Short-Term and Long-Term Effects of Bariatric Surgery on Diabetic Retinopathy: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
- The participants (P): patients with type 2 diabetes mellitus (T2DM);
- The intervention (I): bariatric surgery (BS) (all types of procedures);
- The comparison (C): short-term (<3 years) and long-term (≥3 years) outcomes of BS in patients with diabetic retinopathy (DR);
- The outcomes (O): % of new incidence of any DR in patients with no retinopathy at baseline; % of worsening and % of improvement of DR in patients treated by BS during the follow-up period; and % of no change in DR status.
2.1. Search Strategy
2.2. Selection Criteria
2.3. Risk of Bias
2.4. Data Synthesis
3. Results
3.1. Research Identification and Selection
3.2. Diabetic Retinopathy
3.3. Bariatric Surgery
3.4. Bariatric Surgery: Short-Term Outcomes on Diabetic Retinopathy
3.5. Bariatric Surgery: Long-Term Effects on Diabetic Retinopathy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Heng, L.Z.; Comyn, O.; Peto, T.; Tadros, C.; Ng, E.; Sivaprasad, S.; Hykin, P.G. Diabetic Retinopathy: Pathogenesis, Clinical Grading, Management and Future Developments. Diabet. Med. 2013, 30, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Milluzzo, A.; Maugeri, A.; Barchitta, M.; Sciacca, L.; Agodi, A. Epigenetic Mechanisms in Type 2 Diabetes Retinopathy: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 10502. [Google Scholar] [CrossRef] [PubMed]
- Miles-Chan, J.L.; Conte, C.; Turpin-Nolan, S.M.; Clemente-Postigo, M.; Tinahones, F.J.; Cornejo-Pareja, I. Metabolic and Endocrine Consequences of Bariatric Surgery. Front. Endocrinol. 2019, 10, 626. [Google Scholar]
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Brethauer, S.A.; Navaneethan, S.D.; Navaneethan, S.D.; Aminian, A.; Kim, E.S.H.; Nissen, S.E.; et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—3-Year Outcomes. N. Engl. J. Med. 2014, 370, 2002. [Google Scholar] [CrossRef]
- International Diabetes Federation. Resources|IDF Diabetes Atlas. Available online: https://diabetesatlas.org/resources/ (accessed on 1 September 2024).
- Allen, A.; Patel, H.; Stinnett, S.S.; Rosdahl, J.A.; Schuman, S. Impact of Bariatric Surgery on Treatment Burden and Progression of Diabetic Retinopathy. J. Vitr. Dis. 2024, 8, 263–269. [Google Scholar] [CrossRef]
- Gorman, D.M.; le Roux, C.W.; Docherty, N.G. The Effect of Bariatric Surgery on Diabetic Retinopathy: Good, Bad, or Both? Diabetes Metab. J. 2016, 40, 354–364. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Aljabal, H.; Alalawi, A.S.; Al-Nooh, N. The Impact of Bariatric Surgery on Type 2 Diabetes Mellitus Remission: A Systematic Review. Cureus 2024, 16, 11. [Google Scholar] [CrossRef]
- Affinati, A.H.; Esfandiari, N.H.; Oral, E.A.; Kraftson, A.T. Bariatric Surgery in the Treatment of Type 2 Diabetes. Curr. Diabetes Rep. 2019, 19, 12. [Google Scholar] [CrossRef]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and Type 2 Diabetes Mellitus: Connections in Epidemiology, Pathogenesis, and Treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef]
- Singh, R.P. Bariatric Surgery Does Not Prevent Progression of Diabetic Retinopathy. 2015. Available online: https://retinatoday.com/articles/2015-jan-feb/bariatric-surgery-does-not-prevent-progression-of-diabetic-retinopathy (accessed on 1 September 2024).
