Predicting Unfavorable Pregnancy Outcomes in Polycystic Ovary Syndrome (PCOS) Patients Using Machine Learning Algorithms
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ndefo, U.A.; Eaton, A.; Green, M.R. Polycystic ovary syndrome: A review of treatment options with a focus on pharmacological approaches. Pharm. Ther. 2013, 38, 336–355. [Google Scholar]
- Joham, A.E.; Norman, R.J.; Stener-Victorin, E.; Legro, R.S.; Franks, S.; Moran, L.J.; Boyle, J.; Teede, H.J. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022, 10, 668–680. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Ma, Y.; Xiao, J.; Luo, G.; Li, Y.; Wu, D. Multi-system reproductive metabolic disorder: Significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci. 2019, 228, 167–175. [Google Scholar] [CrossRef]
- Boomsma, C.; Eijkemans, M.; Hughes, E.; Visser, G.; Fauser, B.; Macklon, N. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum. Reprod. Update 2006, 12, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Kjerulff, L.E.; Sanchez-Ramos, L.; Duffy, D. Pregnancy outcomes in women with polycystic ovary syndrome: A metaanalysis. Am. J. Obstet. Gynecol. 2011, 204, 558.e1–558.e6. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.Z.; Pang, L.H.; Li, M.J.; Fan, X.J.; Huang, R.D.; Chen, H.Y. Obstetric complications in women with polycystic ovary syndrome: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2013, 11, 56. [Google Scholar] [CrossRef]
- Cooney, L.G.; Dokras, A. Beyond fertility: Polycystic ovary syndrome and long-term health. Fertil. Steril. 2018, 110, 794–809. [Google Scholar] [CrossRef] [PubMed]
- Fauser, B.C.; Tarlatzis, B.C.; Rebar, R.W.; Legro, R.S.; Balen, A.H.; Lobo, R.; Carmina, E.; Chang, J.; Yildiz, B.O.; Laven, J.S.; et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012, 97, 28–38.e25. [Google Scholar] [CrossRef]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef]
- Siddiqui, S.; Mateen, S.; Ahmad, R.; Moin, S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J. Assist. Reprod. Genet. 2022, 39, 2439–2473. [Google Scholar] [CrossRef]
- Elasam, A.N.; Ahmed, M.A.; Ahmed, A.B.A.; Sharif, M.E.; Abusham, A.; Hassan, B.; Adam, I. The prevalence and phenotypic manifestations of polycystic ovary syndrome (PCOS) among infertile Sudanese women: A cross-sectional study. BMC Womens Health 2022, 22, 165. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Badeghiesh, A.; Suarthana, E.; Baghlaf, H.; Dahan, M.H. Associations between polycystic ovary syndrome and adverse obstetric and neonatal outcomes: A population study of 9.1 million births. Hum. Reprod. 2020, 35, 1914–1921. [Google Scholar] [CrossRef] [PubMed]
- Vasilache, I.A.; Scripcariu, I.S.; Doroftei, B.; Bernad, R.L.; Cărăuleanu, A.; Socolov, D.; Melinte-Popescu, A.S.; Vicoveanu, P.; Harabor, V.; Mihalceanu, E.; et al. Prediction of Intrauterine Growth Restriction and Preeclampsia Using Machine Learning-Based Algorithms: A Prospective Study. Diagnostics 2024, 14, 453. [Google Scholar] [CrossRef] [PubMed]
