Drug-Induced Myoclonus: A Systematic Review
Abstract
:1. Introduction
2. Methodology
3. Results
4. Anesthetic Agents
5. Antibiotics
5.1. Penicillins, Cephalosporins
5.2. Fluoroquinolones and Quinolones
5.3. Other Classes of Antibiotics
6. Antidementia
7. Antidepressants
8. Antiemetics
9. Antihistamines
10. Antineoplastic
11. Antiparkinsonian
12. Antipsychotics
13. Antiseizure Medications
14. Antiviral
15. Anxiolytics
16. Cardiovascular
17. Opioids
18. Others
18.1. Heavy Metals
18.2. Lithium
19. Discussion
19.1. Drug-Induced Myoclonus Pathophysiological Mechanism
19.2. Drug-Induced Asterixis
19.3. Proposed Classifications
19.4. Management
20. Future Studies
21. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dijk, J.M.; Tijssen, M.A.J. Management of Patients with Myoclonus: Available Therapies and the Need for an Evidence-Based Approach. Lancet Neurol. 2010, 9, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Chandarana, M.; Saraf, U.; Divya, K.P.; Krishnan, S.; Kishore, A. Myoclonus—A Review. Ann. Indian Acad. Neurol. 2021, 24, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Friedreich, N. Paramyoclonus Multiplex. Virchows Arch. 1881, 86, 421–430. [Google Scholar] [CrossRef]
- Kojovic, M.; Cordivari, C.; Bhatia, K. Myoclonic Disorders: A Practical Approach for Diagnosis and Treatment. Ther. Adv. Neurol. Disord. 2011, 4, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Janssen, S.; Bloem, B.R.; van de Warrenburg, B.P. The Clinical Heterogeneity of Drug-Induced Myoclonus: An Illustrated Review. J. Neurol. 2017, 264, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Caviness, J.N.; Brown, P. Myoclonus: Current Concepts and Recent Advances. Lancet Neurol. 2004, 3, 598–607. [Google Scholar] [CrossRef]
- Pena, A.B.; Caviness, J.N. Physiology-Based Treatment of Myoclonus. Neurotherapeutics 2020, 17, 1665–1680. [Google Scholar] [CrossRef]
- Shibasaki, H.; Hallett, M. Electrophysiological Studies of Myoclonus. Muscle Nerve 2005, 31, 157–174. [Google Scholar] [CrossRef]
- Brefel-Courbon, C.; Gardette, V.; Ory, F.; Montastruc, J.L. Drug-Induced Myoclonus: A French Pharmacovigilance Database Study. Neurophysiol. Clin. 2006, 36, 333–336. [Google Scholar] [CrossRef]
- Caviness, J.N.; Alving, L.I.; Maraganore, D.M.; Black, R.A.; McDonnell, S.K.; Rocca, W.A. The Incidence and Prevalence of Myoclonus in Olmsted County, Minnesota. Mayo Clin. Proc. 1999, 74, 565–569. [Google Scholar] [CrossRef]
- Thwaites, D.; McCann, S.; Broderick, P. Hydromorphone Neuroexcitation. J. Palliat. Med. 2004, 7, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- De Vries, E.; Schoonvelde, M.; Schumacher, G. No Longer Lost in Translation: Evidence That Google Translate Works for Comparative Bag-of-Words Text Applications. Polit. Anal. 2018, 26, 417–430. [Google Scholar] [CrossRef]
- Naranjo, C.A.; Busto, U.; Sellers, E.M.; Sandor, P.; Ruiz, I.; Roberts, E.A.; Janecek, E.; Domecq, C.; Greenblatt, D.J. A Method for Estimating the Probability of Adverse Drug Reactions. Clin. Pharmacol. Ther. 1981, 30, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.T. Prolonged Myoclonic Contractions after Enflurane Anaesthesia—A Case Report. Can. Anaesth. Soc. J. 1980, 27, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, T.P.; Newberg, L.A. Prolonged Myoclonus after Etomidate Anesthesia. Anesth. Analg. 1985, 64, 80–82. [Google Scholar] [CrossRef]
- Wu, M.-S.; Hsu, Y.-D.; Lin, J.-C.; Chen, S.-C.; Lee, J.-T. Spinal Myoclonus in Subacute Combined Degeneration Caused by Nitrous Oxide Intoxication. Acta Neurol. Taiwanica 2007, 16, 102–105. [Google Scholar]
- Tam, M.K.P.; Irwin, M.G.; Tse, M.L.; Lui, Y.W.A.; Law, K.I.; Ng, P.W. Prolonged Myoclonus after a Single Bolus Dose of Propofol. Anaesthesia 2009, 64, 1254–1257. [Google Scholar] [CrossRef]
- Sutter, R.; Ristic, A.; Rüegg, S.; Fuhr, P. Myoclonus in the Critically Ill: Diagnosis, Management, and Clinical Impact. Clin. Neurophysiol. 2016, 127, 67–80. [Google Scholar] [CrossRef]
- Fox, E.J.; Villanueva, R.; Schutta, H.S. Myoclonus Following Spinal Anesthesia. Neurology 1979, 29, 379–380. [Google Scholar] [CrossRef]
- Harrison, J.L. Postoperative Seizures after Isoflurane Anesthesia. Anesth. Analg. 1986, 65, 1235–1236. [Google Scholar] [CrossRef] [PubMed]
- Conreux, F.; Best, O.; Preckel, M.P.; Lhopitault, C.; Beydon, L.; Pouplard, F.; Granry, J.C. Electroencephalographic effects of sevoflurane in pediatric anesthesia: A prospective study of 20 cases. Ann. Fr. Anesth. Reanim. 2001, 20, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Magny, J.F.; d’Allest, A.M.; Nedelcoux, H.; Zupan, V.; Dehan, M. Midazolam and Myoclonus in Neonate. Eur. J. Pediatr. 1994, 153, 389–390. [Google Scholar] [CrossRef] [PubMed]
- Almedallah, D.K.; Alshamlan, D.Y.; Shariff, E.M. Acute Opioid-Induced Myoclonic Reaction after Use of Fentanyl as an Anesthetic Drug for an Emergency Cesarean Section. Case Rep. Neurol. 2018, 10, 130–134. [Google Scholar] [CrossRef]
- Boscan, P.; Pypendop, B.H.; Solano, A.M.; Ilkiw, J.E. Cardiovascular and Respiratory Effects of Ketamine Infusions in Isoflurane-Anesthetized Dogs before and during Noxious Stimulation. Am. J. Vet. Res. 2005, 66, 2122–2129. [Google Scholar] [CrossRef]
- Lee, J.J.; Hwang, S.M.; Lee, J.S.; Jang, J.S.; Lim, S.-Y.; Hong, S.J. Recurrent Spinal Myoclonus after Two Episodes of Spinal Anesthesia at a 1-Year Interval—A Case Report. Korean J. Anesthesiol. 2010, 59, S62–S64. [Google Scholar] [CrossRef]
- Watanabe, S.; Sakai, K.; Ono, Y.; Seino, H.; Naito, H. Alternating Periodic Leg Movement Induced by Spinal Anesthesia in an Elderly Male. Anesth. Analg. 1987, 66, 1031–1032. [Google Scholar] [CrossRef]
- Nadkarni, A.V.; Tondare, A.S. Localized Clonic Convulsions after Spinal Anesthesia with Lidocaine and Epinephrine. Anesth. Analg. 1982, 61, 945–947. [Google Scholar] [CrossRef]
- Fores Novales, B.; Aguilera Celorrio, L. Spinal Myoclonus Following Intrathecal Anaesthesia with Prilocaine. Anaesth. Intensive Care 2009, 37, 498–499. [Google Scholar]
- Kang, H.Y.; Lee, S.W.; Hong, E.P.; Sim, Y.H.; Lee, S.-M.; Park, S.W.; Kang, J.-M. Myoclonus-like Involuntary Movements Following Cesarean Delivery Epidural Anesthesia. J. Clin. Anesth. 2016, 34, 392–394. [Google Scholar] [CrossRef]
- Drummond, J.C.; Todd, M.M.; Shapiro, H.M. Minimal Alveolar Concentrations for Halothane, Enflurane, and Isoflurane in the Cat. J. Am. Vet. Med. Assoc. 1983, 182, 1099–1101. [Google Scholar] [PubMed]
- Sepahvand, M.; Rashidi, S.; Emamikhah, M.; Rohani, M.; Yazdi, N. Laughing Ceased, Nitrous Oxide-Induced Myelopathy Evolved. Can. J. Neurol. Sci. 2024, 51, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Hasbaoui, B.E.; Mebrouk, N.; Saghir, S.; Yajouri, A.E.; Abilkassem, R.; Agadr, A. Vitamin B12 Deficiency: Case Report and Review of Literature. Pan. Afr. Med. J. 2021, 38, 237. [Google Scholar] [PubMed]
- Feng, Y.; Chen, X.-B.; Zhang, Y.-L.; Chang, P.; Zhang, W.-S. Propofol Decreased the Etomidate-Induced Myoclonus in Adult Patients: A Meta-Analysis and Systematic Review. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1322–1335. [Google Scholar] [PubMed]
- Walder, B.; Tramèr, M.R.; Seeck, M. Seizure-like Phenomena and Propofol: A Systematic Review. Neurology 2002, 58, 1327–1332. [Google Scholar] [CrossRef]
- Chao, S.; Khan, R.; Lieberman, J.; Buren, M. Propofol-Induced Myoclonus during Maintenance of Anaesthesia. Anaesth. Rep. 2023, 11, e12253. [Google Scholar] [CrossRef]
- Hellyer, P.W.; Freeman, L.C.; Hubbell, J.A. Induction of Anesthesia with Diazepam-Ketamine and Midazolam-Ketamine in Greyhounds. Vet. Surg. 1991, 20, 143–147. [Google Scholar] [CrossRef]
- Doenicke, A.W.; Roizen, M.F.; Kugler, J.; Kroll, H.; Foss, J.; Ostwald, P. Reducing Myoclonus after Etomidate. Anesthesiology 1999, 90, 113–119. [Google Scholar] [CrossRef]
- Feng, Y.; Chang, P.; Kang, Y.; Liao, P.; Li, C.-Y.; Liu, J.; Zhang, W.-S. Etomidate-Induced Myoclonus in Sprague-Dawley Rats Involves Neocortical Glutamate Accumulation and N-Methyl-d-Aspartate Receptor Activity. Anesth. Analg. 2023, 137, 221–233. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, J.; Zhang, W.-S. Etomidate-Induced Myoclonus Correlates with the Dysfunction of Astrocytes and Glutamate Transporters in the Neocortex of Sprague-Dawley Rats. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6221–6235. [Google Scholar]
- Zhou, C.; Zhu, Y.; Liu, Z.; Ruan, L. Effect of Pretreatment with Midazolam on Etomidate-Induced Myoclonus: A Meta-Analysis. J. Int. Med. Res. 2017, 45, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Nooraei, N.; Solhpour, A.; Mohajerani, S.A. Priming with Atracurium Efficiently Suppresses Etomidate-Induced Myoclonus. Acta Anaesthesiol. Taiwanica 2013, 51, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Collin, R.I.; Drummond, G.B.; Spence, A.A. Alfentanil Supplemented Anaesthesia for Short Procedures. A Double-Blind Study of Alfentanil Used with Etomidate and Enflurane for Day Cases. Anaesthesia 1986, 41, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhou, C.; Pan, L.; Li, C. Effect of Dexmedetomidine in Preventing Etomidate-Induced Myoclonus: A Meta-Analysis. Drug Des. Devel. Ther. 2017, 11, 365–370. [Google Scholar] [CrossRef]
- Hua, J.; Miao, S.; Shi, M.; Tu, Q.; Wang, X.; Liu, S.; Wang, G.; Gan, J. Effect of Butorphanol on Etomidate-Induced Myoclonus: A Systematic Review and Meta-Analysis. Drug Des. Devel. Ther. 2019, 13, 1213–1220. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Y.; Zhou, C.; Bao, Z. Using Dezocine to Prevent Etomidate-Induced Myoclonus: A Meta-Analysis of Randomized Trials. Drug Des. Devel. Ther. 2017, 11, 2163–2170. [Google Scholar] [CrossRef]