- Dascalu, A.M.; Stoian, A.P.; Cherecheanu, A.P.; Serban, D.; Costea, D.O.; Tudosie, M.S.; Stana, D.; Tanasescu, D.; Sabau, A.D.; Gangura, G.A.; et al. Outcomes of Diabetic Retinopathy Post-Bariatric Surgery in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2021, 10, 3736. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.H.; Black, N. The Feasibility of Creating a Checklist for the Assessment of the Methodological Quality of Both Randomised and Non-Randomised Studies of Health Care Interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Brynskov, T.; Laugesen, C.S.; Svenningsen, A.L.; Floyd, A.K.; Sørensen, T.L. Monitoring of Diabetic Retinopathy in relation to Bariatric Surgery: A Prospective Observational Study. Obes. Surg. 2016, 26, 1279–1286. [Google Scholar] [CrossRef]
- Morén, Å.; Sundbom, M.; Ottosson, J.; Granstam, E. Gastric Bypass Surgery Does Not Increase the Risk for Sight-Threatening Diabetic Retinopathy. Acta Ophthalmol. 2018, 96, 279–282. [Google Scholar] [CrossRef]
- Feng, W.; Yin, T.; Chu, X.; Shan, X.; Jiang, C.; Wang, Y.; Qian, Y.; Zhu, D.; Sun, X.; Bi, Y. Metabolic Effects and Safety of Roux-en-Y Gastric Bypass Surgery vs. Conventional Medication in Obese Chinese Patients with Type 2 Diabetes. Diabetes Metab. Res. Rev. 2019, 35, e3138. [Google Scholar] [CrossRef]
- Sever, O.; Horozoglu, F. Bariatric Surgery Might Aggravate Proliferative Diabetic Retinopathy. Acta Ophthalmol. 2020, 98, e579–e584. [Google Scholar] [CrossRef]
- Åkerblom, H.; Franzén, S.; Zhou, C.; Morén, Å.; Ottosson, J.; Sundbom, M.; Eliasson, B.; Svensson, A.-M.; Granstam, E. Association of Gastric Bypass Surgery with Risk of Developing Diabetic Retinopathy Among Patients with Obesity and Type 2 Diabetes in Sweden: An Observational Study. JAMA Ophthalmol. 2021, 139, 200–205. [Google Scholar] [CrossRef]
- Chandru, S.; Pradeepa, R.; Poonkodi, V.P.; Pramodkumar, T.A.; Kumar, M.S.; Tiwaskar, M.; Gokulakrishnan, K.; Anjana, R.M.; Mohan, V.; Rajalakshmi, R. Effects of Metabolic Surgery on Diabetic Kidney Disease and Diabetic Retinopathy Among Obese Asian Indians with Type 2 Diabetes. J. Assoc. Physicians India 2022, 70, 11–12. [Google Scholar]
- Thykjær, A.S.; Rosengaard, L.; Andersen, N.; Andresen, J.; Bek, T.; Hajari, J.; Heegaard, S.; Højlund, K.; Kawasaki, R.; CarLaugesen, C.S.; et al. Bariatric Surgery in Individuals with Type 2 Diabetes is Not Associated with Short or Long-Term Risk of Diabetic Retinopathy Progression: Results from a Nationwide Cohort Study. Acta Diabetol. 2023, 60, 1531. [Google Scholar] [CrossRef]
- Singh, P.; Adderley, N.; Subramanian, A.; Gokhale, K.; Singhal, R.; Toulis, K.A.; Bellary, S.; Nirantharakumar, K.; Tahrani, A.A. The Impact of Bariatric Surgery on Incident Microvascular Complications in Patients with Type 2 Diabetes: A Matched Controlled Population-Based Retrospective Cohort Study. Diabetes Care 2021, 44, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.R.; Bek, T.; Richelsen, B. Diabetic Retinopathy in People with Type 2 Diabetes and Obesity Treated by Roux-en-Y Gastric Bypass Compared with Non-Operated Controls: With Focus on the Role of Diabetes Remission in a Cross-Sectional and a 6-Year Follow-Up Study. Diabet. Med. 2019, 36, 457–464. [Google Scholar] [CrossRef]
- Miras, A.D.; Ravindra, S.; Humphreys, A.; Lascaratos, G.; Quartey, K.N.K.; Ahmed, A.R.; Cousins, J.; Moorthy, K.; Purkayastha, S.; Hakky, S.; et al. Metabolic Changes and Diabetes Microvascular Complications 5 Years After Obesity Surgery. Obes. Surg. 2019, 29, 3907–3911. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.; Hulpus, A.; Idris, I. Short-Term Impact of Bariatric Surgery on Best-Corrected Distance Visual Acuity and Diabetic Retinopathy Progression. Obes. Surg. 2018, 28, 3711–3713. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Laybourne, J.P.; Sandinha, M.T.; de Alwis, N.M.W.; Avery, P.; Steel, D.H. Does bariatric surgery prevent progression of diabetic retinopathy? Eye 2017, 31, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.M.; Wharton, H.; Clarke, M.; Syed, A.; Dodson, P.; Tahrani, A.A. The Impact of Bariatric Surgery on Retinopathy in Patients with Type 2 Diabetes: A Retrospective Cohort Study. Surg. Obes. Relat. Dis. 2016, 12, 606–612. [Google Scholar] [CrossRef]
- Ottawa Hospital Research Institute. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 1 September 2024).