- Melinte-Popescu, M.; Vasilache, I.A.; Socolov, D.; Melinte-Popescu, A.S. Prediction of HELLP Syndrome Severity Using Machine Learning Algorithms-Results from a Retrospective Study. Diagnostics 2023, 13, 287. [Google Scholar] [CrossRef] [PubMed]
- Melinte-Popescu, A.-S.; Vasilache, I.-A.; Socolov, D.; Melinte-Popescu, M. Predictive Performance of Machine Learning-Based Methods for the Prediction of Preeclampsia—A Prospective Study. J. Clin. Med. 2023, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Ursuleanu, T.F.; Luca, A.R.; Gheorghe, L.; Grigorovici, R.; Iancu, S.; Hlusneac, M.; Preda, C.; Grigorovici, A. Deep Learning Application for Analyzing of Constituents and Their Correlations in the Interpretations of Medical Images. Diagnostics 2021, 11, 1373. [Google Scholar] [CrossRef] [PubMed]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A.; Hod, M.; Kitzmiler, J.L.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef]
- WHO Consultation. Obesity: Preventing and managing the global epidemic. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Ooi, M.P.-L.; Sok, H.K.; Kuang, Y.C.; Demidenko, S. Chapter 19—Alternating Decision Trees. In Handbook of Neural Computation; Samui, P., Sekhar, S., Balas, V.E., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 345–371. [Google Scholar]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 281. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Choi, J.W.; Shin, E.H. Machine learning model for predicting malaria using clinical information. Comput. Biol. Med. 2021, 129, 104151. [Google Scholar] [CrossRef]
- Ye, Y.; Xiong, Y.; Zhou, Q.; Wu, J.; Li, X.; Xiao, X. Comparison of Machine Learning Methods and Conventional Logistic Regressions for Predicting Gestational Diabetes Using Routine Clinical Data: A Retrospective Cohort Study. J. Diabetes Res. 2020, 2020, 4168340. [Google Scholar] [CrossRef]
- Gupta, A.; Katarya, R. Social media based surveillance systems for healthcare using machine learning: A systematic review. J. Biomed. Inform. 2020, 108, 103500. [Google Scholar] [CrossRef]
- Yang, R.; Li, Q.; Zhou, Z.; Qian, W.; Zhang, J.; Wu, Z.; Jin, L.; Wu, X.; Zhang, C.; Zheng, B.; et al. Changes in the prevalence of polycystic ovary syndrome in China over the past decade. Lancet Reg. Health West. Pac. 2022, 25, 100494. [Google Scholar] [CrossRef] [PubMed]
- AlAhmari, L.S.M.; Alzahrani, H.S.; Alzahrani, N.; AlDhafyan, S.O.; Al-Qahtani, R.H.; Al-Zaid, J.A.; AlShahrani, M.S.; Al-Ghamdi, L.A. Measures of health-related quality of life in PCOS women: A cross sectional study from Saudi Arabia. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Damone, A.L.; Joham, A.E.; Loxton, D.; Earnest, A.; Teede, H.J.; Moran, L.J. Depression, anxiety and perceived stress in women with and without PCOS: A community-based study. Psychol. Med. 2019, 49, 1510–1520. [Google Scholar] [CrossRef]