- Greenwood, J.; Crull, A.; Graves, M.; Ledvina, M. Pharmacological Interventions for Reducing the Incidence of Myoclonus in Patients Receiving Etomidate for Induction of General Anesthesia: An Umbrella Review. JBI Evid. Synth. 2024, 22, 66–89. [Google Scholar] [CrossRef]
- Shiratori, T.; Hotta, K.; Satoh, M. Spinal Myoclonus Following Neuraxial Anesthesia: A Literature Review. J. Anesth. 2019, 33, 140–147. [Google Scholar] [CrossRef]
- Slaker, R.A.; Danielson, B. Neurotoxicity Associated with Ceftazidime Therapy in Geriatric Patients with Renal Dysfunction. Pharmacotherapy 1991, 11, 351–352. [Google Scholar] [CrossRef]
- Kurtzman, N.A.; Rogers, P.W.; Harter, H.R. Neurotoxic Reaction to Penicillin and Carbenicillin. JAMA 1970, 214, 1320–1321. [Google Scholar] [CrossRef]
- Calandra, G.B.; Brown, K.R.; Grad, L.C.; Ahonkhai, V.I.; Wang, C.; Aziz, M.A. Review of Adverse Experiences and Tolerability in the First 2,516 Patients Treated with Imipenem/Cilastatin. Am. J. Med. 1985, 78, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Durand, J.M.; Telle, H.; Quilès, N.; Taramasco, V.; Kaplanski, G.; Soubeyrand, J. Confusion syndrome, myoclonus and treatment with pefloxacin. Ann. Med. Interne 1993, 144, 495–496. [Google Scholar]
- New, P.S.; Wells, C.E. Cerebral Toxicity Associated with Massive Intravenous Penicillin Therapy. Neurology 1965, 15, 1053–1058. [Google Scholar] [CrossRef]
- Park-Matsumoto, Y.C.; Tazawa, T. Piperacillin-Induced Encephalopathy. J. Neurol. Sci. 1996, 140, 141–142. [Google Scholar] [CrossRef]
- Kallay, M.C.; Tabechian, H.; Riley, G.R.; Chessin, L.N. Neurotoxicity Due to Ticarcillin in Patient with Renal Failure. Lancet 1979, 1, 608–609. [Google Scholar] [CrossRef]
- Sackellares, J.C.; Smith, D.B. Myoclonus with Electrocerebral Silence in a Patient Receiving Penicillin. Arch. Neurol. 1979, 36, 857–858. [Google Scholar] [CrossRef]
- Viloria-Alebesque, A.; Povar-Echeverría, M.; Bruscas-Alijarde, M.J.; Gracia-Gutiérrez, A.; Royo-Trallero, L.; Al-Cheikh-Felices, P. Myoclonus Induced by Amoxicillin-Clavulanic Acid. Epilepsy Behav. Rep. 2020, 14, 100367. [Google Scholar] [CrossRef]
- Herishanu, Y.O.; Zlotnik, M.; Mostoslavsky, M.; Podgaietski, M.; Frisher, S.; Wirguin, I. Cefuroxime-Induced Encephalopathy. Neurology 1998, 50, 1873–1875. [Google Scholar] [CrossRef]
- Uchihara, T.; Tsukagoshi, H. Myoclonic Activity Associated with Cefmetazole, with a Review of Neurotoxicity of Cephalosporins. Clin. Neurol. Neurosurg. 1988, 90, 369–371. [Google Scholar] [CrossRef]
- Hagiya, H.; Miyawaki, K.; Yamamoto, N.; Yoshida, H.; Kitagawa, A.; Asaoka, T.; Eguchi, H.; Akeda, Y.; Tomono, K. Ceftriaxone-Induced Neurotoxicity in a Patient after Pancreas-Kidney Transplantation. Intern. Med. 2017, 56, 3103–3107. [Google Scholar] [CrossRef]
- Chan, S.; Turner, M.R.; Young, L.; Gregory, R. Cephalosporin-Induced Myoclonus. Neurology 2006, 66, E20. [Google Scholar] [CrossRef]
- Cho, I.; Bertoni, J.M.; Hopkins, L. Moxalactam Myoclonus, Seizures, and Encephalopathy. Drug Intell. Clin. Pharm. 1986, 20, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Khasani, S. Cefepime-Induced Jaw Myoclonus. Neurology 2015, 84, 1183. [Google Scholar] [CrossRef] [PubMed]
- Sonck, J.; Laureys, G.; Verbeelen, D. The Neurotoxicity and Safety of Treatment with Cefepime in Patients with Renal Failure. Nephrol. Dial. Transplant. 2008, 23, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Camenzind, D.; Beer, J.H.; Tarnutzer, A.A. Negative Myoclonus as the Leading Symptom in Acute Cefepime Neurotoxicity. BMJ Case Rep. 2021, 14, e239744. [Google Scholar] [CrossRef]
- Lau, K.K.; Kink, R.J.; Jones, D.P. Myoclonus Associated with Intraperitoneal Imipenem. Pediatr. Nephrol. 2004, 19, 700–701. [Google Scholar] [CrossRef]
- Rivera, M.; Crespo, M.; Teruel, J.L.; Marcén, R.; Ortuño, J. Neurotoxicity Due to Imipenem/Cilastatin in Patients on Continuous Ambulatory Peritoneal Dialysis. Nephrol. Dial. Transplant. 1999, 14, 258–259. [Google Scholar] [CrossRef]
- Frucht, S.; Eidelberg, D. Imipenem-Induced Myoclonus. Mov. Disord. 1997, 12, 621–622. [Google Scholar] [CrossRef]
- Baraboutis, I.G.; Marangos, M.N.; Skoutelis, A.; Bassaris, H. Meropenem-Aggravated Seizure Activity in Progressive Myoclonus Epilepsy. Int. J. Antimicrob. Agents 2008, 31, 177–179. [Google Scholar] [CrossRef]
- Spina Silva, T.; Dal-Prá Ducci, R.; Zorzetto, F.P.; Braatz, V.L.; de Paola, L.; Kowacs, P.A. Meropenem-Induced Myoclonus: A Case Report. Seizure 2014, 23, 912–914. [Google Scholar] [CrossRef]
- Apodaca, K.; Baker, J.; Bin-Bilal, H.; Raskin, Y.; Quinn, D.K. Ertapenem-Induced Delirium: A Case Report and Literature Review. Psychosomatics 2015, 56, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Jayathissa, S.; Woolley, M.; Ganasegaram, M.; Holden, J.; Cu, E. Myoclonus and Delirium Associated with Ciprofloxacin. Age Ageing 2010, 39, 762. [Google Scholar] [CrossRef] [PubMed]
- Post, B.; Koelman, J.H.T.M.; Tijssen, M.A.J. Propriospinal Myoclonus after Treatment with Ciprofloxacin. Mov. Disord. 2004, 19, 595–597. [Google Scholar] [CrossRef]
- Javed, H.; Ali, H.T.; Soliman, Z.A.; Caprara, A.L.F.; Rissardo, J.P. Three Cases of Myoclonus Secondary to Ciprofloxacin: “Ciproclonus”. Clin. Neuropharmacol. 2023, 46, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Kayipmaz, S.; Altınöz, A.E.; Ok, N.E.G. Lithium Intoxication: A Possible Interaction with Moxifloxacin. Clin. Psychopharmacol. Neurosci. 2017, 15, 407–409. [Google Scholar] [CrossRef]
- Reddy, V.A.S.K.; Mittal, G.K.; Sekhar, S.; Singhdev, J.; Mishra, R. Levofloxacin-Induced Myoclonus and Encephalopathy. Ann. Indian Acad. Neurol. 2020, 23, 405–407. [Google Scholar]
- Marinella, M.A. Myoclonus and Generalized Seizures Associated with Gatifloxacin Treatment. Arch. Intern. Med. 2001, 161, 2261–2262. [Google Scholar] [CrossRef]
- Bagon, J.A. Neuropsychiatric Complications Following Quinolone Overdose in Renal Failure. Nephrol. Dial. Transplant. 1999, 14, 1337. [Google Scholar] [CrossRef]
- Michtell, G.A.J. Extrapyramidal Reaction in a Patient on Combined Drug Therapy: Report of a Case. Anesth. Prog. 1971, 18, 78–79. [Google Scholar]
- Vadalá, S.F.; Pellegrini, D.; Silva, E.D.; Miñarro, D.; Finn, B.C.; Bruetman, J.E.; Nápoli, G.; Young, P. Lethargic encephalitis. Report of one case. Rev. Med. Chil. 2013, 141, 531–534. [Google Scholar] [CrossRef]
- Sarva, H.; Panichpisal, K. Gentamicin-Induced Myoclonus: A Case Report and Literature Review of Antibiotics-Induced Myoclonus. Neurologist 2012, 18, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Dib, E.G.; Bernstein, S.; Benesch, C. Multifocal Myoclonus Induced by Trimethoprim-Sulfamethoxazole Therapy in a Patient with Nocardia Infection. N. Engl. J. Med. 2004, 350, 88–89. [Google Scholar] [CrossRef] [PubMed]
- Scolari, M.J.; Pellegrini, D. Daptomycin Associated Myoclonus: A Case Report. Farm. Hosp. 2021, 46, 40–42. [Google Scholar] [PubMed]
- Patel, U.C.; Fowler, M.A. Ertapenem-Associated Neurotoxicity in the Spinal Cord Injury (SCI) Population: A Case Series. J. Spinal Cord. Med. 2018, 41, 735–740. [Google Scholar] [CrossRef]
- Jacob, J.S.; Cohen, P.R. Doxycycline-Induced Hand Tremors: Case Report and Review of Antibiotic-Associated Tremors. Cureus 2020, 12, e10782. [Google Scholar] [CrossRef]
- Ferreira, Â.; Sobrosa, P.; Costa, M.; Miranda, I.; Guerra, D. Linezolid Toxicity: A Clinical Case Report. Cureus 2024, 16, e55672. [Google Scholar] [CrossRef]
- Chow, K.M.; Hui, A.C.; Szeto, C.C. Neurotoxicity Induced by Beta-Lactam Antibiotics: From Bench to Bedside. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 649–653. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Darby, R.R.; Raibagkar, P.; Gonzalez Castro, L.N.; Berkowitz, A.L. Antibiotic-Associated Encephalopathy. Neurology 2016, 86, 963–971. [Google Scholar] [CrossRef]
- Conway, N.; Beck, E.; Somerville, J. Penicillin Encephalopathy. Postgrad. Med. J. 1968, 44, 891–897. [Google Scholar] [CrossRef]
- Lerner, P.I.; Smith, H.; Weinstein, L. Penicillin Neurotoxicity. Ann. N. Y. Acad. Sci. 1967, 145, 310–318. [Google Scholar] [CrossRef]
- Grill, M.F.; Maganti, R.K. Neurotoxic Effects Associated with Antibiotic Use: Management Considerations. Br. J. Clin. Pharmacol. 2011, 72, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jiménez, F.J.; Puertas, I.; de Toledo-Heras, M. Drug-Induced Myoclonus: Frequency, Mechanisms and Management. CNS Drugs 2004, 18, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Badhwar, A.; Berkovic, S.F.; Dowling, J.P.; Gonzales, M.; Narayanan, S.; Brodtmann, A.; Berzen, L.; Caviness, J.; Trenkwalder, C.; Winkelmann, J.; et al. Action Myoclonus-Renal Failure Syndrome: Characterization of a Unique Cerebro-Renal Disorder. Brain 2004, 127, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Uchida, I.; Mashimo, T.; Yamazaki, S.; Hatano, K.; Ikeda, F.; Mochizuki, Y.; Terai, T.; Matsuoka, N. Evidence for the Involvement of GABA(A) Receptor Blockade in Convulsions Induced by Cephalosporins. Neuropharmacology 2003, 45, 304–314. [Google Scholar] [CrossRef]
- Lam, S.; Gomolin, I.H. Cefepime Neurotoxicity: Case Report, Pharmacokinetic Considerations, and Literature Review. Pharmacotherapy 2006, 26, 1169–1174. [Google Scholar] [CrossRef]
