Stabilization Splint Therapy for Patients with Temporomandibular Disorders Improves Opening Movements and Jaw Limitation and Attenuates Pain by Influencing the Levels of IL-7, IL-8, and IL-13 in the Gingival Crevicular Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Concerns
2.2. Participants
2.3. Clinical Examination and Questionnaires
2.4. Stabilization Splint Fabrication
2.5. Gingival Crevicular Fluid (GCF) Sampling
2.6. Laboratory Analysis
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Clinical Outcomes
3.3. Concentrations of Pro-Inflammatory Cytokines in GCF and Correlation with Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gauer, R.L.; Semidey, M.J. Diagnosis and treatment of temporomandibular disorders. Am. Fam. Physician 2015, 91, 378–386. [Google Scholar] [PubMed]
- Zieliński, G.; Pająk-Zielińska, B.; Ginszt, M. A Meta-Analysis of the Global Prevalence of Temporomandibular Disorders. J. Clin. Med. 2024, 13, 1365. [Google Scholar] [CrossRef]
- Li, D.T.S.; Leung, Y.Y. Temporomandibular disorders: Current concepts and controversies in diagnosis and management. Diagnostics 2021, 11, 459. [Google Scholar] [CrossRef]
- Wadhokar, O.C.; Patil, D.S. Current Trends in the Management of Temporomandibular Joint Dysfunction: A Review. Cureus 2022, 14, e29314. [Google Scholar] [CrossRef] [PubMed]
- Kapos, F.P.; Exposto, F.G.; Oyarzo, J.F.; Durham, J. Temporomandibular disorders: A review of current concepts in aetiology, diagnosis and management. Oral Surg. 2020, 13, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-H.; He, K.-X.; Lin, C.-J.; Liu, X.-D.; Wu, L.; Chen, J.; Rausch-Fan, X. Efficacy of occlusal splints in the treatment of temporomandibular disorders: A systematic review of randomized controlled trials. Acta Odontol. Scand. 2020, 78, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Almăşan, O.; Hedeşiu, M.; Leucu, A.D.-C.; Buduru, S.; Dinu, C. Oral splints in the management of nociceptive pain and migraines: A scoping review. Exp. Ther. Med. 2023, 25, 28. [Google Scholar] [CrossRef] [PubMed]
- Riley, P.; Glenny, A.-M.; Worthington, H.V.; Jacobsen, E.; Robertson, C.; Durham, J.; Boyers, D. Oral splints for patients with temporomandibular disorders or bruxism: A systematic review and economic evaluation. Health Technol. Assess. 2020, 24, 1. [Google Scholar] [CrossRef]
- Son, C.; Park, Y.K.; Park, J.W. Long-term evaluation of temporomandibular disorders in association with cytokine and autoantibody status in young women. Cytokine 2021, 144, 155551. [Google Scholar] [CrossRef]
- Ibi, M. Inflammation and Temporomandibular Joint Derangement. Biol. Pharm. Bull. 2019, 42, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, M.; Battaglino, R.; Ye, L. A comprehensive review on biomarkers associated with painful temporomandibular disorders. Int. J. Oral Sci. 2021, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Zwiri, A.; Al-Hatamleh, M.A.I.; Ahmad, W.M.A.W.; Asif, J.A.; Khoo, S.P.; Husein, A.; Kassim, N.K. Biomarkers for temporomandibular disorders: Current status and future directions. Diagnostics 2020, 10, 303. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bao, M.; Hou, C.; Wang, Y.; Zheng, L.; Peng, Y. The Role of TNF-α in the Pathogenesis of Temporomandibular Disorders. Biol. Pharm. Bull. 2021, 44, 1801–1809. [Google Scholar] [CrossRef]