- Xu, Y.; Qiao, J. Association of Insulin Resistance and Elevated Androgen Levels with Polycystic Ovarian Syndrome (PCOS): A Review of Literature. J. Healthc. Eng. 2022, 2022, 9240569. [Google Scholar] [CrossRef]
- Lim, S.S.; Kakoly, N.S.; Tan, J.W.J.; Fitzgerald, G.; Bahri Khomami, M.; Joham, A.E.; Cooray, S.D.; Misso, M.L.; Norman, R.J.; Harrison, C.L.; et al. Metabolic syndrome in polycystic ovary syndrome: A systematic review, meta-analysis and meta-regression. Obes. Rev. 2019, 20, 339–352. [Google Scholar] [CrossRef]
- Zehravi, M.; Maqbool, M.; Ara, I. Polycystic ovary syndrome and infertility: An update. Int. J. Adolesc. Med. Health 2021, 34, 1–9. [Google Scholar] [CrossRef]
- Roos, N.; Kieler, H.; Sahlin, L.; Ekman-Ordeberg, G.; Falconer, H.; Stephansson, O. Risk of adverse pregnancy outcomes in women with polycystic ovary syndrome: Population based cohort study. Bmj 2011, 343, d6309. [Google Scholar] [CrossRef] [PubMed]
- Palomba, S.; Falbo, A.; Chiossi, G.; Orio, F.; Tolino, A.; Colao, A.; La Sala, G.B.; Zullo, F. Low-grade chronic inflammation in pregnant women with polycystic ovary syndrome: A prospective controlled clinical study. J. Clin. Endocrinol. Metab. 2014, 99, 2942–2951. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, J.; Xu, Q.; Kong, L.; Wang, J. A retrospective cohort study of obstetric complications and birth outcomes in women with polycystic ovarian syndrome. J. Obstet. Gynaecol. 2022, 42, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.A.; Rajeswari, V.D. Polycystic ovary syndrome (PCOS) increases the risk of subsequent gestational diabetes mellitus (GDM): A novel therapeutic perspective. Life Sci. 2022, 310, 121069. [Google Scholar] [CrossRef] [PubMed]
- Galesanu, C.; Buzduga, C.; Florescu, A.; Moisii, L.; Ciubotaru, V. Diabetes mellitus, chronic complication in patients with acromegaly: Case report and review of the literature. Med.-Surg. J. 2015, 119, 92–96. [Google Scholar]
- Hanna, F.; Wu, P.; Heald, A.; Fryer, A. Diabetes detection in women with gestational diabetes and polycystic ovarian syndrome. Bmj 2023, 382, e071675. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Fryer, A.A.; Hanna, F.W.; Spencer, N.; Mahmood, M.; Wu, P.; Heald, A.H.; Duff, C.J. Inadequate postpartum screening for type 2 diabetes in women with previous gestation diabetes mellitus: A retrospective audit of practice over 17 years. Int. J. Clin. Pract. 2021, 75, e14447. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, M.R.; Wiemann, C.M.; Bacha, F.; Taylor, S.J.A. Diagnostic evaluation, comorbidity screening, and treatment of polycystic ovary syndrome in adolescents in 3 specialty clinics. J. Pediatr. Adolesc. Gynecol. 2018, 31, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Vanky, E.; Stridsklev, S.; Heimstad, R.; Romundstad, P.l.; Skogøy, K.; Kleggetveit, O.; Hjelle, S.; von Brandis, P.; Eikeland, T.; Flo, K. Metformin versus placebo from first trimester to delivery in polycystic ovary syndrome: A randomized, controlled multicenter study. J. Clin. Endocrinol. Metab. 2010, 95, E448–E455. [Google Scholar] [CrossRef]