- Chow, K.M.; Szeto, C.C.; Hui, A.C.-F.; Wong, T.Y.-H.; Li, P.K.-T. Retrospective Review of Neurotoxicity Induced by Cefepime and Ceftazidime. Pharmacotherapy 2003, 23, 369–373. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. Fluoroquinolone-Associated Movement Disorder: A Literature Review. Medicines 2023, 10, 33. [Google Scholar] [CrossRef]
- Cannon, J.P.; Lee, T.A.; Clark, N.M.; Setlak, P.; Grim, S.A. The Risk of Seizures among the Carbapenems: A Meta-Analysis. J. Antimicrob. Chemother. 2014, 69, 2043–2055. [Google Scholar] [CrossRef]
- Kufel, W.D.; Parsels, K.A.; Blaine, B.E.; Steele, J.M.; Seabury, R.W.; Asiago-Reddy, E.A. Real-World Evaluation of Linezolid-Associated Serotonin Toxicity with and without Concurrent Serotonergic Agents. Int. J. Antimicrob. Agents 2023, 62, 106843. [Google Scholar] [CrossRef]
- Neau, J.P.; Rogez, R.; Boissonnot, L.; Simmat, G.; Gil, R.; Lefevre, J.P. Neurologic adverse effects of piperazine. Acta Neurol. Belg. 1984, 84, 26–34. [Google Scholar]
- Yagi, S.; Moriya, O.; Nakajima, M.; Umeki, S.; Hino, J.; Soejima, R. A case of tuberculous pleurisy associated with myoclonus and Quincke’s edema due to isoniazid and isoniazid sodium methanesulfonate. Kekkaku 1989, 64, 407–412. [Google Scholar] [PubMed]
- Moellentin, D.; Picone, C.; Leadbetter, E. Memantine-Induced Myoclonus and Delirium Exacerbated by Trimethoprim. Ann. Pharmacother. 2008, 42, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.J.; Tianzhi, I.L.; Lim, W.S. Memantine-Induced Myoclonus Precipitated by Renal Impairment and Drug Interactions. J. Am. Geriatr. Soc. 2015, 63, 2643–2644. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, J.; Weller, M.; Schoppmeyer, K.; Riederer, P. Amantadine and Memantine Are NMDA Receptor Antagonists with Neuroprotective Properties. J. Neural Transm. Suppl. 1994, 43, 91–104. [Google Scholar]
- Rissardo, J.P.; Fornari Caprara, A.L. Action Myoclonus Secondary to Donepezil: Case Report and Literature Review. Rambam Maimonides Med. J. 2023, 14, e0023. [Google Scholar] [CrossRef]
- Whateley, J.M.; Huffman, A.J.; Henderson, E.J. Acute Inability to Mobilise Resulting from Probable Donepezil-Induced Myoclonus. Age Ageing 2018, 47, 907–908. [Google Scholar] [CrossRef]
- Tombini, M.; Boscarino, M.; Di Lazzaro, V. Tackling Seizures in Patients with Alzheimer’s Disease. Expert Rev. Neurother. 2023, 23, 1131–1145. [Google Scholar] [CrossRef]
- Brody, D.J.; Gu, Q. Antidepressant Use Among Adults: United States, 2015–2018. NCHS Data Brief 2020, 377, 1–8. [Google Scholar]
- Czeisler, M.É.; Lane, R.I.; Wiley, J.F.; Czeisler, C.A.; Howard, M.E.; Rajaratnam, S.M.W. Follow-up Survey of US Adult Reports of Mental Health, Substance Use, and Suicidal Ideation During the COVID-19 Pandemic, September 2020. JAMA Netw. Open 2021, 4, e2037665. [Google Scholar] [CrossRef]
- Lauterbach, E.C. Reversible Intermittent Rhythmic Myoclonus with Fluoxetine in Presumed Pick’s Disease. Mov. Disord. 1994, 9, 343–346. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. The Link Between Amitriptyline and Movement Disorders: Clinical Profile and Outcome. Ann. Acad. Med. Singap. 2020, 49, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Forsberg-Gillving, M.; Bode, M.; Sindrup, S.H. Myoclonus as a side effect to citalopram treatment in a patient with liver cirrhosis. Ugeskr. Laeger 2015, 177, V04150325. [Google Scholar]
- Sato, Y.; Nakamura, K.; Yasui-Furukori, N. Serotonin Syndrome Induced by the Readministration of Escitalopram after a Short-Term Interruption in an Elderly Woman with Depression: A Case Report. Neuropsychiatr. Dis. Treat. 2015, 11, 2505–2507. [Google Scholar]
- Arora, B.; Kannikeswaran, N. The Serotonin Syndrome-the Need for Physician’s Awareness. Int. J. Emerg. Med. 2010, 3, 373–377. [Google Scholar] [CrossRef]
- Takahashi, C.; Goto, E.; Taira, S.; Kataoka, N.; Nishihara, M.; Katsumata, T.; Goto, I.; Takiuchi, H. Serotonin syndrome in a patient with small cell lung cancer. Gan Kagaku Ryoho 2013, 40, 1059–1061. [Google Scholar]
- Correia, P.; Ribeiro, J.A.; Bento, C.; Sales, F. Negative Myoclonus Secondary to Paroxetine Intake. BMJ Case Rep. 2018, 2018, bcr-2018-224586. [Google Scholar] [CrossRef]
- Bušková, J.; Vorlová, T.; Piško, J.; Sonka, K. Severe Sleep-Related Movement Disorder Induced by Sertraline. Sleep Med. 2012, 13, 769–770. [Google Scholar] [CrossRef]
- Trigo López, J.; Martínez Pías, E.; Carrancho García, A.; Pedraza Hueso, M.I. Opsoclonus-myoclonus syndrome secondary to duloxetine poisoning. Neurologia 2021, 36, 250–252. [Google Scholar] [CrossRef]
- Koshiishi, T.; Okuyama, K. Probable Serotonin Syndrome and Withdrawal Symptoms Caused by Milnacipran. Yakugaku Zasshi 2016, 136, 1675–1679. [Google Scholar] [CrossRef]
- Necpál, J.; Skorvanek, M. Opsoclonus-Myoclonus Ataxia Syndrome Secondary to Venlafaxine Intoxication. J. Neurol. Sci. 2017, 372, 19–20. [Google Scholar] [CrossRef]
- Sato, F.; Suzuki, A.; Noto, K.; Shirata, T.; Kanno, M.; Kobayashi, R.; Otani, K. Serotonin Syndrome Induced by Overdose of Atomoxetine Alone in a Patient with Attention-Deficit Hyperactivity Disorder: A Case Report. Psychiatry Clin. Neurosci. Rep. 2022, 1, e41. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Ali, H.T.; Allahham, A.; Fornari Caprara, A.L.; Rissardo, J.P. Bupropion-Induced Myoclonus: Case Report and Review of the Literature. Neurohospitalist 2023, 13, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.; Szponar, J.; Pyra, E.; Kostek, H.; Kujawa, A. Serotonin syndrome in the course of drug-poisoning—Case presentation. Przegl. Lek. 2011, 68, 523–526. [Google Scholar]
- Hernández, J.L.; Ramos, F.J.; Infante, J.; Rebollo, M.; González-Macías, J. Severe Serotonin Syndrome Induced by Mirtazapine Monotherapy. Ann. Pharmacother. 2002, 36, 641–643. [Google Scholar] [CrossRef]
- Mason, P.J.; Morris, V.A.; Balcezak, T.J. Serotonin Syndrome. Presentation of 2 Cases and Review of the Literature. Medicine 2000, 79, 201–209. [Google Scholar] [CrossRef]
- Patel, H.C.; Bruza, D.; Yeragani, V. Myoclonus with Trazodone. J. Clin. Psychopharmacol. 1988, 8, 152. [Google Scholar] [CrossRef]
- Thumtecho, S.; Wainipitapong, S.; Suteparuk, S. Escitalopram, Bupropion, Lurasidone, Lamotrigine and Possible Vortioxetine Overdose Presented with Serotonin Syndrome and Diffuse Encephalopathy: A Case Report. Toxicol. Rep. 2021, 8, 1846–1848. [Google Scholar] [CrossRef]
- Bloem, B.R.; Lammers, G.J.; Roofthooft, D.W.; De Beaufort, A.J.; Brouwer, O.F. Clomipramine Withdrawal in Newborns. Arch. Dis. Child. Fetal Neonatal Ed. 1999, 81, F77. [Google Scholar] [CrossRef]
- Masand, P. Desipramine-Induced Oral-Pharyngeal Disturbances: Stuttering and Jaw Myoclonus. J. Clin. Psychopharmacol. 1992, 12, 444–445. [Google Scholar] [CrossRef]
- Black, K.J.; Kilzieh, N. Severe Imipramine-Induced Myoclonus in a Patient with Psychotic Bipolar Depression, Catatonia, and Schizencephaly. Ann. Clin. Psychiatry 1994, 6, 45–49. [Google Scholar] [CrossRef]
- Kettl, P.; DePaulo, J.R.J. Maprotiline-Induced Myoclonus. J. Clin. Psychopharmacol. 1983, 3, 264–265. [Google Scholar] [CrossRef] [PubMed]
- de Larquier, A.; Vial, T.; Bréjoux, G.; Descotes, J. Serotoninergic syndrome after combining tramadol and iproniazid. Therapie 1999, 54, 767–768. [Google Scholar] [PubMed]
- Gillman, P.K. Possible Serotonin Syndrome with Moclobemide and Pethidine. Med. J. Aust. 1995, 162, 554. [Google Scholar] [CrossRef] [PubMed]
- White, P.D. Myoclonus and Episodic Delirium Associated with Phenelzine: A Case Report. J. Clin. Psychiatry 1987, 48, 340–341. [Google Scholar]
- Rissardo, J.P.; Caprara, A.L.F. Buspirone-Associated Movement Disorder: A Literature Review. Prague Med. Rep. 2020, 121, 5–24. [Google Scholar] [CrossRef]
- Ritchie, E.C.; Bridenbaugh, R.H.; Jabbari, B. Acute Generalized Myoclonus Following Buspirone Administration. J. Clin. Psychiatry 1988, 49, 242–243. [Google Scholar]
- Cohen, R.M.; Pickar, D.; Murphy, D.L. Myoclonus-Associated Hypomania during MAO-Inhibitor Treatment. Am. J. Psychiatry 1980, 137, 105–106. [Google Scholar]
- Garvey, M.J.; Tollefson, G.D. Occurrence of Myoclonus in Patients Treated with Cyclic Antidepressants. Arch. Gen. Psychiatry 1987, 44, 269–272. [Google Scholar] [CrossRef]
- Revet, A.; Montastruc, F.; Roussin, A.; Raynaud, J.-P.; Lapeyre-Mestre, M.; Nguyen, T.T.H. Antidepressants and Movement Disorders: A Postmarketing Study in the World Pharmacovigilance Database. BMC Psychiatry 2020, 20, 308. [Google Scholar] [CrossRef]
- Evidente, V.G.; Caviness, J.N. Focal Cortical Transient Preceding Myoclonus during Lithium and Tricyclic Antidepressant Therapy. Neurology 1999, 52, 211–213. [Google Scholar] [CrossRef]
- Skidmore, F.; Reich, S.G. Tardive Dystonia. Curr. Treat. Options Neurol. 2005, 7, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.S.; Chu, N.S. Acute Dystonic Reaction with Asterixis and Myoclonus Following Metoclopramide Therapy. J. Neurol. Neurosurg. Psychiatry 1988, 51, 1002–1003. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Hirosawa, T.; Morinaga, K.; Shimizu, T. Metoclopramide-Induced Serotonin Syndrome. Intern. Med. 2017, 56, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Hyser, C.L.; Drake, M.E.J. Myoclonus Induced by Metoclopramide Therapy. Arch. Intern. Med. 1983, 143, 2201–2202. [Google Scholar] [CrossRef]
- Yung, C.Y. Case Vignettes of Movement Disorders. Brain Res. Bull. 1983, 11, 191–194. [Google Scholar] [CrossRef]
