Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer’s Disease
Abstract
:1. Introduction
2. Neural Oscillations: Mechanisms and Relevance to Cognition
2.1. Alpha Rhythm
2.2. Beta Rhythm
2.3. Gamma Rhythm
2.4. Theta Rhythm
2.5. Delta Rhythm
3. Brain Stimulation Techniques
3.1. Invasive Brain Stimulation
Deep Brain Stimulation
3.2. Non-Invasive Brain Stimulation
3.2.1. Repetitive Transcranial Magnetic Stimulation
3.2.2. Transcranial Direct Current Stimulation
3.2.3. Transcranial Alternate Current Stimulation
3.2.4. Transcranial Temporal Interference Electrical Stimulation
3.2.5. Sensory Stimulation
3.2.6. Photobiomodulation
3.2.7. Transcranial Ultrasound
4. Preclinical Models: Insights into Modulating Neural Oscillations
5. Clinical Studies in Alzheimer’s Disease: Targeting Neural Oscillations
6. Challenges and Future Directions
7. Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef]
- Jack, C.R.; Wiste, H.J.; Algeciras-Schimnich, A.; Figdore, D.J.; Schwarz, C.G.; Lowe, V.J.; Ramanan, V.K.; Vemuri, P.; Mielke, M.M.; Knopman, D.S.; et al. Predicting amyloid PET and tau PET stages with plasma biomarkers. Brain 2023, 146, 2029–2044. [Google Scholar] [CrossRef]
- Iaccarino, H.F.; Singer, A.C.; Martorell, A.J.; Rudenko, A.; Gao, F.; Gillingham, T.Z.; Mathys, H.; Seo, J.; Kritskiy, O.; Abdurrob, F.; et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 2016, 540, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991, 30, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Mondadori, C.R.A.; Buchmann, A.; Mustovic, H.; Schmidt, C.F.; Boesiger, P.; Nitsch, R.M.; Hock, C.; Streffer, J.; Henke, K. Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain 2006, 129, 2908–2922. [Google Scholar] [CrossRef] [PubMed]
- Jasper, H.H. Cortical excitatory state and variability in human brain rhythms. Science 1936, 83, 259–260. [Google Scholar] [CrossRef]
- Palop, J.J.; Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 2016, 17, 777–792. [Google Scholar] [CrossRef]
- Poulet, J.F.A.; Petersen, C.C.H. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 2008, 454, 881–885. [Google Scholar] [CrossRef]
- Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef]
- Lopes Da Silva, F.H.; Storm Van Leeuwen, W. The cortical source of the alpha rhythm. Neurosci. Lett. 1977, 6, 237–241. [Google Scholar] [CrossRef]
- Lopes da Silva, F.H.; van Lierop, T.H.M.T.; Schrijer, C.F.; Storm van Leeuwen, W. Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalogr. Clin. Neurophysiol. 1973, 35, 627–639. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.; McCarthy, M.M.; Lee, S.; Lee, J.; Börgers, C.; Whittington, M.A.; Kopell, N. Neurosystems: Brain rhythms and cognitive processing. Eur. J. Neurosci. 2014, 39, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Psychiatr. Nervenkrankh. 1929, 87, 527–570. [Google Scholar] [CrossRef]
- Jensen, O.; Mazaheri, A. Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Front. Hum. Neurosci. 2010, 4, 186. [Google Scholar] [CrossRef]
- Halgren, M.; Ulbert, I.; Bastuji, H.; Fabó, D.; Erőss, L.; Rey, M.; Devinsky, O.; Doyle, W.K.; Mak-McCully, R.; Halgren, E.; et al. The generation and propagation of the human alpha rhythm. Proc. Natl. Acad. Sci. USA 2019, 116, 23772–23782. [Google Scholar] [CrossRef]
- Jensen, O.; Gelfand, J.; Kounios, J.; Lisman, J.E. Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb. Cortex 2002, 12, 877–882. [Google Scholar] [CrossRef]
- Tuladhar, A.M.; ter Huurne, N.; Schoffelen, J.-M.; Maris, E.; Oostenveld, R.; Jensen, O. Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum. Brain Mapp. 2007, 28, 785–792. [Google Scholar] [CrossRef]
- Palva, S.; Palva, J.M. New vistas for alpha-frequency band oscillations. Trends Neurosci. 2007, 30, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, J.; Barthel, T.; Geiss, K.R.; Weiss, M. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr. Neurosci. 2008, 11, 103–110. [Google Scholar] [CrossRef]
- Grimault, S.; Robitaille, N.; Grova, C.; Lina, J.; Dubarry, A.; Jolicœur, P. Oscillatory activity in parietal and dorsolateral prefrontal cortex during retention in visual short-term memory: Additive effects of spatial attention and memory load. Hum. Brain Mapp. 2009, 30, 3378–3392. [Google Scholar] [CrossRef] [PubMed]
