New Trends and Future Perspectives in the Diagnosis of Urothelial Carcinoma: A Comprehensive Review of the Literature
Abstract
:1. Introduction
2. Material and Methods
3. Imaging Techniques
Computed Tomography Urography
4. Magnetic Resonance Imaging Urography
5. Urine Cytology
6. Biomarkers
7. Endoscopy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer WHO. Estimated Number of New Cases In 2020, Worldwide, Both Sexes, All Ages 2021. Available online: https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=cancer&mode_population=continents (accessed on 3 December 2020).
- Soria, F.; Shariat, S.F.; Lerner, S.P.; Fritsche, H.M.; Rink, M.; Kassouf, W.; Spiess, P.E.; Lotan, Y.; Ye, D.; Fernández, M.I.; et al. Epidemiology, diagnosis, preoperative evaluation and prognostic assessment of upper-tract urothelial carcinoma (UTUC). World J. Urol. 2017, 35, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, M.; Nocera, L.; Collà Ruvolo, C.; Würnschimmel, C.; Tian, Z.; Shariat, S.F.; Saad, F.; Briganti, A.; Tilki, D.; Mandel, P.; et al. Incidence rates and contemporary trends in primary urethral cancer. Cancer Causes Control. 2021, 32, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E.M.; Dominguez Escrig, J.L.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur. Urol. 2022, 81, 75–94. [Google Scholar] [CrossRef]
- Baard, J.; de Bruin, D.M.; Zondervan, P.J.; Kamphuis, G.; de la Rosette, J.; Laguna, M.P. Diagnostic dilemmas in patients with upper tract urothelial carcinoma. Nat. Rev. Urol. 2017, 4, 181–191. [Google Scholar] [CrossRef]
- Grossman, H.B. Improving the management of bladder cancer with fluorescence cystoscopy. J. Environ. Pathol. Toxicol. Oncol. 2007, 26, 143–147. [Google Scholar] [CrossRef]
- Cheng, K.; Cassidy, F.; Aganovic, L.; Taddonio, M.; Vahdat, N. CT urography: How to optimize the technique. Abdom. Radiol. 2019, 44, 3786–3799. [Google Scholar] [CrossRef]
- Gershan, V.; Homayounieh, F.; Singh, R.; Avramova-Cholakova, S.; Faj, D.; Georgiev, E.; Girjoaba, O.; Griciene, B.; Gruppetta, E.; Šimonji, D.H.; et al. CT protocols and radiation doses for hematuria and urinary stones: Comparing practices in 20 countries. Eur. J. Radiol. 2020, 126, 108923. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, M.J.; Lee, H.J.; Cho, S.H. Comparison of full- and half-dose image reconstruction with filtered back projection or sinogram-affirmed iterative reconstruction in dual-source single-energy MDCT Urography. AJR Am. J. Roentgenol. 2018, 211, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.P.; Fishman, E.K. Bladder malignancies on CT: The underrated role of CT in diagnosis. AJR Am. J. Roentgenol. 2014, 203, 347–354. [Google Scholar] [CrossRef]
- Cicero, G.; Mazziotti, S.; Silipigni, S.; Blandino, A.; Cantisani, V.; Pergolizzi, S.; D’Angelo, T.; Stagno, A.; Maimone, S.; Squadrito, G.; et al. Dual-energy CT quantification of fractional extracellular space in cirrhotic patients: Comparison between early and delayed equilibrium phases and correlation with oesophageal varices. Radiol. Med. 2021, 126, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.N.; Hadjiiski, L.M.; Cha, K.H.; Samala, R.K.; Chan, H.P.; Cohan, R.H.; Caoili, E.M. Deep-learning convolutional neural network: Inner and outer bladder wall segmentation in CT urography. Med. Phys. 2019, 46, 634–648. [Google Scholar] [CrossRef] [PubMed]
- Garapati, S.S.; Hadjiiski, L.; Cha, K.H.; Chan, H.P.; Caoili, E.M.; Cohan, R.H.; Weizer, A.; Alva, A.; Paramagul, C.; Wei, J.; et al. Urinary bladder cancer staging in CT urography using machine learning. Med Phys. 2017, 44, 5814–5823. [Google Scholar] [CrossRef] [PubMed]
- Rouvière, O.; Cornelis, F.; Brunelle, S.; Roy, C.; André, M.; Bellin, M.F.; Boulay, I.; Eiss, D.; Girouin, N.; Grenier, N.; et al. Imaging protocols for renal multiparametric MRI and MR urography: Results of a consensus conference from the French Society of Genitourinary Imaging. Eur. Radiol. 2020, 30, 2103–2114. [Google Scholar] [CrossRef]
