Effect of Body Position and Support Surface on the Postural Control Challenge During the Pallof Press Exercise: A Smartphone Accelerometer-Based Study
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Procedures
2.3. Pallof Press Variations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ekstrom, R.A.; Donatelli, R.A.; Carp, K.C. Electromyographic analysis of core trunk; hip; and thigh muscles during 9 rehabilitation exercises. J. Orthop. Sports Phys. Ther. 2007, 37, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Lago-Fuentes, C.; Rey, E.; Padrón-Cabo, A.; De Rellán-Guerra, A.S.; Fragueiro-Rodríguez, A.; García-Núñez, J. Effects of core strength training using stable and unstable surfaces on physical fitness and functional performance in professional female futsal players. J. Hum. Kinet. 2018, 65, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Oliver, G.D.; Adams-Blair, H.R.; Dougherty, C.P. Implementation of a Core Stability Program for Elementary School Children. Athl. Train. Sports Health Care 2010, 2, 261–266. [Google Scholar] [CrossRef]
- Reed, C.A.; Ford, K.R.; Myer, G.D.; Hewett, T.E. The effects of isolated and integrated “core stability” training on athletic performance measures, A systematic review. Sports Med. 2012, 42, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Watson, T.; Graning, J.; McPherson, S.; Carter, E.; Edwards, J.; Melcher, I.; Burgess, T. Dance; balance and core muscle performance measures are improved following a 9-week core stabilization training program among competitive collegiate dancers. Int. J. Sports Phys. Ther. 2017, 12, 25–41. [Google Scholar] [PubMed]
- Dong, K.; Yu, T.; Chun, B. Effects of Core Training on Sport-Specific Performance of Athletes: A Meta-Analysis of Randomized Controlled Trials. Behav. Sci. 2023, 13, 148. [Google Scholar] [CrossRef]
- Willson, J.D.; Dougherty, C.P.; Ireland, M.L.; Davis, I.M. Core stability and its relationship to lower extremity function and injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef]
- Barbado, D.; Barbado, L.C.; Elvira, J.L.L.; van Dieën, J.H.; Vera-Garcia, F.J. Sports-related testing protocols are required to reveal trunk stability adaptations in high-level athletes. Gait Posture 2016, 49, 90–96. [Google Scholar] [CrossRef]
- Filipa, A.; Byrnes, R.; Paterno, M.V.; Myer, G.D.; Hewett, T.E. Neuromuscular training improves performance on the star excursion balance test in young female athletes. J. Orthop. Sports Phys. Ther. 2010, 40, 551–558. [Google Scholar] [CrossRef]
- Lephart, S.M.; Smoliga, J.M.; Myers, J.B.; Sell, T.C.; Tsai, Y.S. An eight-week golf-specific exercise program improves physical characteristics, swing mechanics, and golf performance in recreational golfers. J. Strength Cond. Res. 2007, 21, 860–869. [Google Scholar]
- Vera-Garcia, F.J.; Irles-Vidal, B.; Prat-Luri, A.; García-Vaquero, M.P.; Barbado, D.; Juan-Recio, C. Progressions of core stabilization exercises based on postural control challenge assessment. Eur. J. Appl. Physiol. 2020, 120, 567–577. [Google Scholar] [CrossRef]