- Haegens, S.; Osipova, D.; Oostenveld, R.; Jensen, O. Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Hum. Brain Mapp. 2009, 31, 26–35. [Google Scholar] [CrossRef]
- Lalo, E.; Gilbertson, T.; Doyle, L.; Di Lazzaro, V.; Cioni, B.; Brown, P. Phasic increases in cortical beta activity are associated with alterations in sensory processing in the human. Exp. Brain Res. 2007, 177, 137–145. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Bressler, S.L.; Ding, M. Response preparation and inhibition: The role of the cortical sensorimotor beta rhythm. Neuroscience 2008, 156, 238–246. [Google Scholar] [CrossRef]
- Yaple, Z.; Martinez-Saito, M.; Novikov, N.; Altukhov, D.; Shestakova, A.; Klucharev, V. Power of Feedback-Induced Beta Oscillations Reflect Omission of Rewards: Evidence From an EEG Gambling Study. Front. Neurosci. 2018, 12, 776. [Google Scholar] [CrossRef]
- Capilla, A.; Arana, L.; García-Huéscar, M.; Melcón, M.; Gross, J.; Campo, P. The natural frequencies of the resting human brain: An MEG-based atlas. Neuroimage 2022, 258, 119373. [Google Scholar] [CrossRef]
- Hughes, J.R. Responses from the Visual Cortex of Unanesthetized Monkeys. Int. Rev. Neurobiol. 1964, 6, 99–152. [Google Scholar] [CrossRef]
- Hughes, J.R. Gamma, fast, and ultrafast waves of the brain: Their relationships with epilepsy and behavior. Epilepsy Behav. 2008, 13, 25–31. [Google Scholar] [CrossRef]
- Kort, N.S.; Cuesta, P.; Houde, J.F.; Nagarajan, S.S. Bihemispheric network dynamics coordinating vocal feedback control. Hum. Brain Mapp. 2016, 37, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Bartos, M.; Vida, I.; Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 2007, 8, 45–56. [Google Scholar] [CrossRef]
- McCormick, D.A.; McGinley, M.; Salkoff, D. Brain State Dependent Activity in the Cortex and Thalamus. Curr. Opin. Neurobiol. 2014, 31, 133. [Google Scholar] [CrossRef] [PubMed]
- van Kerkoerle, T.; Self, M.W.; Dagnino, B.; Gariel-Mathis, M.-A.; Poort, J.; van der Togt, C.; Roelfsema, P.R. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc. Natl. Acad. Sci. USA 2014, 111, 14332–14341. [Google Scholar] [CrossRef]
- Paller, K.A.; Kutas, M.; Mayes, A.R. Neural correlates of encoding in an incidental learning paradigm. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.; Lutzenberger, W. Cortical oscillatory activity and the dynamics of auditory memory processing. Rev. Neurosci. 2005, 16, 239–254. [Google Scholar] [CrossRef]
- Crone, N.E.; Sinai, A.; Korzeniewska, A. High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog. Brain Res. 2006, 159, 275–295. [Google Scholar] [CrossRef]
- Fries, P.; Nikolić, D.; Singer, W. The gamma cycle. Trends Neurosci. 2007, 30, 309–316. [Google Scholar] [CrossRef]
- Jerbi, K.; Ossandón, T.; Hamamé, C.M.; Senova, S.; Dalal, S.S.; Jung, J.; Minotti, L.; Bertrand, O.; Berthoz, A.; Kahane, P.; et al. Task-related gamma-band dynamics from an intracerebral perspective: Review and implications for surface EEG and MEG. Hum. Brain Mapp. 2009, 30, 1758–1771. [Google Scholar] [CrossRef]
- van Vugt, M.K.; Schulze-Bonhage, A.; Litt, B.; Brandt, A.; Kahana, M.J. Hippocampal Gamma Oscillations Increase with Memory Load. J. Neurosci. 2010, 30, 2694–2699. [Google Scholar] [CrossRef]
- Griffiths, B.J.; Parish, G.; Roux, F.; Michelmann, S.; van der Plas, M.; Kolibius, L.D.; Chelvarajah, R.; Rollings, D.T.; Sawlani, V.; Hamer, H.; et al. Directional coupling of slow and fast hippocampal gamma with neocortical alpha/beta oscillations in human episodic memory. Proc. Natl. Acad. Sci. USA 2019, 116, 21834–21842. [Google Scholar] [CrossRef]
- Buzsáki, G.; Chrobak, J.J. Temporal structure in spatially organized neuronal ensembles: A role for interneuronal networks. Curr. Opin. Neurobiol. 1995, 5, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Lisman, J.E.; Idiart, M.A. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 1995, 267, 1512–1515. [Google Scholar] [CrossRef]
- Lisman, J.E. Relating hippocampal circuitry to function: Recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 1999, 22, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Bosman, C.A.; Lansink, C.S.; Pennartz, C.M.A. Functions of gamma-band synchronization in cognition: From single circuits to functional diversity across cortical and subcortical systems. Eur. J. Neurosci. 2014, 39, 1982–1999. [Google Scholar] [CrossRef]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220–235. [Google Scholar] [CrossRef]