- Güven, O.; Tekin, U.; Salmanoğlu, B.; Kaymak, E. Tumor necrosis factor-alpha levels in the synovial fluid of patients with temporomandibular joint internal derangement. J. Cranio-Maxillofac. Surg. 2015, 43, 102–105. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Liu, Z.; Liu, Z.H.; Chen, S.P.; Li, M.; Shahveranov, A.; Tian, Y.K. Interleukin-6: An emerging regulator of pathological pain. J. Neuroinflammation 2016, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Louca Jounger, S.; Christidis, N.; Svensson, P.; List, T.; Ernberg, M. Increased levels of intramuscular cytokines in patients with jaw muscle pain. J. Headache Pain 2017, 18, 30. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Bostanci, N.; Belibasakis, G.N. Gingival crevicular fluid and its immune mediators in the proteomic era. Periodontology 2000 2018, 76, 68–84. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, E.; Radaic, A.; Yu, X.; Yang, S.; Yu, C.; Ye, C. Diagnostic potential and future directions of matrix metalloproteinases as biomarkers in gingival crevicular fluid of oral and systemic diseases. Int. J. Biol. Macromol. 2021, 188, 180–196. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, R.; Reda, B.; Yang, W.; Hannig, M.; Qu, B. Profiling of cytokines, chemokines and growth factors in saliva and gingival crevicular fluid. Cytokine 2021, 142, 155504. [Google Scholar] [CrossRef] [PubMed]
- Baima, G.; Corana, M.; Iaderosa, G.; Romano, F.; Citterio, F.; Meoni, G.; Aimetti, M. Metabolomics of gingival crevicular fluid to identify biomarkers for periodontitis: A systematic review with meta-analysis. J. Periodontal Res. 2021, 56, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Pliavga, V.; Peceliunaite, G.; Daugela, P.; Leketas, M.; Gervickas, A.; Juodzbalys, G. Peri-implantitis Diagnosis and Prognosis Using Biomarkers: A Systematic Literature Review. Int. J. Oral Maxillofac. Implant. 2023, 38, 1095–1105. [Google Scholar] [CrossRef]
- Szustkiewicz-Karoń, A.; Schönborn, M.; Pasieka, P.; Płotek, A.; Maga, P.; Gregorczyk-Maga, I. Biomarkers of Cardiovascular Diseases in Saliva and Gingival Crevicular Fluid: A Review. Angiology 2023, 74, 909–947. [Google Scholar] [CrossRef] [PubMed]
- Enver, A.; Ozmeric, N.; Isler, S.C.; Toruner, M.; Fidan, C.; Demirci, G.; Silva, A.P.B.D. Evaluation of periodontal status and cytokine levels in saliva and gingival crevicular fluid of patients with inflammatory bowel diseases. J. Periodontol. 2022, 93, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Pasarin, L.; Martu, M.-A.; Ciurcanu, O.E.; Luca, E.O.; Salceanu, M.; Anton, D.; Esanu, I.M. Influence of Diabetes Mellitus and Smoking on Pro- and Anti-Inflammatory Cytokine Profiles in Gingival Crevicular Fluid. Diagnostics 2023, 13, 3051. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Zhou, W.; Shen, H.; Wang, J.; Tang, R.; Wang, T.; Song, Z. Profiles of subgingival microbiomes and gingival crevicular metabolic signatures in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Alzheimer’s Res. Ther. 2024, 16, 41. [Google Scholar] [CrossRef]
- Surlin, P.; Lazar, L.; Sincar, C.; Gheorghe, D.N.; Popescu, D.M.; Boldeanu, V.M.; Rogoveanu, I. NLRP3 Inflammasome Expression in Gingival Crevicular Fluid of Patients with Periodontitis and Chronic Hepatitis C. Mediat. Inflamm. 2021, 2021, 6917919. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, E.; Ohrbach, R. Executive summary of the Diagnostic Criteria for Temporomandibular Disorders for clinical and research applications. J. Am. Dent. Assoc. 2016, 147, 438–445. [Google Scholar] [CrossRef]
- Ohrbach, R. Diagnostic Criteria for Temporomandibular Disorders: Assessment Instruments. Version 15 May 2016. [Dijagnostički kriteriji za Temporomandibularne Poremećaje (DK/TMP) Instrumenti Procjene: Croatian Version 23 March 2021] Spalj, S.; Katic, V.; Alajbeg, I.; Celebic, A. Available online: www.rdc-tmdinternational.org (accessed on 8 July 2024).