- Kanda, S.; Chatha, U.; Odoma, V.A.; Pitliya, A.; AlEdani, E.M.; Bhangu, J.K.; Javed, K.; Manshahia, P.K.; Nahar, S.; Hamid, P. Effect of Metformin (MTF) Intervention During Pregnancy in Women With Polycystic Ovarian Syndrome (PCOS): A Systematic Review. Cureus 2023, 15, e44166. [Google Scholar] [CrossRef]
- Bahri Khomami, M.; Joham, A.E.; Boyle, J.A.; Piltonen, T.; Arora, C.; Silagy, M.; Misso, M.L.; Teede, H.J.; Moran, L.J. The role of maternal obesity in infant outcomes in polycystic ovary syndrome—A systematic review, meta-analysis, and meta-regression. Obes. Rev. 2019, 20, 842–858. [Google Scholar] [CrossRef] [PubMed]
- Barrera, F.J.; Brown, E.D.L.; Rojo, A.; Obeso, J.; Plata, H.; Lincango, E.P.; Terry, N.; Rodríguez-Gutiérrez, R.; Hall, J.E.; Shekhar, S. Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: A systematic review. Front. Endocrinol. 2023, 14, 1106625. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Xing, Y.; Cheng, T.; Yang, L.; Ma, H. Exploration of hub genes involved in PCOS using biological informatics methods. Medicine 2022, 101, e30905. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristics | PCOS Group (n = 87 Patients) | Control Group (n = 87 Patients) | p Value |
---|---|---|---|
Age, years (mean ± SD) | 29.6 ± 6.19 | 26.12 ± 5.74 | 0.52 |
IVF conception (n/%) | Yes = 18 (20.68%) No = 69 (79.32%) | Yes = 7 (8.04%) No = 80 (91.96%) | 0.01 |
Nulliparous (n/%) | Yes = 49 (56.32%) No = 38 (43.68%) | Yes = 32 (36.78%) No = 55 (63.22%) | 0.009 |
BMI, kg/m2, (mean and standard deviation) | 30.11 ± 2.92 | 23.17 ± 2.78 | 0.04 |
Smoking (n/%) | Yes = 3 (3.44%) No = 84 (96.56%) | Yes = 7 (8.04%) No = 80 (91.96%) | 0.19 |
Diabetes (n/%) | Yes = 14 (16.09%) No = 73 (83.9%) | Yes = 4 (6.6%) No = 83 (95.4%) | 0.01 |
Previous diagnosis of chronic hypertension (n/%) | Yes = 5 (5.74%) No = 82 (94.25%) | Yes = 2 (2.29%) No = 85 (97.7%) | 0.24 |
Previous diagnosis of autoimmune disorders (n/%) | Yes = 8 (9.19%) No = 79 (90.8%) | Yes = 3 (3.44%) No = 84 (96.56%) | 0.11 |
Previous diagnosis of adverse pregnancy outcomes (n/%) | Yes = 11 (12.64%) No = 76 (87.36%) | Yes = 3 (3.44%) No = 84 (96.56%) | 0.02 |
Adverse Pregnancy Outcomes | PCOS vs. Control Group | Magnitude of the Confounding | |||
---|---|---|---|---|---|
Crude Estimates | p Value | M-H Combined | p Value ** | ||
OR and 95% CI | aOR and 95% CI | ||||
Gestational diabetes * IVF | 5.51 (1.30–17.72) | 0.01 | 3.12 (0.47–20.58) | 0.23 | 0.77 |
Gestational diabetes * Obesity | 5.01 (0.41–59.65) | 0.19 | 0.10 | ||
Gestational diabetes * Diabetes | 2.5 (0.25–24.37) | 0.61 | 1.20 | ||