- Brankack, J.; Stewart, M.; Fox, S.E. Current source density analysis of the hippocampal theta rhythm: Associated sustained potentials and candidate synaptic generators. Brain Res. 1993, 615, 310–327. [Google Scholar] [CrossRef] [PubMed]
- Orekhova, E.V.; Stroganova, T.A.; Posikera, I.N.; Elam, M. EEG theta rhythm in infants and preschool children. Clin. Neurophysiol. 2006, 117, 1047–1062. [Google Scholar] [CrossRef]
- Hinterberger, T.; Schmidt, S.; Kamei, T.; Walach, H. Decreased electrophysiological activity represents the conscious state of emptiness in meditation. Front. Psychol. 2014, 5, 99. [Google Scholar] [CrossRef]
- McLoughlin, G.; Gyurkovics, M.; Palmer, J.; Makeig, S. Midfrontal Theta Activity in Psychiatric Illness: An Index of Cognitive Vulnerabilities Across Disorders. Biol. Psychiatry 2022, 91, 173–182. [Google Scholar] [CrossRef]
- Buzsáki, G. Theta oscillations in the hippocampus. Neuron 2002, 33, 325–340. [Google Scholar] [CrossRef]
- Lomas, T.; Ivtzan, I.; Fu, C.H. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neurosci. Biobehav. Rev. 2015, 57, 401–410. [Google Scholar] [CrossRef]
- Hasselmo, M.E. What is the function of hippocampal theta rhythm?—Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 2005, 15, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Drieu, C.; Todorova, R.; Zugaro, M. Nested sequences of hippocampal assemblies during behavior support subsequent sleep replay. Science 2018, 362, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Louie, K.; Wilson, M.A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 2001, 29, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Maquet, P.; Degueldre, C.; Delfiore, G.; Aerts, J.; Péters, J.-M.; Luxen, A.; Franck, G. Functional neuroanatomy of human slow wave sleep. J. Neurosci. 1997, 17, 2807–2812. [Google Scholar] [CrossRef]
- Brandenberger, G. The ultradian rhythm of sleep: Diverse relations with pituitary and adrenal hormones. Rev. Neurol. 2003, 159, 6S5-10. [Google Scholar]
- Kistler, W.M.; Gerstner, W. Stable propagation of activity pulses in populations of spiking neurons. Neural Comput. 2002, 14, 987–997. [Google Scholar] [CrossRef]
- Fell, J.; Axmacher, N. The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 2011, 12, 105–118. [Google Scholar] [CrossRef]
- Engel, A.K.; Fries, P.; Singer, W. Dynamic predictions: Oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2001, 2, 704–716. [Google Scholar] [CrossRef]
- Steriade, M.; McCormick, D.A.; Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993, 262, 679–685. [Google Scholar] [CrossRef]
- Magee, J.C.; Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 1997, 275, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Hutcheon, B.; Yarom, Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 2000, 23, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Stuart, G.J.; Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 2001, 4, 63–71. [Google Scholar] [CrossRef]
- Huerta, P.T.; Lisman, J.E. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 1995, 15, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Csicsvari, J.; Jamieson, B.; Wise, K.D.; Buzsáki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 2003, 37, 311–322. [Google Scholar] [CrossRef]
- Buzsáki, G.; Geisler, C.; Henze, D.A.; Wang, X.-J. Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 2004, 27, 186–193. [Google Scholar] [CrossRef]
- Harris, K.D.; Csicsvari, J.; Hirase, H.; Dragoi, G.; Buzsáki, G. Organization of cell assemblies in the hippocampus. Nature 2003, 424, 552–556. [Google Scholar] [CrossRef]
- Steriade, M.; Timofeev, I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 2003, 37, 563–576. [Google Scholar] [CrossRef]
- Destexhe, A.; Sejnowski, T.J. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol. Rev. 2003, 83, 1401–1453. [Google Scholar] [CrossRef]
- Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015, 25, 1073–1188. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Doppelmayr, M.; Schimke, H.; Ripper, B. Theta synchronization and alpha desynchronization in a memory task. Psychophysiology 1997, 34, 169–176. [Google Scholar] [CrossRef]