- Von Korff, M.; Ormel, J.; Keefe, F.J.; Dworkin, S.F. Grading the severity of chronic pain. Pain 1992, 50, 133–149. [Google Scholar] [CrossRef]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (sf-36 bps), and measure of intermittent and constant osteoarthritis pain (icoap). Arthritis Care Res. 2011, 63 (Suppl. S1), S240–S252. [Google Scholar] [CrossRef]
- Jung, G.B.; Kim, K.-A.; Han, I.; Park, Y.-G.; Park, H.-K. Biochemical characterization of human gingival crevicular fluid during orthodontic tooth movement using Raman spectroscopy. Biomed. Opt. Express 2014, 5, 3508. [Google Scholar] [CrossRef]
- Kaya, Y.; Alkan, Ö.; Kömüroglu, A.U.; Keskin, S. Effects of ibuprofen and low-level laser therapy on orthodontic pain by means of the analysis of interleukin 1-beta and substance P levels in the gingival crevicular fluid. J. Orofac. Orthop. Fortschritte Kieferorthopadie 2021, 82, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Duspara, K.; Sikora, R.; Petrovic, A.; Kuna Roguljic, L.; Matic, A.; Kralik, K.; Smolic, M. Changes in Dickkopf-1, but Not Sclerostin, in Gingival Crevicular Fluid Are Associated with Peroral Statin Treatment in Patients with Periodontitis. Medicina 2024, 60, 508. [Google Scholar] [CrossRef] [PubMed]
- Yaman, D.; Alpaslan, C.; Akca, G.; Avcı, E. Correlation of molecular biomarker concentrations between synovial fluid and saliva of the patients with temporomandibular disorders. Clin. Oral Investig. 2020, 24, 4455–4461. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Tang, T.-X.; Deng, H.; Yang, X.-P.; Tang, Z.-H. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front. Immunol. 2021, 12, 747324. [Google Scholar] [CrossRef]
- Bikker, A.; Hack, C.E.; Lafeber, F.P.J.G.; van Roon, J.A.G. Interleukin-7: A key mediator in T cell-driven autoimmunity, inflammation, and tissue destruction. Curr. Pharm. Des. 2012, 18, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Barata, J.T.; Durum, S.K.; Seddon, B. Flip the coin: IL-7 and IL-7R in health and disease. Nat. Immunol. 2019, 20, 1584–1593. [Google Scholar] [CrossRef]
- Heitzer, E.; Sandner-Kiesling, A.; Schippinger, W.; Stohscheer, I.; Osprian, I.; Bitsche, S.; Eisner, F.; Verebes, J.; Hofmann, G.; Samonigg, H. IL-7, IL-18, MCP-1, MIP1-β, and OPG as biomarkers for pain treatment response in patients with cancer. Pain Physician 2012, 15, 499–510. [Google Scholar] [PubMed]
- Khaiboullina, S.F.; DeMeirleir, K.L.; Rawat, S.; Berk, G.S.; Gaynor-Berk, R.S.; Mijatovic, T.; Blatt, N.; Rizvanov, A.A.; Young, S.G.; Lombardi, V.C. Cytokine expression provides clues to the pathophysiology of Gulf War illness and myalgic encephalomyelitis. Cytokine 2015, 72, 1–8. [Google Scholar] [CrossRef]
- Ernberg, M.; Jasim, H.; Wåhlén, K.; Ghafouri, B. Altered Plasma Proteins in Myogenous Temporomandibular Disorders. J. Clin. Med. 2022, 11, 2777. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Shaikh, F.; Zamzam, A.; Syed, M.H.; Abdin, R.; Qadura, M. The Identification and Evaluation of Interleukin-7 as a Myokine Biomarker for Peripheral Artery Disease Prognosis. J. Clin. Med. 2024, 13, 3583. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, S.; Song, F.; Wu, S.; Chen, J.; Chen, S. Effect of the use of stabilization splint on masticatory muscle activities in TMD patients with centric relation-maximum intercuspation discrepancy and absence of anterior/lateral guidance. Cranio J. Craniomandib. Pract. 2021, 39, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Roeb, E. Interleukin-13 (IL-13)-A Pleiotropic Cytokine Involved in Wound Healing and Fibrosis. Int. J. Mol. Sci. 2023, 24, 12884. [Google Scholar] [CrossRef] [PubMed]
