | % | ||
1 | 16 | 30.8% | 6 | 11.3% | 22 | 21.0% | Chi2 = 19.928 |
2 | 19 | 36.5% | 9 | 17.0% | 28 | 26.7% | p < 0.001 ** |
3 | 10 | 19.2% | 11 | 20.8% | 21 | 20.0% | |
4 | 4 | 7.7% | 16 | 30.2% | 20 | 19.0% | |
5 | 3 | 5.8% | 11 | 20.8% | 14 | 13.3% | |
Total | 52 | 100.0% | 53 | 100.0% | 105 | 100.0% | |
Likert score | q-waves | Total | Pearson Chi-Square Test | ||||
Absent | Present | ||||||
n | % | n | % | n | % | ||
1 | 6 | 11.3% | 16 | 30.8% | 22 | 21.0% | Chi2 = 19.928 |
2 | 9 | 17.0% | 19 | 36.5% | 28 | 26.7% | p < 0.001 ** |
3 | 11 | 20.8% | 10 | 19.2% | 21 | 20.0% | |
4 | 16 | 30.2% | 4 | 7.7% | 20 | 19.0% | |
5 | 11 | 20.8% | 3 | 5.8% | 14 | 13.3% | |
Total | 53 | 100.0% | 52 | 100.0% | 105 | 100.0% | |
Likert score | AF | Total | Pearson Chi-Square Test | ||||
Absent | Present | ||||||
n | % | n | % | n | % | ||
1 | 17 | 18.3% | 5 | 41.7% | 22 | 21.0% | Chi2 = 3.935 |
2 | 25 | 26.9% | 3 | 25.0% | 28 | 26.7% | p = 0.415 |
3 | 19 | 20.4% | 2 | 16.7% | 21 | 20.0% | |
4 | 19 | 20.4% | 1 | 8.3% | 20 | 19.0% | |
5 | 13 | 14.0% | 1 | 8.3% | 14 | 13.3% | |
Total | 93 | 100.0% | 12 | 100.0% | 105 | 100.0% |
Likert Score | Total | Pearson Chi-Square Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Normokinesia | Hypokinesia | Akinesia | Dyskinesia | ||||||||
n | % | n | % | n | % | n | % | n | % | ||
1 | 1 | 6.3% | 5 | 12.5% | 6 | 30.0% | 10 | 34.5% | 22 | 21.0% | Chi2 = 24.391 |
2 | 3 | 18.8% | 7 | 17.5% | 8 | 40.0% | 10 | 34.5% | 28 | 26.7% | p = 0.018 * |
3 | 4 | 25.0% | 8 | 20.0% | 3 | 15.0% | 6 | 20.7% | 21 | 20.0% | |
4 | 6 | 37.5% | 10 | 25.0% | 2 | 10.0% | 2 | 6.9% | 20 | 19.0% | |
5 | 2 | 12.5% | 10 | 25.0% | 1 | 5.0% | 1 | 3.4% | 14 | 13.3% | |
Total | 16 | 100.0% | 40 | 100.0% | 20 | 100.0% | 29 | 100.0% | 105 | 100.0% |
Likert Score | Total | Pearson Chi-Square Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extensive Calcification | Moderate Calcification | Mild Calcification | Minimal Calcification | ||||||||
n | % | n | % | n | % | n | % | n | % | ||
1 | 14 | 29.8% | 5 | 25.0% | 2 | 8.7% | 1 | 6.7% | 22 | 21.0% | Chi2 = 28.050 |
2 | 18 | 38.3% | 6 | 30.0% | 2 | 8.7% | 2 | 13.3% | 28 | 26.7% | p = 0.005 ** |
3 | 9 | 19.1% | 4 | 20.0% | 5 | 21.7% | 3 | 20.0% | 21 | 20.0% | |
4 | 5 | 10.6% | 3 | 15.0% | 7 | 30.4% | 5 | 33.3% | 20 | 19.0% | |
5 | 1 | 2.1% | 2 | 10.0% | 7 | 30.4% | 4 | 26.7% | 14 | 13.3% | |
Total | 47 | 100.0% | 20 | 100.0% | 23 | 100.0% | 15 | 100.0% | 105 | 100.0% |
Depression Severity | Total | Pearson Chi-Square Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extensive Calcification | Moderate Calcification | Mild Calcification | Minimal Calcification | ||||||||