- Panebianco, V.; Narumi, Y.; Altun, E.; Bochner, B.H.; Efstathiou, J.A.; Hafeez, S.; Huddart, R.; Kennish, S.; Lerner, S.; Montironi, R.; et al. Multiparametric magnetic resonance imaging for bladder cancer: Development of VI-RADS (vesical imaging-reporting and data system). Eur. Urol. 2018, 74, 294–306. [Google Scholar] [CrossRef]
- Huang, S.; Bain, J.; Yiu, T.W.; Gilbourd, D.; Haxhimolla, H.Z.; Jain, T.; Jyoti, R. Accuracy of the vesical imaging-reporting and data system (VIRADS) for pre-treatment staging of bladder cancer in an Australian cohort. J. Med. Imaging Radiat. Oncol. 2022, 66, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Ghanshyam, K.; Nachiket, V.; Govind, S.; Shivam, P.; Sahay, G.B.; Mohit, S.; Ashok, K. Validation of vesical imaging reporting and data system score for the diagnosis of muscle-invasive bladder cancer: A prospective cross-sectional study. Asian J. Urol. 2022, 9, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, F.; Flammia, R.S.; Pecoraro, M.; Moschini, M.; D’Andrea, D.; Messina, E.; Pisciotti, L.M.; De Berardinis, E.; Sciarra, A.; Panebianco, V. The accuracy of vesical imaging-reporting and data system (VI-RADS): An updated comprehensive multi-institutional, multi-readers systematic review and meta-analysis from diagnostic evidence into future clinical recommendations. World J. Urol. 2022, 40, 1617–1628. [Google Scholar] [CrossRef]
- Brimo, F.; Vollmer, R.T.; Case, B.; Aprikian, A.; Kassouf, W.; Auger, M. Accuracy of urine cytology and the significance of an atypical category. Am. J. Clin. Pathol. 2009, 132, 785–793. [Google Scholar] [CrossRef]
- Caraway, N.P.; Khanna, A.; Fernandez, R.L.; Payne, L.; Bassett, R.L., Jr.; Zhang, H.Z.; Kamat, A.; Katz, R.L. Fluorescence in situ hybridization for detecting urothelial carcinoma: A clinicopathologic study. Cancer Cytopathol. 2010, 118, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Galván, A.B.; Salido, M.; Espinet, B.; Placer, J.; Pijuan, L.; Juanpere, N.; Lloreta, J.; Solé, F.; Gelabert-Mas, A. A multicolor fluorescence in situ hybridization assay: A monitoring tool in the surveillance of patients with a history of non-muscle-invasive urothelial cell carcinoma: A prospective study. Cancer Cytopathol. 2011, 119, 395–403. [Google Scholar] [CrossRef]
- Shefer, H.K.; Masarwe, I.; Bejar, J.; Naamnih, L.H.; Gueta-Milshtein, K.; Shalata, A.; Hadid, Y.; Nativ, O.; Nativ, O. Performance of CellDetect for detection of bladder cancer: Comparison with urine cytology and UroVysion. Urol. Oncol. 2023, 41, 296.e1–296.e8. [Google Scholar] [CrossRef]
- Aalami, A.H.; Aalami, F. Diagnostic performance of fluorescence in situ hybridization (FISH) in upper tract urothelial carcinoma (UTUC): A systematic review and meta-analysis. Int. J. Clin. Oncol. 2022, 27, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.C.; Tsao, T.Y.; Chang, M.C.; Lin, Y.S.; Yang, W.L.; Hang, J.F.; Li, C.B.; Lee, C.M.; Yeh, C.H.; Liu, T.J. Evaluation of an artificial intelligence algorithm for assisting the Paris System in reporting urinary cytology: A pilot study. Cancer Cytopathol. 2022, 130, 872–880. [Google Scholar] [CrossRef]
- Bhatia, A.; Dey, P.; Kumar, Y.; Gautam, U.; Kakkar, N.; Srinivasan, R.; Nijhawan, R. Expression of cytokeratin 20 in urine cytology smears: A potential marker for the detection of urothelial carcinoma. Cytopathology 2007, 18, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.C.; Wang, P.H.; Guan, M.; Jiang, H.W.; Wen, H.; Ding, Q.; Wu, Z. Urinary BLCA-4 is highly specific for detection of bladder cancer in Chinese Han population and is related to tumour invasiveness. Folia Biol 2011, 57, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gomez, J.; Rodríguez-Martínez, J.J.; Barmadah, S.E.; García Rodríguez, J.; Allende, D.M.; Jalon, A.; Gonzalez, R.; Alvarez-Mugica, M. Urinary CYFRA 21.1 is not a useful marker for the detection of recurrences in the follow-up of superficial bladder cancer. Eur. Urol. 2007, 51, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Nandi, S.; Tan, T.Z.; Ler, S.G.; Chia, K.S.; Lim, W.Y.; Bütow, Z.; Vordos, D.; De laTaille, A.; Al-Haddawi, M.; et al. Highly sensitive and specific novel biomarkers for the diagnosis of transitional bladder carcinoma. Oncotarget 2015, 6, 13539–13549. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shi, B.; Hao, C.; Wang, Q.; Lv, Q.; Xing, N.; Shou, J.; Qu, L.; Gao, Y.; Qin, C.; et al. Urine gamma-synuclein as a biomarker for the diagnosis of bladder cancer. Oncotarget 2016, 7, 43432–43441. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xi, X.; Kong, X.; Huang, G.; Ge, G. The expression and significance of survivin mRNA in urinary bladder carcinomas. J. Cancer Res. Clin. Oncol. 2004, 130, 487–490. [Google Scholar] [CrossRef]
- Wang, Z.; Que, H.; Suo, C.; Han, Z.; Tao, J.; Huang, Z.; Ju, X.; Tan, R.; Gu, M. Evaluation of the NMP22 BladderChek test for detecting bladder cancer: A systematic review and meta-analysis. Oncotarget 2017, 8, 100648–100656. [Google Scholar] [CrossRef]
- Glas, A.S.; Roos, D.; Deutekom, M.; Zwinderman, A.H.; Bossuyt, P.M.; Kurth, K.H. Tumor markers in the diagnosis of primary bladder cancer. A systematic review. J. Urol. 2003, 169, 1975–1982. [Google Scholar] [CrossRef] [PubMed]
- Rouprêt, M.; Gontero, P.; McCracken, S.R.C.; Dudderidge, T.; Stockley, J.; Kennedy, A.; Rodriguez, O.; Sieverink, C.; Vanié, F.; Allasia, M.; et al. Reducing the Frequency of Follow-up Cystoscopy in Low-grade pTa Non-muscle-invasive Bladder Cancer Using the ADXBLADDER Biomarker. Eur. Urol. Focus. 2022, 8, 1643–1649. [Google Scholar] [CrossRef]
- Ribal, M.J.; Mengual, L.; Lozano, J.J.; Ingelmo-Torres, M.; Palou, J.; Rodríguez-Faba, O.; Witjes, J.A.; Van der Heijden, A.G.; Medina, R.; Conde, J.M.; et al. Gene expression test for the non-invasive diagnosis of bladder cancer: A prospective, blinded, international and multicenter validation study. Eur. J. Cancer 2016, 54, 131–138. [Google Scholar] [CrossRef]
- Steinbach, P.; Kriegmair, M.; Baumgartner, R.; Hofstädter, F.; Knüchel, R. Intravesical instillation of 5-aminolevulinic acid: The fluorescent metabolite is limited to urothelial cells. Urology 1994, 44, 676–6781. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, S.; Bazargani, S.T.; Bivalacqua, T.J.; Holzbeierlein, J.M.; Willard, B.; Taylor, J.M.; Liao, J.C.; Pohar, K.; Tierney, J.; Konety, B.; et al. Blue light cystoscopy for the diagnosis of bladder cancer: Results from the US prospective multicenter registry. Urol. Oncol. 2018, 36, 361.e1–361.e6. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, S.; Patel, S.; Lotan, Y.; Pohar, K.; Trabulsi, E.; Woods, M.; Downs, T.; Huang, W.; Jones, J.; O’Donnell, M.; et al. Efficacy and safety of blue light flexible cystoscopy with hexaminolevulinate in the surveillance of bladder cancer: A phase iii, comparative, multicenter study. J. Urol. 2018, 199, 1158–1165. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, J.; Ma, S.; Ge, J.; Zhou, L.; Li, D.; Chen, Q. A meta-analysis of narrow band imaging for the diagnosis and therapeutic outcome of non-muscle invasive bladder cancer. PLoS ONE 2017, 12, e0170819. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.Y.; Tafuri, S.M.; Ginier, E.C.; Herrel, L.A.; Dahm, P.; Maisch, P.; Lane, G.I. Narrow band imaging versus white light cystoscopy alone for transurethral resection of non-muscle invasive bladder cancer. Cochrane Database Syst. Rev. 2022, 4, Cd014887. [Google Scholar]