- Tufvesson, E.; Stenberg, H.; Ankerst, J.; Bjermer, L. Type 2 Inflammatory Biomarker Response After Exercise Challenge Testing. J. Asthma Allergy 2020, 13, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.H.; Stanya, K.J.; Hyde, A.L.; Chalom, M.M.; Alexander, R.K.; Liou, Y.-H.; Starost, K.A.; Gangl, M.R.; Jacobi, D.; Liu, S.; et al. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 2020, 368, aat3987. [Google Scholar] [CrossRef]
- Camejo, F.d.A.; Azevedo, M.; Ambros, V.; Caporal, K.S.T.; Doetzer, A.D.; Almeida, L.E.; Olandoski, M.; Noronha, L.; Trevilatto, P.C. Interleukin-6 expression in disc derangement of human temporomandibular joint and association with osteoarthrosis. J. Cranio-Maxillofacial Surg. 2017, 45, 768–774. [Google Scholar] [CrossRef]
- Sommer, C.; Kress, M. Recent findings on how proinflammatory cytokines cause pain: Peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci. Lett. 2004, 361, 184–187. [Google Scholar] [CrossRef]
- Ernberg, M. The role of molecular pain biomarkers in temporomandibular joint internal derangement. J. Oral Rehabil. 2017, 44, 481–491. [Google Scholar] [CrossRef]
- Ulmner, M.; Sugars, R.; Naimi-Akbar, A.; Alstergren, P.; Lund, B. Cytokines in temporomandibular joint synovial fluid and tissue in relation to inflammation. J. Oral Rehabil. 2022, 49, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, C.; Zhu, R.; Chen, F.M.; Wang, L.; Leung, F.P.; Tian, X.Y.; Tse, G.; Wong, W.T. Type 2 cytokines promote angiogenesis in ischemic muscle via endothelial IL-4Rα signaling. Cell Rep. 2023, 42, 112964. [Google Scholar] [CrossRef] [PubMed]
- Vrbanović, E.; Alajbeg, I.Z. Long-term Effectiveness of Occlusal Splint Therapy Compared to Placebo in Patients with Chronic Temporomandibular Disorders. Acta Stomatol. Croat. 2019, 53, 195–206. [Google Scholar] [CrossRef]
- Palomino, D.C.T.; Marti, L.C. Chemokines and immunity. Einstein 2015, 13, 469–473. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Akerström, T.C.A.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef]
- Takasawa, S.; Shobatake, R.; Itaya-Hironaka, A.; Makino, M.; Uchiyama, T.; Sakuramoto-Tsuchida, S.; Takeda, Y.; Ota, H.; Yamauchi, A. Upregulation of IL-8, osteonectin, and myonectin mRNAs by intermittent hypoxia via OCT1- and NRF2-mediated mechanisms in skeletal muscle cells. J. Cell. Mol. Med. 2022, 26, 6019–6031. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, J.; Li, X.; Wu, Q.; Yao, R.; Luo, X. Hypoxia and TNF-α Synergistically Induce Expression of IL-6 and IL-8 in Human Fibroblast-like Synoviocytes via Enhancing TAK1/NF-κB/HIF-1α Signaling. Inflammation 2023, 46, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Ulmner, M.; Sugars, R.; Naimi-Akbar, A.; Suslu, S.; Reseland, J.E.; Kruger-Weiner, C.; Lund, B. Synovial tissue cytokine profile in disc displacement of the temporomandibular joint. J. Oral Rehabil. 2020, 47, 1202–1211. [Google Scholar] [CrossRef]
- Pieretti, S.; Di Giannuario, A.; Di Giovannandrea, R.; Marzoli, F.; Piccaro, G.; Minosi, P.; Aloisi, A.M. Gender differences in pain and its relief. Ann. Dell’istituto Super. Sanita 2016, 52, 184–189. [Google Scholar] [CrossRef]