- Heredia-Elvar, J.R.; Juan-Recio, C.; Prat-Luri, A.; Barbado, D.; de los Ríos-Calonge, J.; Vera-Garcia, F.J. Exercise Intensity Progressions and Criteria to Prescribe Core Stability Exercises in Young Physically Active Men, A Smartphone Accelerometer-Based Study. J. Strength Cond. Res. 2024, 38, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Lewis, C.; Pecson, A.; Imamura, R.; Andrews, J.R. Muscle Activation Among Supine; Prone; and Side Position Exercises With and Without a Swiss Ball. Sports Health 2016, 8, 372–379. [Google Scholar] [CrossRef] [PubMed]
- McGill, S.M.; Karpowicz, A. Exercises for spine stabilization: Motion/motor patterns, stability progressions, and clinical technique. Arch. Phys. Med. Rehabil. 2009, 90, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Imai, A.; Kaneoka, K.; Okubo, Y.; Shiina, I.; Tatsumura, M.; Izumi, S.; Shiraky, H. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J. Orthop. Sports Phys. Ther. 2010, 40, 369–375. [Google Scholar] [CrossRef]
- Calatayud, J.; Casaña, J.; Martín, F.; Jakobsen, M.D.; Colado, J.C.; Andersen, L.L. Progression of Core Stability Exercises Based on the Extent of Muscle Activity. Am. J. Phys. Med. Rehabil. 2017, 96, 694–699. [Google Scholar] [CrossRef]
- Calatayud, J.; Casaña, J.; Martín, F.; Jakobsen, M.D.; Colado, J.C.; Gargallo, P.; Juesas, A.; Muñoz, V.; Andersen, L.L. Trunk muscle activity during different variations of the supine plank exercise. Musculoskelet. Sci. Pract. 2017, 28, 54–58. [Google Scholar] [CrossRef]
- Bjerkefors, A.; Ekblom, M.M.; Josefsson, K.; Thorstensson, A. Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man. Ther. 2010, 15, 502–507. [Google Scholar] [CrossRef]
- Lehman, G.J.; Hoda, W.; Oliver, S. Trunk muscle activity during bridging exercises on and off a swissball. Chiropr. Osteopat. 2005, 13, 14. [Google Scholar] [CrossRef]
- Stevens, V.K.; Bouche, K.G.; Mahieu, N.N.; Coorevits, P.L.; Vanderstraeten, G.G.; Danneels, L.A. Trunk muscle activity in healthy subjects during bridging stabilization exercises. BMC Musculoskelet. Disord. 2006, 7, 75. [Google Scholar] [CrossRef]
- Kavcic, N.; Grenier, S.; McGill, S.M. Quantifying tissue loads and spine stability while performing commonly prescribed low back stabilization exercises. Spine 2004, 29, 2319–2329. [Google Scholar] [CrossRef] [PubMed]
- Mullane, M.; Turner, A.N.; Bishop, C. The Pallof Press. Strength Cond. J. 2021, 43, 121–128. [Google Scholar] [CrossRef]
- Mendrin, N.; Lynn, S.K.; Griffith-Merritt, H.K.; Noffal, G.J. Progressions of Isometric Core Training. Strength Cond. J. 2016, 38, 50–65. [Google Scholar] [CrossRef]
- McGill, S.M.; Karpowicz, A.; Fenwick, C.M.J.; Brown, S.H.M. Exercises for the Torso Performed in a Standing Posture, Spine and Hip Motion and Motor Patterns and Spine Load. J. Strength Cond. Res. 2009, 23, 455–464. [Google Scholar] [CrossRef]
- Franco-López, F.; Durkalec-Michalski, K.; Díaz-Morón, J.; Higueras-Liébana, E.; Hernández-Belmonte, A.; Courel-Ibáñez, J. Using Resistance-Band Tests to Evaluate Trunk Muscle Strength in Chronic Low Back Pain: A Test–Retest Reliability Study. Sensors 2024, 24, 4131. [Google Scholar] [CrossRef]
- Nekar, D.M.; Lee, D.Y.; Hong, J.H.; Kim, J.S.; Kim, S.G.; Nam, Y.G.; Yu, J.H. Comparing the Impact of Upper Body Control and Core Muscle Stabilization Training on Landing Biomechanics in Individuals with Functional Ankle Instability: A Randomized Controlled Trial. Healthcare 2024, 12, 70. [Google Scholar] [CrossRef]