- Dy, P.; Arcega, V.; Ghali, W.; Wolfe, W. Serotonin Syndrome Caused by Drug to Drug Interaction between Escitalopram and Dextromethorphan. BMJ Case Rep. 2017, 2017, bcr-2017-221486. [Google Scholar] [CrossRef]
- Naguy, A. Ondansetron-Induced Myoclonus With Escitalopram and Highly Active Antiretroviral Therapy: A Closer Look at 5-HT3 Receptors. Prim. Care Companion CNS Disord. 2020, 22, 19l02524. [Google Scholar] [CrossRef]
- Chaw, S.H.; Chan, L.; Lee, P.K.; Bakar, J.A.; Rasiah, R.; Foo, L.L. Prolonged Drug-Induced Myoclonus: Is It Related to Palonosetron? J. Anesth. 2016, 30, 1063–1066. [Google Scholar] [CrossRef]
- Rojas, C.; Stathis, M.; Thomas, A.G.; Massuda, E.B.; Alt, J.; Zhang, J.; Rubenstein, E.; Sebastiani, S.; Cantoreggi, S.; Snyder, S.H.; et al. Palonosetron Exhibits Unique Molecular Interactions with the 5-HT3 Receptor. Anesth. Analg. 2008, 107, 469–478. [Google Scholar] [CrossRef]
- Van Sweden, B.; Kamphuisen, H.A. Cimetidine Neurotoxicity. EEG and Behaviour Aspects. Eur. Neurol. 1984, 23, 300–305. [Google Scholar] [CrossRef]
- Irioka, T.; Machida, A.; Yokota, T.; Mizusawa, H. Antihistamine-Associated Myoclonus: A Case Report. Mov. Disord. 2008, 23, 1615–1616. [Google Scholar] [CrossRef] [PubMed]
- Jacquesson, M.; Saudeau, D.; Pantin, B.; Girard, J.J.; Groussin, P. Myoclonia caused by a combination of triprolidine, pseudoephedrine and paracetamol. Nouv. Presse Med. 1982, 11, 2298–2299. [Google Scholar] [PubMed]
- Schipior, P.G. An Unusual Case of Antihistamine Intoxication. J. Pediatr. 1967, 71, 589–591. [Google Scholar] [CrossRef] [PubMed]
- Ammenti, A.; Reitter, B.; Müller-Wiefel, D.E. Chlorambucil Neurotoxicity: Report of Two Cases. Helv. Paediatr. Acta 1980, 35, 281–287. [Google Scholar] [PubMed]
- Wyllie, A.R.; Bayliff, C.D.; Kovacs, M.J. Myoclonus Due to Chlorambucil in Two Adults with Lymphoma. Ann. Pharmacother. 1997, 31, 171–174. [Google Scholar] [CrossRef]
- Byrne, T.N.J.; Moseley, T.A., 3rd; Finer, M.A. Myoclonic Seizures Following Chlorambucil Overdose. Ann. Neurol. 1981, 9, 191–194. [Google Scholar] [CrossRef]
- Meloni, G.; Raucci, U.; Pinto, R.M.; Spalice, A.; Vignetti, M.; Iannetti, P. Pretransplant Conditioning with Busulfan and Cyclophosphamide in Acute Leukemia Patients: Neurological and Electroencephalographic Prospective Study. Ann. Oncol. 1992, 3, 145–148. [Google Scholar] [CrossRef]
- Savica, R.; Rabinstein, A.A.; Josephs, K.A. Ifosfamide Associated Myoclonus-Encephalopathy Syndrome. J. Neurol. 2011, 258, 1729–1731. [Google Scholar] [CrossRef]
- Denison, D.J.; Alghzaly, A.A. Busulfan Induced Myoclonus. Saudi Med. J. 2006, 27, 557–558. [Google Scholar]
- Maller, B.; Peguero, E.; Tanvetyanon, T. Ipilimumab/Nivolumab-Related Opsoclonus-Myoclonus-Ataxia Syndrome Variant in a Patient with Malignant Pleural Mesothelioma. J. Immunother. 2018, 41, 411–412. [Google Scholar] [CrossRef]
- Raskin, J.; Masrori, P.; Cant, A.; Snoeckx, A.; Hiddinga, B.; Kohl, S.; Janssens, A.; Cras, P.; Van Meerbeeck, J.P. Recurrent Dysphasia Due to Nivolumab-Induced Encephalopathy with Presence of Hu Autoantibody. Lung Cancer 2017, 109, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, A.; Murphy, M.; McDermott, R.; Alexander, M.; O’Dowd, S. Pembrolizumab-Induced Steroid-Responsive Myoclonus. Mov. Disord. Clin. Pract. 2022, 9, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.U.; Enk, A. Therapeutic Use of Anti-CTLA-4 Antibodies. Int. Immunol. 2015, 27, 3–10. [Google Scholar] [CrossRef]
- Monnerat, C.; Gander, M.; Leyvraz, S. A Rare Case of Prednimustine-Induced Myoclonus. J. Natl. Cancer Inst. 1997, 89, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Lazar, A.; Mau-Holzmann, U.A.; Kolb, H.; Reichenmiller, H.E.; Riess, O.; Schömig, E. Multiple Organ Failure Due to 5-Fluorouracil Chemotherapy in a Patient with a Rare Dihydropyrimidine Dehydrogenase Gene Variant. Onkologie 2004, 27, 559–562. [Google Scholar] [CrossRef]
- Taylor, H.G.; Wolf, C.R.; Maitland, C.G. Neurologic Toxicity Associated with Hepatic Artery Infusion HAI of FUdR. Cancer Chemother. Pharmacol. 1986, 17, 292–293. [Google Scholar]
- Escoda, L.; López-Guillermo, A.; Formigón, M.; Estrach, T.; Cervantes, F.; Montserrat, E.; Rozman, C. Treatment of various lymphoproliferative syndromes with deoxycoformycin: Results in 6 patients. Sangre 1990, 35, 421–424. [Google Scholar]
- Mazumder, M.A.; Gulati, S. Tacrolimus-Induced Focal Myoclonus of Unilateral Hand in a Kidney Transplant Recipient. Indian J. Nephrol. 2024, 34, 93. [Google Scholar] [CrossRef]
- Gijtenbeek, J.M.; van den Bent, M.J.; Vecht, C.J. Cyclosporine Neurotoxicity: A Review. J. Neurol. 1999, 246, 339–346. [Google Scholar] [CrossRef]
- Kang, H.G.; Park, S.K.; Wang, S.J.; Oh, S.-Y.; Ryu, H.U. Opsoclonus-Myoclonus Syndrome Following Long-Term Use of Cyclosporine. Clin. Toxicol. 2018, 56, 373–376. [Google Scholar] [CrossRef]
- LoRusso, P.; Foster, B.J.; Poplin, E.; McCormick, J.; Kraut, M.; Flaherty, L.; Heilbrun, L.K.; Valdivieso, M.; Baker, L. Phase I Clinical Trial of Pyrazoloacridine NSC366140 (PD115934). Clin. Cancer Res. 1995, 1, 1487–1493. [Google Scholar] [PubMed]
- Shun, Y.-T.; Lai, H.-Y.; Chuang, Y.-T.; Lin, H.-F. Successful Treatment of Irinotecan-Induced Muscle Twitching: A Case Report. Clin. Med. Insights Case Rep. 2023, 16, 11795476221150354. [Google Scholar] [CrossRef] [PubMed]
- Rissardo, J.P.; Fornari Caprara, A.L. Myoclonus Secondary to Amantadine: Case Report and Literature Review. Clin. Pract. 2023, 13, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, R.F. Amantadine-Induced “Vocal” Myoclonus. Mov. Disord. 1996, 11, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.; Armengou-Garcia, L.; Sasikumar, S.; Kuhlman, G.; Fox, S.H.; Lang, A.E.; Espay, A.J. Amantadine-Induced Craniofacial Myoclonus: Distinctive Iatrogenic Dysarthria in Parkinson’s Disease. Mov. Disord. Clin. Pract. 2023, 10, 1408–1413. [Google Scholar] [CrossRef]
- Cotzias, G.C.; Papavasiliou, P.S.; Gellene, R. Modification of Parkinsonism—Chronic Treatment with L-Dopa. N. Engl. J. Med. 1969, 280, 337–345. [Google Scholar] [CrossRef]
- Klawans, H.L.; Goetz, C.; Bergen, D. Levodopa-Induced Myoclonus. Arch. Neurol. 1975, 32, 330–334. [Google Scholar] [CrossRef]
- Nausieda, P.A.; Weiner, W.J.; Kaplan, L.R.; Weber, S.; Klawans, H.L. Sleep Disruption in the Course of Chronic Levodopa Therapy: An Early Feature of the Levodopa Psychosis. Clin. Neuropharmacol. 1982, 5, 183–194. [Google Scholar] [CrossRef]
- Luquin, M.R.; Scipioni, O.; Vaamonde, J.; Gershanik, O.; Obeso, J.A. Levodopa-Induced Dyskinesias in Parkinson’s Disease: Clinical and Pharmacological Classification. Mov. Disord. 1992, 7, 117–124. [Google Scholar] [CrossRef]
- Marconi, R.; Lefebvre-Caparros, D.; Bonnet, A.M.; Vidailhet, M.; Dubois, B.; Agid, Y. Levodopa-Induced Dyskinesias in Parkinson’s Disease Phenomenology and Pathophysiology. Mov. Disord. 1994, 9, 2–12. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Muhammad, S.; Yatakarla, V.; Vora, N.M.; Paras, P.; Caprara, A.L.F. Flapping Tremor: Unraveling Asterixis—A Narrative Review. Medicina 2024, 60, 362. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Srivanitchapoom, P. Levodopa-Induced Dyskinesia: Clinical Features, Pathophysiology, and Medical Management. Ann. Indian Acad. Neurol. 2017, 20, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Vardi, J.; Glaubman, H.; Rabey, J.M.; Streifler, M. Myoclonic Attacks Induced by L-Dopa and Bromocryptin in Parkinson Patients: A Sleep EEG Study. J. Neurol. 1978, 218, 35–42. [Google Scholar] [CrossRef]
- Tandberg, E.; Larsen, J.P.; Karlsen, K. A Community-Based Study of Sleep Disorders in Patients with Parkinson’s Disease. Mov. Disord. 1998, 13, 895–899. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Yeh, Y.-W. Multidrug Overdose-Induced Myoclonus Complicated by Rhabdomyolysis: Possible Role and Mechanism of Muscle Toxicity of Risperidone. J. Clin. Pharm. Ther. 2014, 39, 698–700. [Google Scholar] [CrossRef]
- Onofrj, M.; Thomas, A.; Iacono, D.; Di Iorio, A.; Bonanni, L. Switch-over from Tolcapone to Entacapone in Severe Parkinson’s Disease Patients. Eur. Neurol. 2001, 46, 11–16. [Google Scholar] [CrossRef]
- Cardon-Dunbar, A.; Robertson, T.; Roberts, M.S.; Isbister, G.K. Pramipexole Overdose Associated with Visual Hallucinations, Agitation and Myoclonus. J. Med. Toxicol. 2017, 13, 343–346. [Google Scholar] [CrossRef]
- Haddad, P.M.; Dursun, S.M. Neurological Complications of Psychiatric Drugs: Clinical Features and Management. Hum. Psychopharmacol. 2008, 23 (Suppl. S1), 15–26. [Google Scholar] [CrossRef]
- Druschky, K.; Bleich, S.; Grohmann, R.; Engel, R.R.; Neyazi, A.; Stübner, S.; Toto, S. Seizure Rates under Treatment with Antipsychotic Drugs: Data from the AMSP Project. World J. Biol. Psychiatry 2019, 20, 732–741. [Google Scholar] [CrossRef]
- Pai, N.; Acar, M.; Juneja, P.; Kouhkamari, M.H.; Siva, S.; Mullan, J. Antipsychotic Prescribing Patterns in Australia: A Retrospective Analysis. BMC Psychiatry 2022, 22, 110. [Google Scholar] [CrossRef]
- Hayase, T.; Saiga, H.; Yamaguchi, T. Haloperidol-Induced Myoclonus in a Patient with Delirium. Geriatr. Gerontol. Int. 2023, 23, 243–244. [Google Scholar] [CrossRef] [PubMed]
- Altıparmak, T.; Yurtseven, C.H.; Geniş, B.; Cosar, B. Myoclonic Seizures Induced by Antipsychotic Drugs: A Case Series and Literature Review. Turk. J. Clin. Psychiatry 2022, 25, 219–222. [Google Scholar] [CrossRef]
- Berman, I.; Zalma, A.; DuRand, C.J.; Green, A.I. Clozapine-Induced Myoclonic Jerks and Drop Attacks. J. Clin. Psychiatry 1992, 53, 329–330. [Google Scholar]