- Drejer, D.; Béji, S.; Oezeke, R.; Nielsen, A.M.; Høyer, S.; Bjerklund Johansen, T.E.; Lam, G.W.; Jensen, J.B. Comparison of white light, photodynamic diagnosis, and narrow-band imaging in detection of carcinoma in situ or flat dysplasia at transurethral resection of the bladder: The DaBlaCa-8 study. Urology 2017, 102, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Yoon, S.G.; Tae, J.; Kim, J.Y.; Shim, J.S.; Kang, S.G.; Cheon, J.; Lee, J.G.; Kim, J.J.; Kang, S.H. Detection and recurrence rate of transurethral resection of bladder tumors by narrow-band imaging: Prospective, randomized comparison with white light cystoscopy. Investig. Clin. Urol. 2018, 59, 98–105. [Google Scholar] [CrossRef]
- Kamphuis, G.M.; de Bruin, D.M.; Brandt, M.J.; Knoll, T.; Conort, P.; Lapini, A.; Dominguez-Escrig, J.L.; de la Rosette, J.J.M.C.H. Comparing image perception of bladder tumors in four different storz professional image enhancement system modalities using the íSPIES. App. J. Endourol. 2016, 30, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Manyak, M.J.; Gladkova, N.D.; Makari, J.H.; Schwartz, A.M.; Zagaynova, E.V.; Zolfaghari, L.; Zara, J.; Iksanov, R.; Feldchtein, F. Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography. J. Endourol. 2005, 19, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.; Mach, K.E.; Zlatev, D.V.; Rouse, R.V.; Leppert, J.T.; Liao, J.C. A pilot study of in vivo confocal laser endomicroscopy of upper tract urothelial carcinoma. J. Endourol. 2015, 29, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
Name | Study | No of Patients | Family | Results | Advantages | Disadvantages |
---|---|---|---|---|---|---|
NMP 22 [31] | SR and MA | 32,000 | Non-chromatic proteins | SN 59% SP 89% | FDA approval | Low accuracy for low-grade tumors |
BTA [32] | SR | 7144 | Detects Human complement factor H-related protein | Sn 69% SP 77% | FDA approval | Low accuracy for low-grade tumors |
Cytokeratin 20 (CK20) [25] | Prospective | 198 | Keratin containing intermediate filaments | SN 70–77% SP 81–83% | Detection of cancer when atypical urine cytology is present | No standardized detection modality |
Survinin [30] | Prospective | 66 | Inhibitor of apoptosis protein (IAP) | SN 35–83% SP 93–100% | Better in high-grade cancer | No standardized detection modality |
BLCA1/4 [26] | Prospective | 53 | Nuclear Matrix protein group | SN 80–97% SP 87–100% | No correlation with grade | No clear cut-off No standardized test |
Cyfra 21–1 [27] | Prospective | 125 | Proteolytic region of CK19 | SN 82% SP 80% | Established cut-off value | Many false positive results |
Apolipoproteins [28] | Prospective | 451 | Lipid binding proteins | SN 78–86% SP 92–100% | Good SN and SP, even for LG tumors | Need to be combined for high SN and SP |
SNCG [29] | Prospective | 250 | Synuclein | SN 68% SP 97% | Better in early-stage tumors | High false positive results |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagiotis, M.; Ioannis, G.; Vasilleios, K.; Nikolaos, P.; Ioannis, S.; Sotirios, C. New Trends and Future Perspectives in the Diagnosis of Urothelial Carcinoma: A Comprehensive Review of the Literature. Medicina 2025, 61, 71. https://doi.org/10.3390/medicina61010071
Panagiotis M, Ioannis G, Vasilleios K, Nikolaos P, Ioannis S, Sotirios C. New Trends and Future Perspectives in the Diagnosis of Urothelial Carcinoma: A Comprehensive Review of the Literature. Medicina. 2025; 61(1):71. https://doi.org/10.3390/medicina61010071
Chicago/Turabian StylePanagiotis, Mourmouris, Georgopoulos Ioannis, Klapsis Vasilleios, Pisiotis Nikolaos, Salmas Ioannis, and Charamoglis Sotirios. 2025. "New Trends and Future Perspectives in the Diagnosis of Urothelial Carcinoma: A Comprehensive Review of the Literature" Medicina 61, no. 1: 71. https://doi.org/10.3390/medicina61010071
APA StylePanagiotis, M., Ioannis, G., Vasilleios, K., Nikolaos, P., Ioannis, S., & Sotirios, C. (2025). New Trends and Future Perspectives in the Diagnosis of Urothelial Carcinoma: A Comprehensive Review of the Literature. Medicina, 61(1), 71. https://doi.org/10.3390/medicina61010071