- Heredia-Elvar, J.R.; Juan-Recio, C.; Prat-Luri, A.; Barbado, D.; Vera-Garcia, F.J. Observational Screening Guidelines and Smartphone Accelerometer Thresholds to Establish the Intensity of Some of the Most Popular Core Stability Exercises. Front. Physiol. 2021, 12, 751569. [Google Scholar] [CrossRef]
- Barbado, D.; Irles-Vidal, B.; Prat-Luri, A.; García-Vaquero, M.P.; Vera-Garcia, F.J. Training intensity quantification of core stability exercises based on a smartphone accelerometer. PLoS ONE 2018, 13, e0208262. [Google Scholar] [CrossRef]
- Hopkins, W.G. Spreadsheets for analysis of validity and reliability. Sportscience 2015, 19, 36–44. [Google Scholar]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Fleiss, J.L. The Design and Analysis of Clinical Experiments; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Feldwieser, F.M.; Sheeran, L.; Meana-Esteban, A.; Sparkes, V. Electromyographic analysis of trunk-muscle activity during stable; unstable and unilateral bridging exercises in healthy individuals. Eur. Spine J. 2012, 21, 171–186. [Google Scholar] [CrossRef]
Variables | Session 1 (Mean ± SD) | Session 2 (Mean ± SD) | Change in Mean (95% CL) | Typical Error (%) (95% CL) | ICC(3,1) (95% CL) | |
---|---|---|---|---|---|---|
ISOMETRIC PALLOF-PRESS (m/s2) | 0.17 ± 0.05 | 0.17 ± 0.06 | −0.01 (−0.03–0.02) | 0.03 (17%) (0.02–0.05) | 0.74 (0.31–0.92) | |
0.25 ± 0.07 | 0.22 ± 0.06 | −0.04 (−0.07–−0.01) | 0.03 (14%) (0.02–0.06) | 0.80 (0.42–0.94) | ||
0.29 ± 0.09 | 0.31 ± 0.10 | 0.01 (−0.03–0.05) | 0.04 (15%) (0.03–0.07) | 0.81 (0.46–0.94) | ||
0.57 ± 0.17 | 0.55 ± 0.15 | 0.00 (−0.09–0.08) | 0.09 (16%) (0.06–0.16) | 0.72 (0.25–0.91) | ||
0.59 ± 0.12 | 0.61 ± 0.21 | 0.07 (−0.03–0.17) | 0.09 (14%) (0.06–0.17) | 0.82 (0.32–0.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juan-Recio, C.; Prat-Luri, A.; Rondón-Espinosa, H.; Barbado, D.; Vera-Garcia, F.J. Effect of Body Position and Support Surface on the Postural Control Challenge During the Pallof Press Exercise: A Smartphone Accelerometer-Based Study. Medicina 2025, 61, 312. https://doi.org/10.3390/medicina61020312
Juan-Recio C, Prat-Luri A, Rondón-Espinosa H, Barbado D, Vera-Garcia FJ. Effect of Body Position and Support Surface on the Postural Control Challenge During the Pallof Press Exercise: A Smartphone Accelerometer-Based Study. Medicina. 2025; 61(2):312. https://doi.org/10.3390/medicina61020312
Chicago/Turabian StyleJuan-Recio, Casto, Amaya Prat-Luri, Heidy Rondón-Espinosa, David Barbado, and Francisco J. Vera-Garcia. 2025. "Effect of Body Position and Support Surface on the Postural Control Challenge During the Pallof Press Exercise: A Smartphone Accelerometer-Based Study" Medicina 61, no. 2: 312. https://doi.org/10.3390/medicina61020312
APA StyleJuan-Recio, C., Prat-Luri, A., Rondón-Espinosa, H., Barbado, D., & Vera-Garcia, F. J. (2025). Effect of Body Position and Support Surface on the Postural Control Challenge During the Pallof Press Exercise: A Smartphone Accelerometer-Based Study. Medicina, 61(2), 312. https://doi.org/10.3390/medicina61020312