- Bilal, A.; Bilal, M.; Hathaf, A.; Usman, D.; Haboubi, N. The Weight on Sight: Exploring the Links Between Obesity and Ocular Diseases. Cureus 2024, 16, e72742. [Google Scholar] [CrossRef]
- Guo, N.; Shi, H.; Zhao, H.; Abuduani, Y.; Chen, D.; Chen, X.; Wang, H.; Li, P. Causal Relationships of Lifestyle Behaviours and Body Fat Distribution on Diabetic Microvascular Complications: A Mendelian Randomization Study. Front. Genet. 2024, 15, 1381322. [Google Scholar] [CrossRef]
- Ockrim, Z.; Yorston, D. Managing Diabetic Retinopathy. BMJ 2010, 341, c5400. [Google Scholar] [CrossRef]
- Rahmati, M.; Smith Lee, L.; Boyer, L.; Fond, G.; Yon, D.K.; Lee, H.; Soysal, P.; Piyasena, M.P.; Pardhan, S. Factors Affecting Global Adherence for the Uptake of Diabetic Retinopathy Screening: A Systematic Review and Meta-Analysis. Am. J. Ophthalmol. 2024, 268, 94–107. [Google Scholar] [CrossRef]
- Chong, D.D.; Das, N.; Singh, R.P. Diabetic Retinopathy: Screening, Prevention, and Treatment. Clevel. Clin. J. Med. 2024, 91, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lo, A.C.Y. Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 2018, 19, 1816. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, N.; Lin, P.; Xing, Y.; Yang, N. Recent advances in the treatment and delivery system of diabetic retinopathy. Front. Endocrinol. 2024, 15, 1347864. [Google Scholar] [CrossRef] [PubMed]
- Canakis, A.; Wall-Wieler, E.; Liu, Y.; Zheng, F.; Sharaiha, R.Z. Type 2 Diabetes Remission After Bariatric Surgery and Its Impact on Healthcare Costs. Obes. Surg. 2023, 33, 3806–3813. [Google Scholar] [CrossRef]
- Monino, L.; Marique, L.; Deswysen, Y.; Thoma, M.; Deprez, P.H.; Goffette, P.; Navez, B.; Moreels, T.G. Endoscopic Management of Biliary and Pancreatic Pathologies in Roux-en-Y Gastric Bypass Patients: Development of a Treatment Algorithm Based on 9-Year Experience. Obesity Surg. 2024, 34, 3717–3725. [Google Scholar] [CrossRef]
- Tasdoven, I.; Balbaloglu, H. Impact of Laparoscopic Sleeve Gastrectomy on Fatigue in Obese Patients. J. Clin. Med. 2024, 13, 4746. [Google Scholar] [CrossRef]
- Naseer, F.; Zhang, S.D.; Miras, A.D.; Redpath, T.; Martin, M.; Boyd, A.; Spence, H.; Pournaras, D.J.; Bodnar, Z.; Kerrigan, D.; et al. Metabolic adaptation following gastric bypass surgery: Results from a 2-year observational study. Int. J. Obes. 2024, 34, 3717–3725. [Google Scholar] [CrossRef]
- He, Y.F.; Hu, X.D.; Liu, J.Q.; Li, H.M.; Lu, S.F. Bariatric surgery and diabetes: Current challenges and perspectives. World J. Diabetes 2024, 15, 1692. [Google Scholar] [CrossRef]
- Jacob, S.; Varughese, G.I. Remission of diabetes mellitus after bariatric surgery: The putative link with worsening diabetic retinopathy and a need for ongoing postoperative follow-up retinal screening. Surg. Obes. Relat. Dis. 2024, 20, 498. [Google Scholar] [CrossRef]
- Erol, M.F.; Kayaoglu, H.A. Comparison of the effectiveness of single anastomosis sleeve ileal bypass and Roux-en-Y gastric bypass in obese patients with type 2 diabetes. Obes Surg. 2024, 34, 3748–3754. [Google Scholar] [CrossRef]
- Russell, M.W.; Kumar, M.; Li, A.; Singh, R.P.; Talcott, K.E. Incidence of ocular pathology following bariatric surgery for morbid obesity across a large United States National Database. Eye 2024, 38, 2603–2609. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Yin, Y.; Zhong, J.; Chen, Y.; Chen, Y.; Wen, Y.; Cai, Z. Bariatric surgery and health outcomes: An umbrella analysis. Front. Endocrinol. 2022, 13, 1016613. [Google Scholar] [CrossRef] [PubMed]
- Bariatric Surgical Procedures for Obese and Morbidly Obese Patients: A Review of Comparative Clinical and Cost-Effectiveness, and Guidelines. 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK264215/ (accessed on 1 September 2024).