- Klimesch, W.; Schimke, H.; Schwaiger, J. Episodic and semantic memory: An analysis in the EEG theta and alpha band. Electroencephalogr. Clin. Neurophysiol. 1994, 91, 428–441. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S.; Gruber, W.; Freunberger, R. Event-related phase reorganization may explain evoked neural dynamics. Neurosci. Biobehav. Rev. 2007, 31, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Sauseng, P.; Klimesch, W.; Gruber, W.; Doppelmayr, M.; Stadler, W.; Schabus, M. The interplay between theta and alpha oscillations in the human electroencephalogram reflects the transfer of information between memory systems. Neurosci. Lett. 2002, 324, 121–124. [Google Scholar] [CrossRef]
- Jones, M.W.; Wilson, M.A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005, 3, e402. [Google Scholar] [CrossRef]
- Sirota, A.; Montgomery, S.; Fujisawa, S.; Isomura, Y.; Zugaro, M.; Buzsáki, G. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 2008, 60, 683–697. [Google Scholar] [CrossRef]
- Colgin, L.L.; Moser, E.I. Gamma oscillations in the hippocampus. Physiology 2010, 25, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Düzel, E.; Penny, W.D.; Burgess, N. Brain oscillations and memory. Curr. Opin. Neurobiol. 2010, 20, 143–149. [Google Scholar] [CrossRef]
- Fell, J.; Klaver, P.; Elger, C.E.; Fernández, G. The interaction of rhinal cortex and hippocampus in human declarative memory formation. Rev. Neurosci. 2002, 13, 299–312. [Google Scholar] [CrossRef]
- Gruber, T.; Müller, M.M.; Keil, A. Modulation of induced gamma band responses in a perceptual learning task in the human EEG. J. Cogn. Neurosci. 2002, 14, 732–744. [Google Scholar] [CrossRef]
- Stam, C.J. Brain dynamics in theta and alpha frequency bands and working memory performance in humans. Neurosci. Lett. 2000, 286, 115–118. [Google Scholar] [CrossRef]
- Onton, J.; Delorme, A.; Makeig, S. Frontal midline EEG dynamics during working memory. Neuroimage 2005, 27, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Gevins, A.; Smith, M.E.; McEvoy, L.; Yu, D. High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cereb. Cortex 1997, 7, 374–385. [Google Scholar] [CrossRef]
- Lee, H.; Simpson, G.V.; Logothetis, N.K.; Rainer, G. Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 2005, 45, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Başar, E.; Güntekin, B.; Oniz, A. Principles of oscillatory brain dynamics and a treatise of recognition of faces and facial expressions. Prog. Brain Res. 2006, 159, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Başar, E.; Başar-Eroglu, C.; Karakaş, S.; Schürmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Jensen, O.; Tesche, C.D. Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 2002, 15, 1395–1399. [Google Scholar] [CrossRef]
- Miller, E.K.; Lundqvist, M.; Bastos, A.M. Working Memory 2.0. Neuron 2018, 100, 463–475. [Google Scholar] [CrossRef]
- Bieri, K.W.; Bobbitt, K.N.; Colgin, L.L. Slow and fast γ rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron 2014, 82, 670–681. [Google Scholar] [CrossRef]
- Carr, M.F.; Karlsson, M.P.; Frank, L.M. Transient slow gamma synchrony underlies hippocampal memory replay. Neuron 2012, 75, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Menardi, A.; Rossi, S.; Koch, G.; Hampel, H.; Vergallo, A.; Nitsche, M.A.; Stern, Y.; Borroni, B.; Cappa, S.F.; Cotelli, M.; et al. Toward noninvasive brain stimulation 2.0 in Alzheimer’s disease. Ageing Res. Rev. 2022, 75, 101555. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Dickerson, B.C.; Pihlajamaki, M.; Vannini, P.; LaViolette, P.S.; Vitolo, O.V.; Hedden, T.; Becker, J.A.; Rentz, D.M.; Selkoe, D.J.; et al. Functional alterations in memory networks in early Alzheimer’s disease. Neuromol. Med. 2010, 12, 27–43. [Google Scholar] [CrossRef]
- Bentley, W.J.; Li, J.M.; Snyder, A.Z.; Raichle, M.E.; Snyder, L.H. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology. Cereb. Cortex 2016, 26, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Pini, L.; Manenti, R.; Cotelli, M.; Pizzini, F.B.; Frisoni, G.B.; Pievani, M. Non-Invasive Brain Stimulation in Dementia: A Complex Network Story. Neurodegener. Dis. 2018, 18, 281–301. [Google Scholar] [CrossRef]
- Babiloni, C.; Frisoni, G.; Steriade, M.; Bresciani, L.; Binetti, G.; Delpercio, C.; Geroldi, C.; Miniussi, C.; Nobili, F.; Rodriguez, G. Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer’s disease. Clin. Neurophysiol. 2006, 117, 1113–1129. [Google Scholar] [CrossRef]