n | % | n | % | n | % | n | % | n | % | ||
Mild | 3 | 6.4% | 3 | 15.0% | 5 | 21.7% | 6 | 40% | 17 | 16.2% | Chi2 = 20.917 |
Moderate | 9 | 19.1% | 2 | 10.0% | 5 | 21.7% | 6 | 40% | 22 | 20.9% | p = 0.013 * |
Moderate–severe | 14 | 29.8% | 7 | 35.0% | 6 | 26.1% | 2 | 13.3% | 29 | 27.6% | |
Severe | 21 | 44.7% | 8 | 40.0% | 7 | 30.4% | 1 | 6.7% | 37 | 35.3% | |
Total | 47 | 100.0% | 20 | 100.0% | 23 | 100.0% | 15 | 100.0% | 105 | 100.0% |
Statistical Significance of the Association | |||||
---|---|---|---|---|---|
ST depression | negative T-waves | q-waves | AF | Echo | ECCT |
Job strain | |||||
(Ls) | |||||
** | ** | ** | no | * | ** |
Sample | Total | Pearson Chi-Square Test | ||||||
---|---|---|---|---|---|---|---|---|
CCS | no-CCS | |||||||
DS | N | % | n | % | n | % | ||
Mild | 17 | 16.2% | 39 | 37.1% | 56 | 26.7% | Chi2 = 26.482 | |
Moderate | 22 | 20.9% | 37 | 35.2% | 59 | 28% | p = 0.021 * | |
MS | 29 | 27.6% | 17 | 16.2% | 46 | 21.9% | ||
Severe | 37 | 35.3% | 12 | 11.5% | 49 | 23.3% | ||
Total | 105 | 100.0% | 105 | 100% | 210 | 100% |
Sample | Total | Pearson Chi-Square Test | ||||||
---|---|---|---|---|---|---|---|---|
CCS | no-CCS | |||||||
Likert score | N | % | n | % | N | % | ||
1 | 22 | 21.0% | 13 | 12.4% | 35 | 16.7% | Chi2 = 5.007 | |
2 | 28 | 26.7% | 24 | 22.9% | 52 | 24.8% | p = 0.287 | |
3 | 21 | 20.0% | 25 | 23.8% | 46 | 21.9% | ||
4 | 20 | 19.0% | 30 | 28.6% | 50 | 23.8% | ||
5 | 14 | 13.3% | 13 | 12.4% | 27 | 12.9% | ||
Total | 105 | 100.0% | 105 | 100.0% | 210 | 100.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moisii, P.; Jari, I.; Ursu, A.M.; Naum, A.G. The Relationship between Job Strain and Ischemic Heart Disease Mediated by Endothelial Dysfunction Markers and Imaging. Medicina 2024, 60, 1048. https://doi.org/10.3390/medicina60071048
Moisii P, Jari I, Ursu AM, Naum AG. The Relationship between Job Strain and Ischemic Heart Disease Mediated by Endothelial Dysfunction Markers and Imaging. Medicina. 2024; 60(7):1048. https://doi.org/10.3390/medicina60071048
Chicago/Turabian StyleMoisii, Paloma, Irina Jari, Andra Mara Ursu, and Alexandru Gratian Naum. 2024. "The Relationship between Job Strain and Ischemic Heart Disease Mediated by Endothelial Dysfunction Markers and Imaging" Medicina 60, no. 7: 1048. https://doi.org/10.3390/medicina60071048
APA StyleMoisii, P., Jari, I., Ursu, A. M., & Naum, A. G. (2024). The Relationship between Job Strain and Ischemic Heart Disease Mediated by Endothelial Dysfunction Markers and Imaging. Medicina, 60(7), 1048. https://doi.org/10.3390/medicina60071048