- Perez, A.M.; Neag, E.; Sridhar, J.; Williams, B.K. Weight loss, bariatric surgery, and novel antidiabetic drugs effects on diabetic retinopathy: A review. Curr. Opin. Ophthalmol. 2024, 35, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Morén, Å.; Sundbom, M.; Ottosson, J.; Granstam, E. Response: Debate continues. Gastric bypass surgery does not increase the risk for sight-threatening diabetic retinopathy. Acta Ophthalmol. 2019, 97, e807–e808. [Google Scholar] [CrossRef]
- Bain, S.C.; Klufas, M.A.; Ho, A.; Matthews, D.R. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: A review. Diabetes Obes. Metab. 2019, 21, 454–466. [Google Scholar] [CrossRef]
- Yu, C.W.; Park, L.J.; Pinto, A.; Ma, O.N.; Lee, Y.; Gupta, R.; Chaudharye, V.; Doumourasb, A.G.; Hong, D. The impact of bariatric surgery on diabetic retinopathy: A systematic review and meta-analysis. Am. J. Ophthalmol. 2021, 225, 117–127. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chao, S.H.; Chen, C.C.; Ser, K.H.; Chong, K.; Lu, C.H.; Hsieh, M.L.; Huang, Y.Y.; Lee, Y.C.; Hsu, C.C.; et al. The effects of bariatric surgery on renal, neurological, and ophthalmic complications in patients with type 2 diabetes: The Taiwan Diabesity Study. Obes. Surg. 2020, 31, 117. [Google Scholar] [CrossRef]
- Zhu, B.T. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: The methanol-formaldehyde-formic acid hypothesis. Acta Biochim. Biophys. Sin. 2022, 54, 415–451. [Google Scholar] [CrossRef]
- Wright, W.S.; Eshaq, R.S.; Lee, M.; Kaur, G.; Harris, N.R. Retinal physiology and circulation: Effect of diabetes. Compr. Physiol. 2020, 10, 933. [Google Scholar]
- Wei, L.; Sun, X.; Fan, C.; Li, R.; Zhou, S.; Yu, H. The pathophysiological mechanisms underlying diabetic retinopathy. Front. Cell Dev. Biol. 2022, 10, 963615. [Google Scholar] [CrossRef]
- Murphy, R.; Jiang, Y.; Booth, M.; Babor, R.; Maccormick, A.; Hammodat, H.; Beban, G.; Barnes, R.M.; Vincent, A.L. Progression of diabetic retinopathy after bariatric surgery. Diabet. Med. 2015, 32, 1212–1220. [Google Scholar] [CrossRef]
- Kim, Y.J.; Seo, D.R.; Kim, M.J.; Lee, S.J.; Hur, K.Y.; Choi, K.S. Clinical course of diabetic retinopathy in Korean type 2 diabetes after bariatric surgery: A pilot study. Retina 2015, 35, 935–943. [Google Scholar] [CrossRef]
All CRITERIA | Brynskov T. et al. [16] | Morén et al. [17] | Wenhuan Feng et al. [18] | Ozkan Sever et al. [19] | Åkerblom H. et al. [20] | Chandru S. et al. [21] | Anne S. Thykjaer et al. [22] | Singh P. et al. [23] | Madsen et al. [24] | Miras, Alexander D. et al. [25] | Richardson et al. [26] | Chen Y. et al. [27] | Amin, Amin Mamoon et al. [28] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1. Hypothesis/aim/objective clearly described | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q2. Main outcomes in Introduction or Methods | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q3. Patient characteristics clearly described | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q4. Interventions of interest clearly described | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q5. Principal confounders clearly described | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Q6. Main findings clearly described | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q7. Estimates of random variability provided for main outcomes | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Q8. All adverse events of intervention reported | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Q9. Characteristics of patients lost to follow-up described | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