Gestational diabetes * Previous APO | 5 (0.21–117.89) | 0.30 | 0.10 | ||
Fetal macrosomia * IVF | 3.71 (0.84–9.03) | 0.08 | 1.59 (0.23–10.57) | 0.63 | 1.33 |
Fetal macrosomia * Obesity | 1.4 (0.14–13.56) | 0.77 | 1.65 | ||
Fetal macrosomia * Diabetes | 1 (0.10–9.22) | 0.99 | 2.71 | ||
Fetal macrosomia * APO | 0.87 (0.05–12.97) | 0.92 | 3.26 | ||
Preterm birth * IVF | 6.15 (1.27–58.33) | 0.009 | 3.92.(0.59–26.10 | 0.15 | 0.57 |
Preterm birth * Obesity | 11 (0.64–187.16) | 0.07 | −0.44 | ||
Preterm birth * Diabetes | 3.66 (0.35–38.02) | 0.27 | 0.68 | ||
Preterm birth * APO | 5.5(0.23–128.96) | 0.27 | 0.12 | ||
PE * IVF | 1.51 (0.16–18.55) | 0.49 | 0.5 (0.06–3.90) | 0.51 | 2.02 |
PE * Obesity | 0.33 (0.03–3.51) | 0.36 | 3.58 | ||
PE * Diabetes | 0.27 (0.02–2.82) | 0.27 | 4.59 | ||
PE * APO | 0.16 (0.01–2.56) | 0.18 | 8.44 | ||
Gestational hypertension * IVF | 1.70 (0.31–11.31) | 0.29 | 0.51 (0.08–3.15) | 0.47 | 2.33 |
Gestational hypertension * Obesity | 0.23 (0.01–3.01) | 0.26 | 6.39 | ||
Gestational hypertension * Diabetes | 0.18 (0.01–2.28) | 0.17 | 8.44 | ||
Gestational hypertension * APO | 0.71 (0.22–2.25) | 0.56 | 1.39 | ||
IUGR * IVF | 1.34 (0.22–9.47) | 0.69 | 0.38 (0.05–2.45) | 0.31 | 2.53 |
IUGR * Obesity | 0.16 (0.01–2.15) | 0.15 | 7.38 | ||
IUGR * Diabetes | 0.13 (0.01–1.69) | 0.10 | 3.47 | ||
IUGR * APO | 0.5 (0.15–1.66) | 0.25 | 1.68 | ||
Cesarean delivery * IVF | 2.53 (1.29–4.99) | 0.003 | 2.15 (1.11–4.15) | 0.02 | 0.18 |
Cesarean delivery * Obesity | 2.25 (1.18–4.30) | 0.01 | 0.12 | ||
Cesarean delivery * Diabetes | 2.16 (1.13–4.13) | 0.01 | 0.17 | ||
Cesarean delivery * APO | 2.2 (1.15–4.18) | 0.01 | 0.15 | ||
NICU admission * IVF | 2.37 (0.78–7.97) | 0.08 | 0.43 (0.04–4.56) | 0.48 | 4.51 |
NICU admission * Obesity | 0.54 (0.04–6.16) | 0.62 | 3.39 | ||
NICU admission * Diabetes | 0.63 (0.24–1.64) | 0.35 | 2.76 | ||
NICU admission * APO | 0.35 (0.02–5.10) | 0.56 | 5.77 | ||
Need for invasive ventilation * IVF | 1.70 (0.31–11.31) | 0.46 | 0.48–13.73 | 0.26 | 2.54 |
Need for invasive ventilation * Obesity | 0.23 (0.01–3.01) | 0.26 | 6.39 | ||
Need for invasive ventilation * Diabetes | 0.18 (0.01–2.28) | 0.17 | 8.44 | ||
Need for invasive ventilation * APO | 1.14 (0.41–3.15) | 0.79 | 0.49 | ||
Necrotizing enterocolitis * IVF | 1.51 (0.16–18.55) | 0.65 | 0.5 (0.06–3.90) | 0.51 | 2.02 |
Necrotizing enterocolitis * Obesity | 0.33 (0.03–3.51) | 0.36 | 3.58 | ||
Necrotizing enterocolitis * Diabetes | 0.27 (0.02–2.82) | 0.27 | 4.59 | ||
Necrotizing enterocolitis * APO | 0.16 (0.01–2.56) | 0.18 | 8.44 | ||
Neonatal death * IVF | 2.02 (0.10–120.73) | 0.56 | 0.75 (0.05–9.87) | 0.82 | 1.69 |
Neonatal death * Obesity | 0.6 (0.03–9.15) | 0.72 | 2.37 | ||
Neonatal death * Diabetes | 0.5 (0.03–7.54) | 0.62 | 3.04 | ||
Neonatal death * APO | 0.4 (0.02–6.84) | 0.53 | 4.05 |
Clinical Predictors | Gestational Diabetes | Fetal Macrosomia | Preterm Birth | ||||||