- Başar, E.; Güntekin, B. A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res. 2008, 1235, 172–193. [Google Scholar] [CrossRef]
- Sperling, R.A.; LaViolette, P.S.; O’Keefe, K.; O’Brien, J.; Rentz, D.M.; Pihlajamaki, M.; Marshall, G.; Hyman, B.T.; Selkoe, D.J.; Hedden, T.; et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 2009, 63, 178–188. [Google Scholar] [CrossRef]
- Bookheimer, S.Y.; Strojwas, M.H.; Cohen, M.S.; Saunders, A.M.; Pericak-Vance, M.A.; Mazziotta, J.C.; Small, G.W. Patterns of brain activation in people at risk for Alzheimer’s disease. N. Engl. J. Med. 2000, 343, 450–456. [Google Scholar] [CrossRef]
- Kunz, L.; Schröder, T.N.; Lee, H.; Montag, C.; Lachmann, B.; Sariyska, R.; Reuter, M.; Stirnberg, R.; Stöcker, T.; Messing-Floeter, P.C.; et al. Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science 2015, 350, 430–433. [Google Scholar] [CrossRef]
- Quiroz, Y.T.; Budson, A.E.; Celone, K.; Ruiz, A.; Newmark, R.; Castrillón, G.; Lopera, F.; Stern, C.E. Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Ann. Neurol. 2010, 68, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda-Falla, D.; Glatzel, M.; Lopera, F. Phenotypic profile of early-onset familial Alzheimer’s disease caused by presenilin-1 E280A mutation. J. Alzheimer’s Dis. 2012, 32, 1–12. [Google Scholar] [CrossRef]
- Bakker, A.; Krauss, G.L.; Albert, M.S.; Speck, C.L.; Jones, L.R.; Stark, C.E.; Yassa, M.A.; Bassett, S.S.; Shelton, A.L.; Gallagher, M. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 2012, 74, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, B.C.; Salat, D.H.; Greve, D.N.; Chua, E.F.; Rand-Giovannetti, E.; Rentz, D.M.; Bertram, L.; Mullin, K.; Tanzi, R.E.; Blacker, D.; et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005, 65, 404–411. [Google Scholar] [CrossRef]
- Persson, J.; Lind, J.; Larsson, A.; Ingvar, M.; Sleegers, K.; Van Broeckhoven, C.; Adolfsson, R.; Nilsson, L.-G.; Nyberg, L. Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia 2008, 46, 1679–1687. [Google Scholar] [CrossRef]
- Dickerson, B.C.; Salat, D.H.; Bates, J.F.; Atiya, M.; Killiany, R.J.; Greve, D.N.; Dale, A.M.; Stern, C.E.; Blacker, D.; Albert, M.S.; et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann. Neurol. 2004, 56, 27–35. [Google Scholar] [CrossRef]
- Jelles, B.; Scheltens, P.; van der Flier, W.M.; Jonkman, E.J.; da Silva, F.H.L.; Stam, C.J. Global dynamical analysis of the EEG in Alzheimer’s disease: Frequency-specific changes of functional interactions. Clin. Neurophysiol. 2008, 119, 837–841. [Google Scholar] [CrossRef]
- Driver, J.E.; Racca, C.; Cunningham, M.O.; Towers, S.K.; Davies, C.H.; Whittington, M.A.; LeBeau, F.E.N. Impairment of hippocampal gamma-frequency oscillations in vitro in mice overexpressing human amyloid precursor protein (APP). Eur. J. Neurosci. 2007, 26, 1280–1288. [Google Scholar] [CrossRef]
- Decreased Rhythmic GABAergic Septal Activity and Memory-Associated θ Oscillations After Hippocampal Amyloid-β Pathology in the Rat. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6633464/ (accessed on 8 December 2024).
- Verret, L.; Mann, E.O.; Hang, G.B.; Barth, A.M.; Cobos, I.; Ho, K.; Devidze, N.; Masliah, E.; Kreitzer, A.C.; Mody, I.; et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 2012, 149, 708–721. [Google Scholar] [CrossRef]
- Pena-Ortega, F.; Solis-Cisneros, A.; Ordaz, B.; Balleza-Tapia, H.; Javier Lopez-Guerrero, J. Amyloid beta 1-42 inhibits entorhinal cortex activity in the beta-gamma range: Role of GSK-3. Curr. Alzheimer Res. 2012, 9, 857–863. [Google Scholar] [CrossRef]
- Goutagny, R.; Gu, N.; Cavanagh, C.; Jackson, J.; Chabot, J.; Quirion, R.; Krantic, S.; Williams, S. Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer’s disease. Eur. J. Neurosci. 2013, 37, 1896–1902. [Google Scholar] [CrossRef]
- Klein, A.S.; Donoso, J.R.; Kempter, R.; Schmitz, D.; Beed, P. Early Cortical Changes in Gamma Oscillations in Alzheimer’s Disease. Front. Syst. Neurosci. 2016, 10, 83. [Google Scholar] [CrossRef]
- Gillespie, A.K.; Jones, E.A.; Lin, Y.-H.; Karlsson, M.P.; Kay, K.; Yoon, S.Y.; Tong, L.M.; Nova, P.; Carr, J.S.; Frank, L.M.; et al. Apolipoprotein E4 Causes Age-Dependent Disruption of Slow Gamma Oscillations during Hippocampal Sharp-Wave Ripples. Neuron 2016, 90, 740–751. [Google Scholar] [CrossRef]