- Leroy, C.; Sigwald, J. Myoclonus and epilepsy appearing in various patients during the administration of chlorpromazine. Encephale 1956, 45, 904–909. [Google Scholar] [PubMed]
- Tikka, S.K.; Pratap, A.; Sinha, V.K. Dose-Dependent Olanzapine-Induced Myoclonus. Toxicol. Int. 2014, 21, 335–336. [Google Scholar] [CrossRef]
- Ishida, T.; Uchida, H.; Kaneko, S.; Sugiyama, K.; Hamabe, Y.; Mimura, M.; Suzuki, T. Life-Threatening Serotonin Syndrome Precipitated by Discontinuation of Serotonin-Dopamine Antagonist in the Presence of Serotonergic Agents: A Case Report. Clin. Neuropharmacol. 2020, 43, 81–83. [Google Scholar] [CrossRef]
- Aggarwal, A.; Jiloha, R.C. Quetiapine Induced Myoclonus. Indian J. Med. Sci. 2008, 62, 422–423. [Google Scholar] [CrossRef]
- Zand, L.; Hoffman, S.J.; Nyman, M.A. 74-Year-Old Woman with New-Onset Myoclonus. Mayo Clin. Proc. 2010, 85, 955–958. [Google Scholar] [CrossRef]
- Asahi, S.; Nishikawa, T.; Kurata, K.; Morinobu, S.; Yamawaki, S. A Case of Myclonus, Resembling Epileptic Seizure, Induced by Short-Term Sulpiride Treatment. Int. J. Psychiatry Clin. Pract. 2002, 6, 215–216. [Google Scholar] [CrossRef]
- Montaz, L.; Varache, N.; Harry, P.; Aymes, C.; Turcant, A.; Delille, F.; Simonin, D.; Hass, C. Torsades de pointes during sultopride poisoning. J. Toxicol. Clin. Exp. 1992, 12, 481–486. [Google Scholar]
- Pisani, F.; Oteri, G.; Costa, C.; Di Raimondo, G.; Di Perri, R. Effects of Psychotropic Drugs on Seizure Threshold. Drug Saf. 2002, 25, 91–110. [Google Scholar] [CrossRef] [PubMed]
- Gopaul, M.; Altalib, H. Do Psychotropic Drugs Cause Seizures? Epilepsy Behav. Rep. 2024, 27, 100679. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Delva, N. Clozapine-Induced Seizures: Recognition and Treatment. Can. J. Psychiatry 2007, 52, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, H.; Fukuzako, H.; Izumi, K.; Koja, T.; Fukuda, T.; Fujii, H.; Matsumoto, K.; Sonoda, H.; Imamura, K. Tardive Myoclonus. Lancet 1987, 1, 322. [Google Scholar] [CrossRef] [PubMed]
- Fukuzako, H.; Tominaga, H.; Izumi, K.; Koja, T.; Nomoto, M.; Hokazono, Y.; Kamei, K.; Fujii, H.; Fukuda, T.; Matsumoto, K. Postural Myoclonus Associated with Long-Term Administration of Neuroleptics in Schizophrenic Patients. Biol. Psychiatry 1990, 27, 1116–1126. [Google Scholar] [CrossRef]
- Ortí-Pareja, M.; Jiménez-Jiménez, F.J.; Vázquez, A.; Catalán, M.J.; Zurdo, M.; Burguera, J.A.; Martínez-Martín, P.; Molina, J.A. Drug-Induced Tardive Syndromes. Park. Relat. Disord. 1999, 5, 59–65. [Google Scholar] [CrossRef]
- Little, J.T.; Jankovic, J. Tardive Myoclonus. Mov. Disord. 1987, 2, 307–311. [Google Scholar] [CrossRef]
- Staedt, J.; Dewes, D.; Danos, P.; Stoppe, G. Can Chronic Neuroleptic Treatment Promote Sleep Disturbances in Elderly Schizophrenic Patients? Int. J. Geriatr. Psychiatry 2000, 15, 170–176. [Google Scholar] [CrossRef]
- Uvais, N.A.; Ashfaq, A.M. Very Low Single-Dose Quetiapine-Induced Myoclonus. Prim. Care Companion CNS Disord. 2022, 24, 21cr02907. [Google Scholar] [CrossRef]
- Baysal Kirac, L.; Aydogdu, I.; Acarer, A.; Alpaydin, S.; Bayam, F.E.; Onbasi, H.; Bademkiran, F. Myoclonic Status Epilepticus in Six Patients without Epilepsy. Epilepsy Behav. Case Rep. 2013, 1, 10–13. [Google Scholar] [CrossRef]
- Velayudhan, L.; Kirchner, V. Quetiapine-Induced Myoclonus. Int. Clin. Psychopharmacol. 2005, 20, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Magaudda, A.; Di Rosa, G. Carbamazepine-Induced Non-Epileptic Myoclonus and Tic-like Movements. Epileptic Disord. 2012, 14, 172–173. [Google Scholar] [CrossRef] [PubMed]
- Aguglia, U.; Zappia, M.; Quattrone, A. Carbamazepine-Induced Nonepileptic Myoclonus in a Child with Benign Epilepsy. Epilepsia 1987, 28, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Dhuna, A.; Pascual-Leone, A.; Talwar, D. Exacerbation of Partial Seizures and Onset of Nonepileptic Myoclonus with Carbamazepine. Epilepsia 1991, 32, 275–278. [Google Scholar] [CrossRef]
- Holtmann, M.; Korn-Merker, E.; Boenigk, H.E. Carbamazepine-Induced Combined Phonic and Motor Tic in a Boy with Down’s Syndrome. Epileptic Disord. 2000, 2, 39–40. [Google Scholar] [CrossRef]
- Parmeggiani, L.; Seri, S.; Bonanni, P.; Guerrini, R. Electrophysiological Characterization of Spontaneous and Carbamazepine-Induced Epileptic Negative Myoclonus in Benign Childhood Epilepsy with Centro-Temporal Spikes. Clin. Neurophysiol. 2004, 115, 50–58. [Google Scholar] [CrossRef]
- Sáenz-Farret, M.; Tijssen, M.A.J.; Eliashiv, D.; Fisher, R.S.; Sethi, K.; Fasano, A. Antiseizure Drugs and Movement Disorders. CNS Drugs 2022, 36, 859–876. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. Carbamazepine-, Oxcarbazepine-, Eslicarbazepine-Associated Movement Disorder: A Literature Review. Clin. Neuropharmacol. 2020, 43, 66–80. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Fornari Caprara, A.L. Cenobamate (YKP3089) and Drug-Resistant Epilepsy: A Review of the Literature. Medicina 2023, 59, 1389. [Google Scholar] [CrossRef]
- Wallace, S.J. Myoclonus and Epilepsy in Childhood: A Review of Treatment with Valproate, Ethosuximide, Lamotrigine and Zonisamide. Epilepsy Res. 1998, 29, 147–154. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Medeiros Araujo de Matos, U.; Fornari Caprara, A.L. Gabapentin-Associated Movement Disorders: A Literature Review. Medicines 2023, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, D.; Koubeissi, M. Unmasking of Myoclonus by Lacosamide in Generalized Epilepsy. Epilepsy Behav. Case Rep. 2017, 7, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Rissardo, J.P.; Fornari Caprara, A.L. Lamotrigine-Associated Movement Disorder: A Literature Review. Neurol. India 2021, 69, 1524–1538. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.; Frucht, S.J. Myoclonus: An Update. Curr. Opin. Neurol. 2024, 37, 421–425. [Google Scholar] [CrossRef]
- Rosen, A.D.; Berenyi, K.J.; Laurenceau, V. Intention Myoclonus—Diazepam and Phenobarbital Treatment. JAMA 1969, 209, 772–773. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. Phenytoin-Associated Movement Disorder: A Literature Review. Tzu Chi Med. J. 2022, 34, 409–417. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. Pregabalin-Associated Movement Disorders: A Literature Review. Brain Circ. 2020, 6, 96–106. [Google Scholar] [CrossRef]
- Obeso, J.A.; Artieda, J.; Rothwell, J.C.; Day, B.; Thompson, P.; Marsden, C.D. The Treatment of Severe Action Myoclonus. Brain 1989, 112 Pt 3, 765–777. [Google Scholar] [CrossRef]
- Wallace, S.J. Newer Antiepileptic Drugs: Advantages and Disadvantages. Brain Dev. 2001, 23, 277–283. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. Topiramate-Associated Movement Disorder: Case Series and Literature Review. Clin. Neuropharmacol. 2020, 43, 116–120. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F.; Durante, Í. Valproate-Associated Movement Disorder: A Literature Review. Prague Med. Rep. 2021, 122, 140–180. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, M.Y.; Vishnevska, S. Vigabatrin and Multifocal Myoclonus in Adults with Partial Seizures. Clin. Neuropharmacol. 1995, 18, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Warstler, A.; Bean, J. Antimicrobial-Induced Cognitive Side Effects. Ment. Health Clin. 2016, 6, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Brandariz-Nuñez, D.; Correas-Sanahuja, M.; Maya-Gallego, S.; Martín Herranz, I. Neurotoxicity Associated with Acyclovir and Valacyclovir: A Systematic Review of Cases. J. Clin. Pharm. Ther. 2021, 46, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Haefeli, W.E.; Schoenenberger, R.A.; Weiss, P.; Ritz, R.F. Acyclovir-Induced Neurotoxicity: Concentration-Side Effect Relationship in Acyclovir Overdose. Am. J. Med. 1993, 94, 212–215. [Google Scholar] [CrossRef]
- Ernst, M.E.; Franey, R.J. Acyclovir- and Ganciclovir-Induced Neurotoxicity. Ann. Pharmacother. 1998, 32, 111–113. [Google Scholar] [CrossRef]
- Vilter, R.W. Vidarabine-Associated Encephalopathy and Myoclonus. Antimicrob. Agents Chemother. 1986, 29, 933–935. [Google Scholar] [CrossRef]
- Goldberg, R.J.; Huk, M. Serotonin Syndrome from Trazodone and Buspirone. Psychosomatics 1992, 33, 235–236. [Google Scholar] [CrossRef]
- Roth, B.A.; Vinson, D.R.; Kim, S. Carisoprodol-Induced Myoclonic Encephalopathy. J. Toxicol. Clin. Toxicol. 1998, 36, 609–612. [Google Scholar] [CrossRef]
- Lee, D.S.; Wong, H.A.; Knoppert, D.C. Myoclonus Associated with Lorazepam Therapy in Very-Low-Birth-Weight Infants. Biol. Neonate 1994, 66, 311–315. [Google Scholar] [CrossRef]
- Li, Y.; Delcher, C.; Brown, J.D.; Wei, Y.-J.; Reisfield, G.M.; Winterstein, A.G. Impact of Schedule IV Controlled Substance Classification on Carisoprodol Utilization in the United States: An Interrupted Time Series Analysis. Drug Alcohol Depend. 2019, 202, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, C.; Valin, A.; Calderazzo, L.; Stutzmann, J.M.; Naquet, R. Myoclonus induced by some benzodiazepines in the Papio papio. Comparison with myoclonus induced by intermittent light stimulation. Rev. Electroencephalogr. Neurophysiol. Clin. 1982, 12, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Pitton Rissardo, J.; Fornari Caprara, A.L. Bupropion-Associated Movement Disorders: A Systematic Review. Ann. Mov. Disord. 2020, 3, 86–98. [Google Scholar] [CrossRef]
- Pedro-Botet, M.L.; Bonal, J.; Caralps, A. Nifedipine and Myoclonic Disorders. Nephron 1989, 51, 281. [Google Scholar] [CrossRef]