Q10. Probability values reported for main outcomes | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Q11. Subjects asked to participate were representative of source population | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q12. Subjects prepared to participate were representative of source population | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q13. Location and delivery of study treatment was representative of source population | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q14. Study participants blinded to treatment | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Q15. Blinded outcome assessment | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Q16. Any data dredging clearly described | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q17. Analyses adjust for differing lengths of follow-up | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
Q18. Appropriate statistical tests performed | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q19. Compliance with interventions was reliable | 1 | 0 | 1 | 1 | UTD | 1 | 1 | UTD | 1 | 1 | 1 | 1 | 1 |
Q20. Outcome measures were reliable and valid | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q21. All participants recruited from the same source population | UTD | 1 | 1 | 1 | 1 | 1 | UTD | 1 | 1 | UTD | UTD | UTD | 1 |
Q22. All participants recruited over the same time | UTD | 1 | 1 | 1 | 1 | 1 | UTD | 1 | 1 | UTD | UTD | UTD | 1 |
Q23. Participants randomized to treatment(s) | UTD | UTD | 1 | 0 | 0 | 0 | UTD | 0 | 0 | UTD | UTD | UTD | 0 |
Q24. Allocation of treatment concealed from investigators and participants | UTD | UTD | UTD | UTD | UTD | UTD | UTD | UTD | UTD | UTD | UTD | UTD | UTD |
Q25. Adequate adjustment for confounding | 0 | UTD | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
Q26. Losses to follow-up considered | 0 | UTD | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
Q27. Sufficient power to detect treatment effect at significance level of 0.05 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
TOTAL | 16 | 20 | 21 | 20 | 20 | 17 | 15 | 21 | 20 | 17 | 16 | 15 | 21 |
Quality | Fair | Good | Good | Good | Good | Fair | Fair | Good | Good | Fair | Fair | Fair | Good |
Study No. | Author(s) | Country | Year | Study Type | Sample Size (n) | Types of Bariatric Surgery | Follow-Up Duration | Quality Score (NOS) |
---|---|---|---|---|---|---|---|---|
1 | Brynskov T. et al. [16] | Denmark | 2016 | Prospective observational clinical study | C: 56 | RYGB; VSG | 1, 3, 6, and 12 months | 7 |
2 | Morén et al. [17] | Sweden | 2018 | Multicenter cohort study | C: 117 | GBP | 1 year | 8 |
3 | Wenhuan Feng et al. [18] | China | 2019 | Retrospective cohort study | C: 76 | RYGB | 1 year | 7 |
4 | Ozkan Sever et al. [19] | Turkey | 2020 | Retrospective observational study | C: 21 (37 eyes) CG: 27 (37 eyes) | VSG | 6 months and 1 year | 9 |
5 | Åkerblom H. et al. [20] | Sweden | 2021 | Cohort study | C: 5321 CG: 5321 | GBP | 1 year | 8 |
6 | Chandru S. et al. [21] | India | 2022 | Follow-up study | C: 21 | Unspecified | 1 year | 8 |
7 | Anne S. Thykjaer et al. [22] | Denmark | 2023 | Cohort study | C: 553 CG: 2677 | SG, LAGB, GBP | 6 months and 3 years | 7 |
8 | Singh P. et al. [23] | United Kingdom | 2021 | Retrospective matched controlled cohort study | C: 1126 CG: 2219 | RYGB, SG, LAGB | 3, 5 years | 7 |
9 | Madsen et al. [24] | Denmark | 2019 | Cross-sectional study | C: 96 CG: 48 | RYGB | 6 years | 9 |
10 | Miras, Alexander D. et al. [25] | United Kingdom | 2019 | Retrospective clinical trial | C: 82 | RYGB, SG, LAGB | 5 years | 9 |
11 | Richardson et al. [26] | United Kingdom | 2018 | Retrospective observational study | C: 32 | RYGB | 3 years | 7 |