- Mably, A.J.; Gereke, B.J.; Jones, D.T.; Colgin, L.L. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer’s disease. Hippocampus 2017, 27, 378–392. [Google Scholar] [CrossRef]
- Etter, G.; van der Veldt, S.; Manseau, F.; Zarrinkoub, I.; Trillaud-Doppia, E.; Williams, S. Optogenetic gamma stimulation rescues memory impairments in an Alzheimer’s disease mouse model. Nat. Commun. 2019, 10, 5322. [Google Scholar] [CrossRef]
- Leuchter, A.F.; Spar, J.E.; Walter, D.O.; Weiner, H. Electroencephalographic spectra and coherence in the diagnosis of Alzheimer’s-type and multi-infarct dementia. A pilot study. Arch. Gen. Psychiatry 1987, 44, 993–998. [Google Scholar] [CrossRef]
- Petit, D.; Lorrain, D.; Gauthier, S.; Montplaisir, J. Regional spectral analysis of the REM sleep EEG in mild to moderate Alzheimer’s disease. Neurobiol. Aging 1993, 14, 141–145. [Google Scholar] [CrossRef]
- Besthorn, C.; Förstl, H.; Geiger-Kabisch, C.; Sattel, H.; Gasser, T.; Schreiter-Gasser, U. EEG coherence in Alzheimer disease. Electroencephalogr. Clin. Neurophysiol. 1994, 90, 242–245. [Google Scholar] [CrossRef]
- Dunkin, J.J.; Leuchter, A.F.; Newton, T.F.; Cook, I.A. Reduced EEG coherence in dementia: State or trait marker? Biol. Psychiatry 1994, 35, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Cook, I.A.; Leuchter, A.F. Synaptic dysfunction in Alzheimer’s disease: Clinical assessment using quantitative EEG. Behav. Brain Res. 1996, 78, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Chiaramonti, R.; Muscas, G.; Paganini, M.; Müller, T.; Fallgatter, A.; Versari, V.; Strik, W. Correlations of topographical EEG features with clinical severity in mild and moderate dementia of Alzheimer type. Neuropsychobiology 1997, 36, 153–158. [Google Scholar] [CrossRef]
- Jelic, V.; Blomberg, M.; Dierks, T.; Basun, H.; Shigeta, M.; Julin, P.; Jensen, M.; Lannfelt, L.; Winblad, B.; Wahlund, L.-O. EEG slowing and cerebrospinal fluid tau levels in patients with cognitive decline. Neuroreport 1998, 9, 157–160. [Google Scholar] [CrossRef]
- Locatelli, T.; Cursi, M.; Liberati, D.; Franceschi, M.; Comi, G. EEG coherence in Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 229–237. [Google Scholar] [CrossRef]
- Rodriguez, G.; Copello, F.; Vitali, P.; Perego, G.; Nobili, F. EEG spectral profile to stage Alzheimer’s disease. Clin. Neurophysiol. 1999, 110, 1831–1837. [Google Scholar] [CrossRef]
- Discrimination of Alzheimer’s Disease and Mild Cognitive Impairment by Equivalent EEG Sources: A Cross-Sectional and Longitudinal Study. Available online: https://pubmed.ncbi.nlm.nih.gov/11068230/ (accessed on 7 December 2024).
- Adler, G.; Brassen, S.; Jajcevic, A. EEG coherence in Alzheimer’s dementia. J. Neural Transm. 2003, 110, 1051–1058. [Google Scholar] [CrossRef]
- Hogan, M.J.; Swanwick, G.R.J.; Kaiser, J.; Rowan, M.; Lawlor, B. Memory-related EEG power and coherence reductions in mild Alzheimer’s disease. Int. J. Psychophysiol. 2003, 49, 147–163. [Google Scholar] [CrossRef]
- Moretti, D.V.; Babiloni, C.; Binetti, G.; Cassetta, E.; Dal Forno, G.; Ferreric, F.; Ferri, R.; Lanuzza, B.; Miniussi, C.; Nobili, F.; et al. Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 299–308. [Google Scholar] [CrossRef]
- Jiang, Z. Abnormal cortical functional connections in Alzheimer’s disease: Analysis of inter- and intra-hemispheric EEG coherence. J. Zhejiang Univ. Sci. B 2005, 6, 259–264. [Google Scholar] [CrossRef]
- Babiloni, C.; Binetti, G.; Cassetta, E.; Cerboneschi, D.; Forno, G.D.; Del Percio, C.; Ferreri, F.; Ferri, R.; Lanuzza, B.; Miniussi, C.; et al. Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage 2004, 22, 57–67. [Google Scholar] [CrossRef]
- Babiloni, C.; Benussi, L.; Binetti, G.; Bosco, P.; Busonero, G.; Cesaretti, S.; Forno, G.D.; Del Percio, C.; Ferri, R.; Frisoni, G.; et al. Genotype (cystatin C) and EEG phenotype in Alzheimer disease and mild cognitive impairment: A multicentric study. Neuroimage 2006, 29, 948–964. [Google Scholar] [CrossRef]
- Güntekin, B.; Saatçi, E.; Yener, G. Decrease of evoked delta, theta and alpha coherences in Alzheimer patients during a visual oddball paradigm. Brain Res. 2008, 1235, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Ponomareva, N.V.; Korovaitseva, G.I.; Rogaev, E.I. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol. Aging 2008, 29, 819–827. [Google Scholar] [CrossRef]