- Hicks, C.B.; Abraham, K. Verapamil and Myoclonic Dystonia. Ann. Intern. Med. 1985, 103, 154. [Google Scholar] [CrossRef]
- Vadlamudi, L.; Wijdicks, E.F.M. Multifocal Myoclonus Due to Verapamil Overdose. Neurology 2002, 58, 984. [Google Scholar] [CrossRef]
- Wallace, E.L.; Lingle, K.; Pierce, D.; Satko, S. Amlodipine-Induced Myoclonus. Am. J. Med. 2009, 122, e7. [Google Scholar] [CrossRef]
- Swanoski, M.T.; Chen, J.S.; Monson, M.H. Myoclonus Associated with Long-Term Use of Diltiazem. Am. J. Health Syst. Pharm. 2011, 68, 1707–1710. [Google Scholar] [CrossRef]
- Fernandez, H.H.; Friedman, J.H. Carvedilol-Induced Myoclonus. Mov. Disord. 1999, 14, 703. [Google Scholar] [CrossRef]
- Bo, P.; Patrucco, M.; Savoldi, F. Neuropharmacological Profile of Ketanserin. Farm. Sci. 1987, 42, 91–99. [Google Scholar]
- González, L.; Feijóo, M. Myoclonus and angiotensin converting enzyme inhibitors. Med. Clin. 2005, 125, 398. [Google Scholar] [CrossRef] [PubMed]
- Bejan-Angoulvant, T.; Genet, T.; Vrignaud, L.; Angoulvant, D.; Fauchier, L. Three Case Reports of Involuntary Muscular Movements as Adverse Reactions to Sacubitril/Valsartan. Br. J. Clin. Pharmacol. 2018, 84, 1072–1074. [Google Scholar] [CrossRef] [PubMed]
- Hammadi, S.H.; Hassan, M.A.; Allam, E.A.; Elsharkawy, A.M.; Shams, S.S. Effect of Sacubitril/Valsartan on Cognitive Impairment in Colchicine-Induced Alzheimer’s Model in Rats. Fundam. Clin. Pharmacol. 2023, 37, 275–286. [Google Scholar] [CrossRef]
- Marin, C.; Chase, T.N. Effects of SCH 32615, an Enkephalinase Inhibitor, on D-1 and D-2 Dopamine Receptor-Mediated Behaviors. Neuropharmacology 1995, 34, 677–682. [Google Scholar] [CrossRef]
- Ye, X.; Ling, B.; Wu, J.; Wu, S.; Ren, Y.; Zhang, H.; Song, F.; Xuan, Z.; Chen, M. Case Report: Severe Myoclonus Associated with Oral Midodrine Treatment for Hypotension. Medicine 2020, 99, e21533. [Google Scholar] [CrossRef]
- Lee, A.Y.; Barforoshi, S.; Singh, A.; Shrestha, R.; Ha, J.; Kittleson, M. Dobutamine-Induced Myoclonus in a Patient With Advanced Heart Failure and Chronic Kidney Disease. JACC Case Rep. 2024, 29, 102255. [Google Scholar] [CrossRef]
- Wierre, L.; Decaudin, B.; Barsumau, J.; Vairon, M.X.; Horrent, S.; Odou, P.; Azar, R. Dobutamine-Induced Myoclonia in Severe Renal Failure. Nephrol. Dial. Transplant. 2004, 19, 1336–1337. [Google Scholar] [CrossRef]
- Wasey, W.; Aziz, I.; Saleh, S.; Manahil, N.; Wasey, N. Tramadol Induced Jerks. Cureus 2021, 13, e17547. [Google Scholar] [CrossRef]
- Essandoh, S.; Sakae, M.; Miller, J.; Glare, P.A. A Cautionary Tale from Critical Care: Resolution of Myoclonus after Fentanyl Rotation to Hydromorphone. J. Pain Symptom Manag. 2010, 40, e4–e6. [Google Scholar] [CrossRef]
- Han, P.K.J.; Arnold, R.; Bond, G.; Janson, D.; Abu-Elmagd, K. Myoclonus Secondary to Withdrawal from Transdermal Fentanyl: Case Report and Literature Review. J. Pain Symptom Manag. 2002, 23, 66–72. [Google Scholar] [CrossRef]
- Lauterbach, E.C. Hiccup and Apparent Myoclonus after Hydrocodone: Review of the Opiate-Related Hiccup and Myoclonus Literature. Clin. Neuropharmacol. 1999, 22, 87–92. [Google Scholar] [CrossRef] [PubMed]
- López Pardo, P.; Izquierdo Zamarriego, G. Myoclonus due to fentanyl. Report of a case. Rev. Esp. Geriatr. Gerontol. 2016, 51, 60–61. [Google Scholar] [CrossRef] [PubMed]
- Sarhill, N.; Davis, M.P.; Walsh, D.; Nouneh, C. Methadone-Induced Myoclonus in Advanced Cancer. Am. J. Hosp. Palliat. Care 2001, 18, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, L.S.; Olsen, A.K.; Sjøgren, P.; Jensen, N.H. Morphine-induced hyperalgesia, allodynia and myoclonus—New side-effects of morphine? Ugeskr. Laeger 1995, 157, 3307–3310. [Google Scholar] [PubMed]
- Reutens, D.C.; Stewart-Wynne, E.G. Norpethidine Induced Myoclonus in a Patient with Renal Failure. J. Neurol. Neurosurg. Psychiatry 1989, 52, 1450–1451. [Google Scholar] [CrossRef]
- Lau, F.; Gardiner, M. Oxycodone/Naloxone: An Unusual Adverse Drug Reaction. Aust. Fam. Physician 2017, 46, 42–43. [Google Scholar]
- Hochman, M.S. Meperidine-Associated Myoclonus and Seizures in Long-Term Hemodialysis Patients. Ann. Neurol. 1983, 14, 593. [Google Scholar] [CrossRef]
- Delvaux, B.; Ryckwaert, Y.; Van Boven, M.; De Kock, M.; Capdevila, X. Remifentanil in the Intensive Care Unit: Tolerance and Acute Withdrawal Syndrome after Prolonged Sedation. Anesthesiology 2005, 102, 1281–1282. [Google Scholar] [CrossRef]
- Bowdle, T.A.; Rooke, G.A. Postoperative Myoclonus and Rigidity after Anesthesia with Opioids. Anesth. Analg. 1994, 78, 783–786. [Google Scholar] [CrossRef]
- Bae, S.Y.; Lee, S.-J. Negative Myoclonus Associated with Tramadol Use. Yeungnam Univ. J. Med. 2020, 37, 329–331. [Google Scholar] [CrossRef]
- Biedlingmaier, A.J.; Koola, M.M.; Shad, M.U.; John, S.; Reddy, G.G.; Varghese, S.P. A Rare Case of Serotonin Syndrome With Buprenorphine and Other Serotonergic Medications. J. Clin. Psychopharmacol. 2023, 43, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Smolen, A.; Smolen, T.N.; van de Kamp, J.L. The Effect of Naloxone Administration on Pregnancy-Associated Seizures. Life Sci. 1986, 38, 1899–1905. [Google Scholar] [CrossRef] [PubMed]
- Behnoush, B.; Memarian, A.; Teimoory, M. Naltrexone Induced Serotonin Syndrome. Int. J. Med. Toxicol. Forensic Med. 2013, 3, 64–66. [Google Scholar]
- McCann, S.; Yaksh, T.L.; von Gunten, C.F. Correlation between Myoclonus and the 3-Glucuronide Metabolites in Patients Treated with Morphine or Hydromorphone: A Pilot Study. J. Opioid Manag. 2010, 6, 87–94. [Google Scholar] [CrossRef]
- Bruera, E.; Pereira, J. Acute Neuropsychiatric Findings in a Patient Receiving Fentanyl for Cancer Pain. Pain 1997, 69, 199–201. [Google Scholar] [CrossRef]
- Sprung, J.; Schedewie, H.K. Apparent Focal Motor Seizure with a Jacksonian March Induced by Fentanyl: A Case Report and Review of the Literature. J. Clin. Anesth. 1992, 4, 139–143. [Google Scholar] [CrossRef]
- Eisele, J.H.J.; Grigsby, E.J.; Dea, G. Clonazepam Treatment of Myoclonic Contractions Associated with High-Dose Opioids: Case Report. Pain 1992, 49, 231–232. [Google Scholar] [CrossRef]
- Mercadante, S. Dantrolene Treatment of Opioid-Induced Myoclonus. Anesth. Analg. 1995, 81, 1307–1308. [Google Scholar]
- Holdsworth, M.T.; Adams, V.R.; Chavez, C.M.; Vaughan, L.J.; Duncan, M.H. Continuous Midazolam Infusion for the Management of Morphine-Induced Myoclonus. Ann. Pharmacother. 1995, 29, 25–29. [Google Scholar] [CrossRef]
- Kolesnikov, Y.; Jain, S.; Wilson, R.; Pasternak, G.W. Blockade of Morphine-Induced Hindlimb Myoclonic Seizures in Mice by Ketamine. Pharmacol. Biochem. Behav. 1997, 56, 423–425. [Google Scholar] [CrossRef]
- Scott, J.C.; Sarnquist, F.H. Seizure-like Movements during a Fentanyl Infusion with Absence of Seizure Activity in a Simultaneous EEG Recording. Anesthesiology 1985, 62, 812–814. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.C.; Tennison, M.B.; Lawless, S.T.; Greenwood, R.S.; Zaritsky, A.L. Movement Disorder after Withdrawal of Fentanyl Infusion. J. Pediatr. 1991, 119, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.T.; Benthuysen, J.L.; Bickford, R.G.; Sanford, T.J.; Blasco, T.; Duke, P.C.; Head, N.; Dec-Silver, H. Seizures during Opioid Anesthetic Induction—Are They Opioid-Induced Rigidity? Anesthesiology 1989, 71, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Zai, X. Beyond the Brink: Unraveling the Opioid Crisis and Its Profound Impacts. Econ. Hum. Biol. 2024, 53, 101379. [Google Scholar] [CrossRef]
- Gordon, M.F.; Abrams, R.I.; Rubin, D.B.; Barr, W.B.; Correa, D.D. Bismuth Subsalicylate Toxicity as a Cause of Prolonged Encephalopathy with Myoclonus. Mov. Disord. 1995, 10, 220–222. [Google Scholar] [CrossRef]
- Borbinha, C.; Serrazina, F.; Salavisa, M.; Viana-Baptista, M. Bismuth Encephalopathy- a Rare Complication of Long-Standing Use of Bismuth Subsalicylate. BMC Neurol. 2019, 19, 212. [Google Scholar] [CrossRef]
- Buge, A.; Rancurel, G.; Dechy, H. Bismuth myoclonic encephalopathies. Their course and lasting or definitive late complications. Rev. Neurol. 1977, 133, 401–415. [Google Scholar]
- Molina, J.A.; Calandre, L.; Bermejo, F. Myoclonic Encephalopathy Due to Bismuth Salts: Treatment with Dimercaprol and Analysis of CSF Transmitters. Acta Neurol. Scand. 1989, 79, 200–203. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F.; Durante, Í.; Rauber, A. Lithium-Associated Movement Disorder: A Literature Review. Brain Circ. 2022, 8, 76–86. [Google Scholar] [CrossRef]
- Dyson, E.H.; Simpson, D.; Prescott, L.F.; Proudfoot, A.T. Self-Poisoning and Therapeutic Intoxication with Lithium. Hum. Toxicol. 1987, 6, 325–329. [Google Scholar] [CrossRef]
- Bender, S.; Linka, T.; Wolstein, J.; Gehendges, S.; Paulus, H.-J.; Schall, U.; Gastpar, M. Safety and Efficacy of Combined Clozapine-Lithium Pharmacotherapy. Int. J. Neuropsychopharmacol. 2004, 7, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Naramoto, A.; Koizumi, N.; Itoh, N.; Shigematsu, H. An Autopsy Case of Cerebellar Degeneration Following Lithium Intoxication with Neuroleptic Malignant Syndrome. Acta Pathol. Jpn. 1993, 43, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Sarrigiannis, P.G.; Zis, P.; Unwin, Z.C.; Blackburn, D.J.; Hoggard, N.; Zhao, Y.; Billings, S.A.; Khan, A.A.; Yianni, J.; Hadjivassiliou, M. Tremor after Long Term Lithium Treatment; Is It Cortical Myoclonus? Cerebellum Ataxias 2019, 6, 5. [Google Scholar] [CrossRef]