- Moustgaard, H.; Clayton, G.L.; Jones, H.E.; Boutron, I.; Jørgensen, L.; Laursen, D.R.T.; Olsen, M.F.; Paludan-Müller, A.; Ravaud, P.; Savović, J.; et al. Impact of blinding on estimated treatment effects in randomised clinical trials: Meta-epidemiological study. BMJ 2020, 368, l6802. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
Gender [n (%)] | |
---|---|
Male | 5 (14) |
Female | 31 (86) |
Age (years) [Median (interquartile range)] | 35 (28–50) |
Marital status [n (%)] | |
Married | 16 (44) |
Living as married | 2 (6) |
Widowed | 1 (3) |
Divorced | 1 (3) |
Never married | 15 (42) |
Level of education [n (%)] | |
High school | 12 (33) |
Started, but did not graduate from college | 7 (20) |
College graduate | 12 (33) |
Professional or post-graduate level | 5 (14) |
Pain characteristics [Median (interquartile range)] | |
Pain duration (years) | 1 (0.5–3) |
Current pain intensity (NRS) | 4 (3–6) |
Average pain intensity (NRS) | 5 (4–6) |
Median (Interquartile Range) | p * | ||||
---|---|---|---|---|---|
Baseline (T0) | One-Month Follow-Up (T1) | Three-Month Follow-Up (T2) | Effect Size ‖ | ||
Opening movements | |||||
pain-free mouth opening | 38 (35–40.5) | 41 (39–45.5) | 44 (41–48.5) | <0.001 † | 0.586 |
maximum unassisted | 42 (39–46) | 44.5 (42–48.5) | 46 (43–50) | <0.001 † | 0.338 |
maximum assisted | 45 (41.5–50) | 45 (42.75–51) | 46 (43.75–51.25) | <0.001 † | 0.334 |
Lateral and protrusive movements | |||||
right lateral | 10 (7–12) | 11 (9–12) | 11 (10–12) | <0.001 † | 0.280 |
left lateral | 13 (11–15) | 14 (12–15) | 13 (11–15) | 0.003 ‡ | 0.159 |
protrusion | 6 (5–8) | 7 (6–9) | 8 (6–9) | 0.02 § | 0.025 |
n (%) Participants | p * | |||
---|---|---|---|---|
Baseline (T0) | One-Month Follow-Up (T1) | Three-Month Follow-Up (T2) | ||
0—None | 0 | 2 (3) | 12 (33) | <0.001 |
I—Low-intensity pain, without disability | 10 (28) | 27 (75) | 18 (50) | |
II—High-intensity pain, without disability | 13 (36) | 4 (11) | 1 (3) | |
III—Moderately limiting | 13 (36) | 3 (8) | 2 (6) | |
IV—Severely limiting | 0 | 0 | 0 |
Median (Interquartile Range) | p * | ||||
---|---|---|---|---|---|
Baseline (T0) | One-Month Follow-Up (T1) | Three-Month Follow-Up (T2) | Effect Size ‖ | ||
Mastication limitation | 3 (2–4.75) | 3.1 (1.5–4.5) | 1.1 (0.4–1.9) | <0.001 † | 0.584 |
Mobility limitation | 1.6 (0.7–2.5) | 1.2 (0.4–3) | 0.2 (0–1.4) | <0.001 † | 0.461 |
Verbal and Emotional Expression Limitation | 0.7 (0–2.1) | 0.5 (0–2.4) | 0 (0–0.65) | <0.001 † | 0.341 |
Global | 2.5 (1.5–3.5) | 0.9 (0.6–2.2) | 0.5 (0.1–1.4) | <0.001 ‡ | 0.595 |
Median (Interquartile Range) | p * | ||||
---|---|---|---|---|---|
Baseline (T0) | One-Month Follow-Up (T1) | Three-Month Follow-Up (T2) | Effect Size‖ | ||
GCF | |||||
IL-1ß | 316.16 (148.74–731.22) | 319.17 (163.12–809.34) | 237.01 (108–492.61) | 0.07 | 0.076 |
IL-6 | 9.06 (7.4–12.14) | 10.06 (7.46–13.16) | 9.4 (8.46–14.22) | 0.74 | 0.009 |
IL-7 | 0.89 (0.62–1.07) | 0.93 (0.7–1.23) | 0.7 (0.59–0.89) | 0.008 | 0.143 |
IL-8 | 719.89 (317.19–1022.64) | 724.73 (303.27–1324.17) | 480.24 (230.16–1020.44) | 0.40 | 0.027 |
IL-13 | 2.19 (1.42–3.36) | 1.9 (1.75–3.36) | 1.75 (1.31–2.19) | 0.003 | 0.175 |
TNF α | 3.34 (2.66–4.74) | 4.31 (2.57–5.77) | 3.85 (2.66–4.98) | 0.82 | 0.006 |
Spearman Correlation Coefficient Rho (p Value) of Chronic Pain Intensity According to GCPSv2 | |||
---|---|---|---|
Baseline (T0) | One-Month Follow-Up (T1) | Three-Month Follow-Up (T2) | |
GCF | |||
IL-1ß | −0.05 (0.77) | 0.107 (0.53) | 0.005 (0.98) |
IL-6 | −0.094 (0.59) | −0.088 (0.61) | −0.069 (0.70) |
IL-7 | 0.069 (0.69) | −0.018 (0.92) | −0.189 (0.28) |