- Wada, Y.; Nanbu, Y.; Koshino, Y.; Yamaguchi, N.; Hashimoto, T. Reduced interhemispheric EEG coherence in Alzheimer disease: Analysis during rest and photic stimulation. Alzheimer Dis. Assoc. Disord. 1998, 12, 175–181. [Google Scholar] [CrossRef]
- Yener, G.G.; Güntekin, B.; Oniz, A.; Başar, E. Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors. Int. J. Psychophysiol. 2007, 64, 46–52. [Google Scholar] [CrossRef]
- Yener, G.; Güntekin, B.; Başar, E. Event-related delta oscillatory responses of Alzheimer patients. Eur. J. Neurol. 2008, 15, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Prichep, L.S.; John, E.R.; Ferris, S.H.; Rausch, L.; Fang, Z.; Cancro, R.; Torossian, C.; Reisberg, B. Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol. Aging 2006, 27, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Osipova, D.; Pekkonen, E.; Ahveninen, J. Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clin. Neurophysiol. 2006, 117, 1990–1995. [Google Scholar] [CrossRef]
- van Deursen, J.A.; Vuurman, E.F.P.M.; Verhey, F.R.J.; van Kranen-Mastenbroek, V.H.J.M.; Riedel, W.J. Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. J. Neural Transm. 2008, 115, 1301–1311. [Google Scholar] [CrossRef]
- van Deursen, J.A.; Vuurman, E.F.P.M.; van Kranen-Mastenbroek, V.H.J.M.; Verhey, F.R.J.; Riedel, W.J. 40-Hz steady state response in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 2011, 32, 24–30. [Google Scholar] [CrossRef]
- Aldehri, M.; Temel, Y.; Alnaami, I.; Jahanshahi, A.; Hescham, S. Deep brain stimulation for Alzheimer’s Disease: An update. Surg. Neurol. Int. 2018, 9, 58. [Google Scholar] [CrossRef]
- Siebner, H.R.; Funke, K.; Aberra, A.S.; Antal, A.; Bestmann, S.; Chen, R.; Classen, J.; Davare, M.; Di Lazzaro, V.; Fox, P.T.; et al. Transcranial magnetic stimulation of the brain: What is stimulated?—A consensus and critical position paper. Clin. Neurophysiol. 2022, 140, 59–97. [Google Scholar] [CrossRef]
- Fox, M.D.; Halko, M.A.; Eldaief, M.C.; Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 2012, 62, 2232–2243. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Ponzo, V.; Bonnì, S.; Motta, C.; Serra, P.C.N.; Bozzali, M.; Caltagirone, C.; Martorana, A.; Koch, G. Long-term potentiation-like cortical plasticity is disrupted in Alzheimer’s disease patients independently from age of onset. Ann. Neurol. 2016, 80, 202–210. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Paulus, W. Transcranial direct current stimulation (tDCS). Suppl. Clin. Neurophysiol. 2003, 56, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Traikapi, A.; Konstantinou, N. Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Front. Syst. Neurosci. 2021, 15, 782399. [Google Scholar] [CrossRef]
- Casula, E.P.; Pellicciari, M.C.; Bonnì, S.; Borghi, I.; Maiella, M.; Assogna, M.; Minei, M.; Motta, C.; D’Acunto, A.; Porrazzini, F.; et al. Decreased Frontal Gamma Activity in Alzheimer Disease Patients. Ann. Neurol. 2022, 92, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Dauwels, J.; Srinivasan, K.; Ramasubba Reddy, M.; Musha, T.; Vialatte, F.-B.; Latchoumane, C.; Jeong, J.; Cichocki, A. Slowing and Loss of Complexity in Alzheimer’s EEG: Two Sides of the Same Coin? Int. J. Alzheimer’s Dis. 2011, 2011, 539621. [Google Scholar] [CrossRef]
- Violante, I.R.; Alania, K.; Cassarà, A.M.; Neufeld, E.; Acerbo, E.; Carron, R.; Williamson, A.; Kurtin, D.L.; Rhodes, E.; Hampshire, A.; et al. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat. Neurosci. 2023, 26, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Wessel, M.J.; Beanato, E.; Popa, T.; Windel, F.; Vassiliadis, P.; Menoud, P.; Beliaeva, V.; Violante, I.R.; Abderrahmane, H.; Dzialecka, P.; et al. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat. Neurosci. 2023, 26, 2005–2016. [Google Scholar] [CrossRef]
- Vassiliadis, P.; Beanato, E.; Popa, T.; Windel, F.; Morishita, T.; Neufeld, E.; Duque, J.; Derosiere, G.; Wessel, M.J.; Hummel, F.C. Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills. Nat. Hum. Behav. 2024, 8, 1581–1598. [Google Scholar] [CrossRef]
- Abijo, A.; Lee, C.-Y.; Huang, C.-Y.; Ho, P.-C.; Tsai, K.-J. The Beneficial Role of Photobiomodulation in Neurodegenerative Diseases. Biomedicines 2023, 11, 1828. [Google Scholar] [CrossRef]