- Jundt, F.; Lempert, T.; Dörken, B.; Pezzutto, A. Trimethoprim-Sulfamethoxazole Exacerbates Posthypoxic Action Myoclonus in a Patient with Suspicion of Pneumocystis Jiroveci Infection. Infection 2004, 32, 176–178. [Google Scholar] [PubMed]
- Segal, J.A.; Harris, B.D.; Kustova, Y.; Basile, A.; Skolnick, P. Aminoglycoside Neurotoxicity Involves NMDA Receptor Activation. Brain Res. 1999, 815, 270–277. [Google Scholar] [CrossRef]
- Matsunaga, K.; Uozumi, T.; Qingrui, L.; Hashimoto, T.; Tsuji, S. Amantadine-Induced Cortical Myoclonus. Neurology 2001, 56, 279–280. [Google Scholar] [CrossRef]
- Domínguez, C.; Benito-León, J.; Bermejo-Pareja, F. Multifocal Myoclonus Induced by Haloperidol. Neurol. Sci. 2009, 30, 385–386. [Google Scholar] [CrossRef]
- Praharaj, S.K.; Venkatesh, B.G.M.; Sarkhel, S.; Zia-ul-Haq, M.; Sinha, V.K. Clozapine-Induced Myoclonus: A Case Study and Brief Review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 242–243. [Google Scholar] [CrossRef]
- Valin, A.; Cepeda, C.; Rey, E.; Naquet, R. Opposite Effects of Lorazepam on Two Kinds of Myoclonus in the Photosensitive Papio Papio. Electroencephalogr. Clin. Neurophysiol. 1981, 52, 647–651. [Google Scholar] [CrossRef]
- García-Ruiz, P.J.; Javier Jiménez-Jiménez, F.; García de Yébenes, J. Calcium Channel Blocker-Induced Parkinsonism: Clinical Features and Comparisons with Parkinson’s Disease. Park. Relat. Disord. 1998, 4, 211–214. [Google Scholar] [CrossRef]
- Klawans, H.L.; Carvey, P.M.; Tanner, C.M.; Goetz, C.G. Drug-Induced Myoclonus. Adv. Neurol. 1986, 43, 251–264. [Google Scholar] [PubMed]
- Weiner, W.J.; Carvey, P.M.; Nausieda, P.A.; Klawans, H.L. Dopaminergic Antagonism of L-5-Hydroxytryptophan-Induced Myoclonic Jumping Behavior. Neurology 1979, 29, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Roldán, S.; Mateo, D.; Muradas, V.; De Yebenes, J.G. Clinical, Biochemical, and Pharmacological Observation in a Patient with Postasphyxic Myoclonus: Association to Serotonin Hyperactivity. Clin. Neuropharmacol. 1988, 11, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Feighner, J.P.; Boyer, W.F.; Tyler, D.L.; Neborsky, R.J. Adverse Consequences of Fluoxetine-MAOI Combination Therapy. J. Clin. Psychiatry 1990, 51, 222–225. [Google Scholar]
- Sternbach, H. The Serotonin Syndrome. Am. J. Psychiatry 1991, 148, 705–713. [Google Scholar]
- Eison, A.S.; Wright, R.N.; Freeman, R.P.; Gylys, J.A. 5-HT-Dependent Myoclonus in Guinea Pigs: Mediation through 5-HT1A-5-HT2 Receptor Interaction. Brain Res. Bull. 1993, 30, 687–689. [Google Scholar] [CrossRef]
- Pappert, E.J.; Goetz, C.G.; Stebbins, G.T.; Belden, M.; Carvey, P.M. 5-Hydroxytryptophan-Induced Myoclonus in Guinea Pigs: Mediation through 5-HT1/2 Receptor Subtypes. Eur. J. Pharmacol. 1998, 347, 51–56. [Google Scholar] [CrossRef]
- Termsarasab, P.; Thammongkolchai, T.; Frucht, S.J. Spinal-Generated Movement Disorders: A Clinical Review. J. Clin. Mov. Disord. 2015, 2, 18. [Google Scholar] [CrossRef]
- Pal, G.; Lin, M.M.; Laureno, R. Asterixis: A Study of 103 Patients. Metab. Brain Dis. 2014, 29, 813–824. [Google Scholar] [CrossRef]
- Hillsley, R.E.; Massey, E.W. Truncal Asterixis Associated with Ceftazidime, a Third-Generation Cephalosporin. Neurology 1991, 41, 2008. [Google Scholar] [CrossRef]
- Umemoto, D.; Kuroda, H.; Nishioka, H. Negative Myoclonus as a Manifestation of Cefepime Neurotoxicity. Clin. Case Rep. 2024, 12, e8380. [Google Scholar] [CrossRef] [PubMed]
- Levine, P.H.; Regelson, W.; Holland, J.F. Chloramphenicol-Associated Encephalopathy. Clin. Pharmacol. Ther. 1970, 11, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Dong, H. Fatal Hepatotoxicity Due to Viaminate. Am. J. Med. Sci. 2018, 356, 84–86. [Google Scholar] [CrossRef]
- Gray, D.A.; Foo, D. Reversible Myoclonus, Asterixis, and Tremor Associated with High Dose Trimethoprim-Sulfamethoxazole: A Case Report. J. Spinal Cord. Med. 2016, 39, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, I.; Osawa, M.; Ohta, K.; Maruyama, S. L-Dopa-Induced Asterixis. Folia Psychiatr. Neurol. Jpn. 1985, 39, 507–513. [Google Scholar] [CrossRef]
- Rittmannsberger, H. Asterixis Induced by Psychotropic Drug Treatment. Clin. Neuropharmacol. 1996, 19, 349–355. [Google Scholar] [CrossRef]
- Rittmannsberger, H.; Leblhuber, F. Asterixis Induced by Carbamazepine Therapy. Biol. Psychiatry 1992, 32, 364–368. [Google Scholar] [CrossRef]
- Wahba, M.; Waln, O. Asterixis Related to Gabapentin Intake: A Case Report and Review. Postgrad. Med. 2013, 125, 139–141. [Google Scholar] [CrossRef]
- Cerminara, C.; Montanaro, M.L.; Curatolo, P.; Seri, S. Lamotrigine-Induced Seizure Aggravation and Negative Myoclonus in Idiopathic Rolandic Epilepsy. Neurology 2004, 63, 373–375. [Google Scholar] [CrossRef]
- Chi, W.M.; Chua, K.S.; Kong, K.H. Phenytoin-Induced Asterixis—Uncommon or under-Diagnozed? Brain Inj. 2000, 14, 847–850. [Google Scholar]
- Heckmann, J.G.; Ulrich, K.; Dütsch, M.; Neundörfer, B. Pregabalin Associated Asterixis. Am. J. Phys. Med. Rehabil. 2005, 84, 724. [Google Scholar] [CrossRef] [PubMed]
- Katano, H.; Fukushima, T.; Karasawa, K.; Sugiyama, N.; Ohkura, A.; Kamiya, K. Primidone-Induced Hyperammonemic Encephalopathy in a Patient with Cerebral Astrocytoma. J. Clin. Neurosci. 2002, 9, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Rottach, K.G.; Weiss-Brummer, J.; Wieland, U.; Schmauss, M. Valproic acid in prophylaxis of bipolar disorder. A case of valproate-induced encephalopathy. Nervenarzt 2000, 71, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Rubin, B.; Horowitz, G.; Katz, R.I. Asterixis Following Metrizamide Myelography. Arch. Neurol. 1980, 37, 522. [Google Scholar] [CrossRef]
- Dysken, M.W.; Comaty, J.E.; Pandey, G.N.; Davis, J.M. Asterixis Associated with a High RBC Lithium Concentration. Am. J. Psychiatry 1979, 136, 1610. [Google Scholar] [CrossRef]
- Adair, J.C.; Gilmore, R.L. Meperidine Neurotoxicity after Organ Transplantation. J. Toxicol. Clin. Toxicol. 1994, 32, 325–328. [Google Scholar] [CrossRef]
- Conn, H.O. Asterixis. Its Occurrence in Chronic Pulmonary Disease, with a Commentary on Its General Mechanism. N. Engl. J. Med. 1958, 259, 564–569. [Google Scholar] [CrossRef]
- Meyer, T.; Ludolph, A.C.; Münch, C. Ifosfamide Encephalopathy Presenting with Asterixis. J. Neurol. Sci. 2002, 199, 85–88. [Google Scholar] [CrossRef]
- Drayer, B.P.; Warner, M.A.; Sudilovsky, A.; Luther, J.; Wilkins, R.; Allen, S.; Bates, M. Iopamidol vs Metrizamide: A Double Blind Study for Cervical Myelography. Neuroradiology 1982, 24, 77–84. [Google Scholar] [CrossRef]
- Anderson, R.J. Asterixis as a Manifestation of Salicylate Toxicity. Ann. Intern. Med. 1981, 95, 188–189. [Google Scholar] [CrossRef]
- Uddin, M.F.; Alweis, R.; Shah, S.R.; Lateef, N.; Shahnawaz, W.; Ochani, R.K.; Dharani, A.M.; Shah, S.A. Controversies in Serotonin Syndrome Diagnosis and Management: A Review. J. Clin. Diagn. Res. 2017, 11, OE05–OE07. [Google Scholar] [CrossRef] [PubMed]
- Finelli, P.F. Drug-Induced Creutzfeldt-Jakob like Syndrome. J. Psychiatry Neurosci. 1992, 17, 103–105. [Google Scholar] [PubMed]
- Naro, A.; Pignolo, L.; Billeri, L.; Porcari, B.; Portaro, S.; Tonin, P.; Calabrò, R.S. A Case of Psychogenic Myoclonus Responding to a Novel Transcranial Magnetic Stimulation Approach: Rationale, Feasibility, and Possible Neurophysiological Basis. Front. Hum. Neurosci. 2020, 14, 292. [Google Scholar] [CrossRef] [PubMed]
Class | Drug | Level of Evidence * |
---|---|---|
Anesthetics | Anesthetic gasses: nitrous oxide | C |
Intravenous anesthetics: phenols (propofol), benzodiazepine (midazolam), opioids (fentanyl), arylcyclohexylamines (ketamine), etomidate | A | |
Volatile liquids: enflurane, isoflurane, sevoflurane | B | |
Local anesthetics: bupivacaine, dibucaine, lidocaine (lignocaine), prilocaine, tetracaine, levobupivacaine | B | |
Antibiotics | Penicillins: carbenicillin, penicillin G, oxacillin, amoxicillin-clavulanic acid, nafcillin, piperacillin-tazobactam | B |
Cephalosporins: cefuroxime (2nd generation), cefmetazole (2nd generation), cefotiam (3rd generation), ceftriaxone (3rd generation), ceftazidime (3rd generation), moxalactam (3rd generation), cefepime (4th generation) | A | |
Carbapenems: imipenem, meropenem, ertapenem | B | |
Fluoroquinolones: ciprofloxacin, moxifloxacin, levofloxacin, gatifloxacin, ofloxacin | A | |
Macrolides: erythromycin, azithromycin | C | |
Others: aminoglycosides (gentamicin), cotrimoxazole (sulfamethoxazole-trimethoprim), isoniazid, lipopeptides (daptomycin), glycopeptides (vancomycin), tetracyclines (doxycycline), oxazolidinones (linezolid) | C | |
Antidementia | Cholinesterase inhibitors: donepezil, galantamine, tacrine | C |
Others: memantine | B | |
Antidepressants | Selective serotonin reuptake inhibitors: citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline | A |
Serotonin-norepinephrine reuptake inhibitors: duloxetine, milnacipran, venlafaxine | B | |
Norepinephrine reuptake inhibitors: atomoxetine | C | |
Norepinephrine-dopamine reuptake inhibitors: bupropion | B | |
Noradrenergic and specific serotonergic antidepressant: mianserin, mirtazapine | C | |
Serotonin antagonist and reuptake inhibitors: nefazodone, trazodone | C | |
Serotonin modulators and stimulators: vortioxetine | C | |
Tricyclic antidepressant: amitriptyline, clomipramine, desipramine, imipramine, nortriptyline | A | |
Tetracyclic antidepressant: maprotiline | C | |
Monoamine oxidase inhibitors: iproniazid, moclobemide, phenelzine, tranylcypromine | B | |
Adjunctive therapy: buspirone | B | |