IL-8 | 0.075 (0.66) | 0.085 (0.62) | −0.202 (0.25) |
IL-13 | 0.072 (0.68) | −0.028 (0.87) | −0.333 (0.04) |
TNF α | 0.229 (0.18) | −0.120 (0.49) | −0.133 (0.45) |
Spearman’s Correlation Coefficient Jaw Functional Limitation According to JFLS | ||||
---|---|---|---|---|
Mastication Limitation | Mobility Limitation | Verbal and Emotional Expression Limitation | Total JFLS | |
Baseline (T0) | ||||
IL-1ß | −0.012 (0.95) | −0.088 (0.61) | −0.072 (0.68) | −0.101 (0.56) |
IL-6 | −0.125 (0.47) | −0.184 (0.28) | −0.076 (0.66) | −0.164 (0.34) |
IL-7 | −0.054 (0.76) | −0.186 (0.28) | −0.219 (0.20) | −0.158 (0.36) |
IL-8 | −0.017 (0.92) | 0.008 (0.96) | 0.159 (0.35) | −0.009 (0.96) |
IL-13 | −0.013 (0.94) | −0.005 (0.98) | −0.047 (0.79) | −0.006 (0.97) |
TNF α | −0.081 (0.64) | −0.051 (0.77) | −0.214 (0.21) | −0.120 (0.49) |
One-month follow-up (T1) | ||||
IL-1ß | 0.199 (0.24) | 0.294 (0.08) | 0.165 (0.34) | 0.253 (0.14) |
IL-6 | 0.113 (0.51) | 0.095 (0.58) | −0.020 (0.91) | 0.080 (0.64) |
IL-7 | 0.011 (0.95) | 0.041 (0.81) | −0.058 (0.74) | 0.008 (0.96) |
IL-8 | 0.136 (0.43) | 0.382 (0.02) | 0.245 (0.15) | 0.268 (0.11) |
IL-13 | −0.017 (0.92) | −0.072 (0.68) | −0.246 (0.15) | −0.040 (0.82) |
TNF α | −0.043 (0.80) | 0.168 (0.33) | −0.020 (0.91) | 0.071 (0.68) |
Three-month follow-up (T2) | ||||
IL-1ß | 0.150 (0.41) | 0.153 (0.40) | 0.112 (0.53) | 0.126 (0.49) |
IL-6 | 0.092 (0.61) | −0.009 (0.96) | 0.101 (0.58) | 0.028 (0.88) |
IL-7 | −0.195 (0.28) | −0.003 (0.99) | −0.176 (0.33) | −0.087 (0.63) |
IL-8 | −0.076 (0.67) | 0.082 (0.65) | −0.042 (0.82) | 0.058 (0.75) |
IL-13 | −0.085 (0.64) | −0.042 (0.82) | −0.145 (0.42) | −0.102 (0.57) |
TNF α | −0.036 (0.84) | 0.034 (0.85) | −0.053 (0.77) | −0.103 (0.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, R.; Duspara, K.; Matić, A.; Petrović, A.; Kralik, K.; Smolić, R.; Sikora, M.; Šarac, M.Č.; Bojanić, K.; Smolić, M. Stabilization Splint Therapy for Patients with Temporomandibular Disorders Improves Opening Movements and Jaw Limitation and Attenuates Pain by Influencing the Levels of IL-7, IL-8, and IL-13 in the Gingival Crevicular Fluid. Medicina 2025, 61, 375. https://doi.org/10.3390/medicina61030375
Sikora R, Duspara K, Matić A, Petrović A, Kralik K, Smolić R, Sikora M, Šarac MČ, Bojanić K, Smolić M. Stabilization Splint Therapy for Patients with Temporomandibular Disorders Improves Opening Movements and Jaw Limitation and Attenuates Pain by Influencing the Levels of IL-7, IL-8, and IL-13 in the Gingival Crevicular Fluid. Medicina. 2025; 61(3):375. https://doi.org/10.3390/medicina61030375
Chicago/Turabian StyleSikora, Renata, Kristina Duspara, Anita Matić, Ana Petrović, Kristina Kralik, Robert Smolić, Miroslav Sikora, Martina Čalušić Šarac, Kristina Bojanić, and Martina Smolić. 2025. "Stabilization Splint Therapy for Patients with Temporomandibular Disorders Improves Opening Movements and Jaw Limitation and Attenuates Pain by Influencing the Levels of IL-7, IL-8, and IL-13 in the Gingival Crevicular Fluid" Medicina 61, no. 3: 375. https://doi.org/10.3390/medicina61030375
APA StyleSikora, R., Duspara, K., Matić, A., Petrović, A., Kralik, K., Smolić, R., Sikora, M., Šarac, M. Č., Bojanić, K., & Smolić, M. (2025). Stabilization Splint Therapy for Patients with Temporomandibular Disorders Improves Opening Movements and Jaw Limitation and Attenuates Pain by Influencing the Levels of IL-7, IL-8, and IL-13 in the Gingival Crevicular Fluid. Medicina, 61(3), 375. https://doi.org/10.3390/medicina61030375