12 | Chen Y. et al. [27] | United Kingdom | 2017 | Retrospective observational study | C: 102 | Unspecified | 4 years | 8 |
13 | Amin, Amin Mamoon et al. [28] | United Kingdom | 2016 | Retrospective cohort study | C: 152 | Unspecified | 3 years | 8 |
Study | Follow-Up | New-Onset DR | DR Worsening | DR Improvement | No Change in DR Status |
---|---|---|---|---|---|
Brynskov T. et al. (2016) [16] | 1, 3, 6, and 12 months | 6 months: 1/32 (3%) 12 months: 0/32 (0%) | 12 months: 3/24 (13%) 5/24 (21%) at any follow-up visit | 12 months: 4/24 (17%) 6/24 (25%) at any follow-up visit | 12 months: 49/56 (87.5%) |
Morén et al. (2018) [17] | 1 year | 12/73 (16%) | 7/44 (16%) | 8/44 (18%) | 77/117 (66%) |
Wenhuan Feng et al. (2019) [18] | 1 year | DR at baseline vs. after 12 months S: 6/40 (15%) vs. 3/40 (8%) M: 7/36 (19%) vs. 7/36 (19%) | |||
Ozkan Sever et al. (2020) [19] | 6 months and 1 year | Surgery: 17/21 (80.9%) had ocular complications Controls: 3/27 (11.1%) had ocular complications | |||
Åkerblom H. et al. (2021) [20] | 1 year | S: 188/5321 (0.83%) C: 317/5321 (2.94%) | S: 42/5321 (0.79%) C: 45/5321 (0.85%) | No data | No data |
Chandru S. et al. (2022) [21] | 1 year | No data | 1/8 (12.5%) | 2/8 (25%) | 7/8 (87.5%) |
Anne S. Thykjaer et al. (2023) [22] | 6 months | No data | S: 8/274 (2.9%) C: 34/404 (8.4%) | S: <5/11 (<45%) C: 15/76 (19.7%) | No data |
Study | Follow-Up (years) | New-Onset DR | DR Worsening | DR Improvement | No Change in DR Status |
---|---|---|---|---|---|
Anne S. Thykjaer et al. (2023) [22] | 3 | Screening group (treated with BS): 13/249 (5.2%) Control group (BS not applied): 169/2131 (7.9%) | Screening group (treated with BS): 6/9 (66.7%) | No data | |
Control group (BS not applied): 25/68 (36.8%) | |||||
Singh P. et al. (2021) [23] | 3.5 | Screening group (treated with BS): 34/1069 (3.2%) | No data | No data | No data |
Control group (BS not applied): 96/2068 (4.6%) | Control group (BS not applied): 96/2068 (4.6%) | No data | |||
Madsen et al. (2019) [24] | 6 | No data | Screening group (treated with BS): 0/96 (0%) | Screening group (treated with BS): 50/96 (52%) | No data |
Control group (BS not applied): 46/48 (95%) | Control group (BS not applied): no data | ||||
Miras, Alexander D. et al. (2019) [25] | 5 | 0/24 | 6/24 (25%) | 5/24 (20.8%) | 13/24 (54.2%) |
Richardson et al. (2018) [26] | 3 | 9/47 (19.1%) | 3/17 (17.6%) | 11/17 (64.7%) | 41/64 (64.1%) |
Chen Y. et al. (2017) [27] | 4 | 24/69 (34.8%) | 2/33 (6.1%) | 4/33 (12.1%) | 72/102 (70.6%) |
Amin, Amin Mamoon et al. (2016) [28] | 3 | 29/106 (27.4%) | 5/41 (12.2%) | 5/41 (12.2%) | 113/152 (74.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butkutė, E.; Zieniūtė, M.; Morkūnaitė, A.; Balčiūnienė, V.J. Short-Term and Long-Term Effects of Bariatric Surgery on Diabetic Retinopathy: A Systematic Review. Medicina 2025, 61, 157. https://doi.org/10.3390/medicina61010157
Butkutė E, Zieniūtė M, Morkūnaitė A, Balčiūnienė VJ. Short-Term and Long-Term Effects of Bariatric Surgery on Diabetic Retinopathy: A Systematic Review. Medicina. 2025; 61(1):157. https://doi.org/10.3390/medicina61010157
Chicago/Turabian StyleButkutė, Erika, Monika Zieniūtė, Agnė Morkūnaitė, and Vilma Jūratė Balčiūnienė. 2025. "Short-Term and Long-Term Effects of Bariatric Surgery on Diabetic Retinopathy: A Systematic Review" Medicina 61, no. 1: 157. https://doi.org/10.3390/medicina61010157
APA StyleButkutė, E., Zieniūtė, M., Morkūnaitė, A., & Balčiūnienė, V. J. (2025). Short-Term and Long-Term Effects of Bariatric Surgery on Diabetic Retinopathy: A Systematic Review. Medicina, 61(1), 157. https://doi.org/10.3390/medicina61010157