Antiemetics | 5HT3 antagonists: ondansetron, palonosetron | C |
Dopamine antagonists: domperidone, metoclopramide | B | |
Antihemorrhagic | Tranexamic acid | C |
Antihistamines | H1 antagonist: oxatomide, triprolidine, tripelennamine | C |
H2 antagonist: cimetidine | C | |
Antineoplastic and immunosuppressive agents | Alkylating agents: busulfan, chlorambucil, cyclophosphamide, ifosfamide | B |
Immunosuppressive agents: cyclosporine, tacrolimus | C | |
Monoclonal antibodies: ipilimumab, nivolumab, pembrolizumab | C | |
Nitrogen mustards: prednimustine | C | |
Nucleoside analogs: 5-fluorouracil, floxuridine, pentostatin (deoxycoformycin) | C | |
Topoisomerase inhibitor: irinotecan, pyrazoloacridine | C | |
Antiparasitic | Antimalarial: mefloquine | C |
Antinematodal: avermectin | C | |
Metronidazole | C | |
Antiparkinsonian | Central anticholinergic: trihexyphenidyl | C |
Catechol-O-methyltransferase inhibitors: entacapone | C | |
Dopamine precursor: levodopa | B | |
Dopaminergic agonists: bromocriptine, pramipexole | C | |
Glutamate antagonist: amantadine | A | |
Monoamine oxidase B inhibitors: selegiline | C | |
Antipsychotics | Typical: haloperidol | B |
Atypical: amisulpride, clozapine, chlorpromazine, olanzapine, perospirone, quetiapine, risperidone, sulpiride, sultopride | A | |
Antiseizure | Carbamazepine, oxcarbazepine | A |
Clobazam | C | |
Lacosamide | C | |
Lamotrigine | B | |
Phenobarbital | C | |
Phenytoin | A | |
Gabapentin, pregabalin | A | |
Topiramate | B | |
Valproate | A | |
Vigabatrin | C | |
Antiviral | Purine analogue: acyclovir, valacyclovir, vidarabine | C |
Anxiolytics | Benzodiazepines: lorazepam, midazolam | B |
Others: abecarnil, carisoprodol, tandospirone | C | |
Cardiovascular | Antianginal: ranolazine | C |
Antiarrhythmics: amiodarone, diltiazem, flecainide, propafenone, verapamil | B | |
Angiotensin receptor-neprilysin inhibitor: sacubitril/valsartan | C | |
Claudication: buflomedil, naftidrofuryl | C | |
Hypertension: amlodipine, carvedilol, enalapril, ketanserin, nifedipine, furosemide | C | |
Vasopressors: dobutamine, midodrine | C | |
Opioids | Pure agonists: dextropropoxyphene, fentanyl, hydrocodone, methadone, morphine, norpethidine, oxycodone, pethidine (meperidine), remifentanil, sufentanil, tramadol | A |
Partial agonists: buprenorphine | C | |
Pure antagonists: naloxone, naltrexone | C | |
Others | Nonsteroidal anti-inflammatory drugs: diclofenac, indomethacin, ketoprofen | C |
Alcohol dependence: acamprosate, disulfiram | C | |
Bismuth salts | A | |
Cytokine receptor modulators: etanercept, interferon-alpha | C | |
Heavy metals: aluminum, lead, magnesium, manganese, nickel | C | |
Hormones: corticotropin-releasing hormone, thyrotropin-releasing hormone | C | |
Mood stabilizers: lurasidone, lithium | A | |
Muscle relaxant: baclofen, gallamine, metaxalone | C | |
Organophosphate: aldicarb | C | |
Proton pump inhibitors: lansoprazole, omeprazole | C | |
Steroids: dexamethasone, prednisolone | C | |
Traditional medicine: licorice | C | |
Several: atropine, bilimbi fruit, caffeine, bromisoval (bromovalerylurea), bromomethane (methyl bromide), carbon dioxide/monoxide, cobalamin, contrast agent, COVID-19 vaccine, cyclonite, deferoxamine, dextromethorphan, dichloroethane, dieldrin, flumazenil, gasoline, isotretinoin, lindane, metformin, methohexital, mushroom (Sugihiratake), physostigmine, piperazine, pseudoephedrine, Ro5-4864, salbutamol (albuterol), scopolamine, snake bite venom (rattlesnake), sumatriptan, veratramine, zolpidem, zopiclone | C | |
Recreational drugs | Alcohol, amphetamine, butanone (methyl ethyl ketone), cannabidiol, cathinone, chloralose, cocaine, ecstasy, gamma-butyrolactone, glutethimide, heroin (diamorphine), lysergic acid diethylamide (LSD), methaqualone, methylphenidate, nefopam, strychnine, toluene | C |
Animal models | Alphaxalone, bicuculline, catechol, cysteamine, dichloro-diphenyl-trichloroethane (DDT), flurothyl, gadodiamide, gadopentetic acid (gadopentetate dimeglumine), indoleamine, pentylenetetrazole, picrotoxin, pilocarpine, ricinine, tryptophan, urea | D |
Medication | Proposed Mechanism | References |
---|---|---|
Anesthetics | Etomidate-induced myoclonus was correlated with the NMDAR receptor-induced downregulation of potassium-chloride transporter member five protein expression. | Feng et al., (2023) [39] |
Antibiotics | Beta-lactam antibiotics selectively antagonize, and quinolones completely inhibit GABA receptors. | Sarva et al., (2012) [81] Post et al., (2004) [73] |
Sulfonamides are associated with abnormalities in dopamine metabolism due to the inhibition of dihydrofolate reductase and increased phenylalanine levels due to the inhibition of phenylalanine metabolism. | Dib et al., (2004) [82] Jundt et al., (2004) [294] | |
Aminoglycosides are related to NMDAR receptor activation and excitotoxicity. | Segal et al., (1999) [295] | |
Vancomycin likely leads to renal dysfunction, and the cause of myoclonus is related to uremia. | Patel et al., (2018) [84] | |
Antidementia | Memantine-induced myoclonus might involve altered dopamine, serotonin, and glutamate release levels. | Matsunaga et al., (2001) [296] |
Antipsychotics | Serotonergic, dopaminergic, and GABA-ergic mechanisms | Domínguez et al., (2009) [297] Velayudhan et al., (2005) [211] Praharaj et al., (2010). [298] |
Benzodiazepine | Likely related to GABAergic transmission. Benzodiazepines were already reported to improve and cause myoclonus. | Valin et al., (1981) [299] Cepeda et al., (1982) [242] |
Calcium channel blockers | The mechanism of these effects and the origin of myoclonus are unknown, though Parkinsonism has also been reported with calcium channel blocking agents and attributed to effects on dopamine metabolism. | García-Ruiz et al., (1998) [300] |
Levodopa | Serotonergic hypothesis. Anticholinergics, amantadine, and propranolol did not influence the myoclonus. But methysergide improved it. | Klawans et al., (1986) [301] |
Dopaminergic hypothesis. Studies with guinea pigs showed the worsening of myoclonus with pre-treatment with haloperidol and improvement with levodopa or dopamine agonists. | Weiner et al., (1979) [302] | |
Lithium | It is likely serotonergic activity. Lithium facilitates the presynaptic release of serotonin. | Evidente et al., (1999) [140] |
Opioids | The direct neurotoxic effect leads to glutamate receptor hyperexcitability, glycine-mediated disinhibition, antagonism of GABAergic activity, and serotonergic and dopaminergic pathways. | Han et al., (2002) [260] |
Serotonergic drugs | Myoclonus worsened with 5-HTP and valproate and improved with methysergide. Also, serotonin reuptake inhibitors can cause isolated myoclonus or myoclonus as a part of serotonin syndrome. | Giménez-Roldán et al., (1988) [303] Feighner et al., (1990) [304] Sternbach et al., (1991) [305] |
The interaction between serotonin 5-HT1A and 5-HT2 receptors seems necessary to induce myoclonus since selective agonists for 5-HT1A and 5-HT2 receptors do not induce myoclonus when given individually. | Eison et al., (1993) [306] Pappert et al., (1998). [307] | |
Tricyclic antidepressants | Serotonergic hypothesis. A combination of 5-HTP and imipramine showed myoclonus, which did not improve with the antagonism of norepinephrine, dopamine, and acetylcholine receptors. | Klawans et al., (1986) [301] |
Type | Main Mechanism | Definition | Examples | Reference |
---|---|---|---|---|
Type 1 | Serotonin syndrome | Fulfillment of Sternbach’s or Hunter’s criteria | Moclobemide and pethidine | Gillman et al., (1995) [133] |
Trazodone and buspirone | Goldberg et al., (1992) [238] | |||
Tramadol and iproniazid | Larquier et al., (1999) [132] | |||
Type 2 | (2A) Hepatic encephalopathy | Concurrent hepatic encephalopathy and myoclonus, myoclonus likely unrelated to indirect liver injury | Valproate | Rissardo et al., (2021) [231] |
Phenytoin | Rissardo et al., (2022) [226] | |||
Carbamazepine | Risssardo et al., (2020) [218] | |||
(2B) Non-hepatic encephalopathy | Non-hepatic encephalopathy and myoclonus, also known as Creutzfeldt–Jakob-like syndrome. | Bismuth | Borbinha et al., (2019) [286] | |
Lithium | Rissardo et al., (2022) [289] | |||
Amitriptyline | Rissardo et al., (2020) [111] | |||
Type 3 | Unknown | All the other patients do not have type 1 or type 2 features. Interestingly, this group of individuals likely involves poorly understood mechanisms. | Etomidate | Doenicke et al., (1999) [38] |
Benzodiazepines | Magny et al., (1994) [23] | |||
Amantadine | Rissardo et al., (2023) [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rissardo, J.P.; Fornari Caprara, A.L.; Bhal, N.; Repudi, R.; Zlatin, L.; Walker, I.M. Drug-Induced Myoclonus: A Systematic Review. Medicina 2025, 61, 131. https://doi.org/10.3390/medicina61010131
Rissardo JP, Fornari Caprara AL, Bhal N, Repudi R, Zlatin L, Walker IM. Drug-Induced Myoclonus: A Systematic Review. Medicina. 2025; 61(1):131. https://doi.org/10.3390/medicina61010131
Chicago/Turabian StyleRissardo, Jamir Pitton, Ana Letícia Fornari Caprara, Nidhi Bhal, Rishikulya Repudi, Lea Zlatin, and Ian M. Walker. 2025. "Drug-Induced Myoclonus: A Systematic Review" Medicina 61, no. 1: 131. https://doi.org/10.3390/medicina61010131
APA StyleRissardo, J. P., Fornari Caprara, A. L., Bhal, N., Repudi, R., Zlatin, L., & Walker, I. M. (2025). Drug-Induced Myoclonus: A Systematic Review. Medicina, 61(1), 131. https://doi.org/10.3390/medicina61010131