---|---|---|---|---|---|---|---|---|---|
RR | 95%CI | p Value | RR | 95%CI | p Value | RR | 95%CI | p Value | |
Age > 35 years | 0.76 | −0.24–8.56 | 0.42 | 0.42 | 0.03–4.98 | 0.56 | 2.19 | 0.48–12.31 | 0.06 |
IVF conception | 3.18 | 0.98–18.22 | 0.01 | 4.63 | 1.22–17.39 | 0.03 | 5.24 | 1.74–21.73 | 0.02 |
Nulliparity | 0.44 | −0.12–9.03 | 0.59 | 1.04 | 0.78–7.78 | 0.32 | 0.33 | −0.71–8.64 | 0.86 |
Obesity | 5.31 | 1.16–32.88 | 0.02 | 3.46 | 1.19–14.83 | 0.04 | 2.37 | −1.16–11.2 | 0.32 |
Smoking status | 0.56 | −0.76–5.52 | 0.17 | −0.11 | −2.31–2.89 | 0.46 | 1.12 | 0.04–3.85 | 0.05 |
Diabetes | 5.28 | 0.26–14.95 | 0.001 | 6.93 | 1.32–13.79 | 0.001 | 3.14 | 0.64–9.25 | 0.03 |
History of adverse pregnancy outcomes | 1.24 | 0.02–4.86 | 0.78 | 1.89 | 0.71–7.98 | 0.67 | 3.97 | 0.14–10.22 | 0.02 |
Models | Gestational Diabetes | Fetal Macrosomia | Preterm Birth | ||||||
---|---|---|---|---|---|---|---|---|---|
Sensibility | Specificity | AUC Value | Sensibility | Specificity | AUC Value | Sensibility | Specificity | AUC Value | |
DT | 44.44 | 87.50 | 0.694 | 44.44 | 80.58 | 0.625 | 55.56 | 87.50 | 0.713 |
NB | 55.56 | 88.46 | 0.731 | 55.56 | 88.46 | 0.754 | 66.67 | 88.46 | 0.778 |
SVM | 66.67 | 61.17 | 0.693 | 66.67 | 80.58 | 0.721 | 77.78 | 87.38 | 0.883 |
RF | 88.12 | 78.16 | 0.782 | 88.91 | 81.26 | 0.897 | 89.77 | 86.23 | 0.901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogos, R.; Gheorghe, L.; Carauleanu, A.; Vasilache, I.-A.; Munteanu, I.-V.; Mogos, S.; Solomon-Condriuc, I.; Baean, L.-M.; Socolov, D.; Adam, A.-M.; et al. Predicting Unfavorable Pregnancy Outcomes in Polycystic Ovary Syndrome (PCOS) Patients Using Machine Learning Algorithms. Medicina 2024, 60, 1298. https://doi.org/10.3390/medicina60081298
Mogos R, Gheorghe L, Carauleanu A, Vasilache I-A, Munteanu I-V, Mogos S, Solomon-Condriuc I, Baean L-M, Socolov D, Adam A-M, et al. Predicting Unfavorable Pregnancy Outcomes in Polycystic Ovary Syndrome (PCOS) Patients Using Machine Learning Algorithms. Medicina. 2024; 60(8):1298. https://doi.org/10.3390/medicina60081298
Chicago/Turabian StyleMogos, Raluca, Liliana Gheorghe, Alexandru Carauleanu, Ingrid-Andrada Vasilache, Iulian-Valentin Munteanu, Simona Mogos, Iustina Solomon-Condriuc, Luiza-Maria Baean, Demetra Socolov, Ana-Maria Adam, and et al. 2024. "Predicting Unfavorable Pregnancy Outcomes in Polycystic Ovary Syndrome (PCOS) Patients Using Machine Learning Algorithms" Medicina 60, no. 8: 1298. https://doi.org/10.3390/medicina60081298
APA StyleMogos, R., Gheorghe, L., Carauleanu, A., Vasilache, I.-A., Munteanu, I.-V., Mogos, S., Solomon-Condriuc, I., Baean, L.-M., Socolov, D., Adam, A.-M., & Preda, C. (2024). Predicting Unfavorable Pregnancy Outcomes in Polycystic Ovary Syndrome (PCOS) Patients Using Machine Learning Algorithms. Medicina, 60(8), 1298. https://doi.org/10.3390/medicina60081298