- Wojtecki, L.; Cont, C.; Stute, N.; Galli, A.; Schulte, C.; Trenado, C. Electrical brain networks before and after transcranial pulsed shockwave stimulation in Alzheimer’s patients. GeroScience 2025, 47, 953–964. [Google Scholar] [CrossRef]
- Sarica, C.; Nankoo, J.-F.; Fomenko, A.; Grippe, T.C.; Yamamoto, K.; Samuel, N.; Milano, V.; Vetkas, A.; Darmani, G.; Cizmeci, M.N.; et al. Human Studies of Transcranial Ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimul. 2022, 15, 737–746. [Google Scholar] [CrossRef]
- Games, D.; Adams, D.; Alessandrini, R.; Barbour, R.; Borthelette, P.; Blackwell, C.; Carr, T.; Clemens, J.; Donaldson, T.; Gillespie, F.; et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995, 373, 523–527. [Google Scholar] [CrossRef]
- HsiHsiao, K.; Chapman, P.; Nilsen, S.; Eckman, C.; Harigaya, Y.; Younkin, S.; Yang, F.; Cole, G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996, 274, 99–102. [Google Scholar] [CrossRef]
- Sturchler-Pierrat, C.; Abramowski, D.; Duke, M.; Wiederhold, K.-H.; Mistl, C.; Rothacher, S.; Ledermann, B.; Bürki, K.; Frey, P.; Paganetti, P.; et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 1997, 94, 13287–13292. [Google Scholar] [CrossRef]
- Rockenstein, E.; Mallory, M.; Mante, M.; Sisk, A.; Masliaha, E. Early formation of mature amyloid-beta protein deposits in a mutant APP transgenic model depends on levels of Abeta(1-42). J. Neurosci. Res. 2001, 66, 573–582. [Google Scholar] [CrossRef]
- Mucke, L.; Masliah, E.; Yu, G.-Q.; Mallory, M.; Rockenstein, E.M.; Tatsuno, G.; Hu, K.; Kholodenko, D.; Johnson-Wood, K.; McConlogue, L. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J. Neurosci. 2000, 20, 4050–4058. [Google Scholar] [CrossRef] [PubMed]
- Chishti, M.A.; Yang, D.-S.; Janus, C.; Phinney, A.L.; Horne, P.; Pearson, J.; Strome, R.; Zuker, N.; Loukides, J.; French, J.; et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 2001, 276, 21562–21570. [Google Scholar] [CrossRef]
- Holcomb, L.A.; Gordon, M.N.; McGowan, E.; Yu, X.; Benkovic, S.; Jantzen, P.T.; Wright, K.; Saad, I.; Mueller, R.; Morgan, D.; et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 1998, 4, 97–100. [Google Scholar] [CrossRef]
- Flood, D.G.; Reaume, A.G.; Dorfman, K.S.; Lin, Y.G.; Lang, D.M.; Trusko, S.P.; Savage, M.J.; Annaert, W.G.; De Strooper, B.; Siman, R.; et al. FAD mutant PS-1 gene-targeted mice: Increased A beta 42 and A beta deposition without APP overproduction. Neurobiol. Aging 2002, 23, 335–348. [Google Scholar] [CrossRef]
- Oakley, H.; Cole, S.L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Van Eldik, L.; et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 2006, 26, 10129–10140. [Google Scholar] [CrossRef]
- Oddo, S.; Caccamo, A.; Shepherd, J.D.; Murphy, M.P.; Golde, T.E.; Kayed, R.; Metherate, R.; Mattson, M.P.; Akbari, Y.; LaFerla, F.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron 2003, 39, 409–421. [Google Scholar] [CrossRef]
- Graybeal, J.J.; Bozzelli, P.L.; Graybeal, L.L.; Groeber, C.M.; McKnight, P.E.; Cox, D.N.; Flinn, J.M. Human ApoE ε4 alters circadian rhythm activity, IL-1β, and GFAP in CRND8 mice. J. Alzheimer’s Dis. 2015, 43, 823–834. [Google Scholar] [CrossRef]
- Lindström, P. The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci. World J. 2007, 7, 666–685. [Google Scholar] [CrossRef]
- Leplus, A.; Lauritzen, I.; Melon, C.; Kerkerian-Le Goff, L.; Fontaine, D.; Checler, F. Chronic fornix deep brain stimulation in a transgenic Alzheimer’s rat model reduces amyloid burden, inflammation, and neuronal loss. Brain Struct. Funct. 2019, 224, 363–372. [Google Scholar] [CrossRef]
- Xia, F.; Yiu, A.; Stone, S.S.D.; Oh, S.; Lozano, A.M.; Josselyn, S.A.; Frankland, P.W. Entorhinal Cortical Deep Brain Stimulation Rescues Memory Deficits in Both Young and Old Mice Genetically Engineered to Model Alzheimer’s Disease. Neuropsychopharmacology 2017, 42, 2493–2503. [Google Scholar] [CrossRef]
- Huang, C.; Chu, H.; Ma, Y.; Zhou, Z.; Dai, C.; Huang, X.; Fang, L.; Ao, Q.; Huang, D. The neuroprotective effect of deep brain stimulation at nucleus basalis of Meynert in transgenic mice with Alzheimer’s disease. Brain Stimul. 2019, 12, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Xie, J.; Liu, T.; Chen, X.; Zheng, X.; Tong, Z.; Tian, X. Low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ(1-42)-mediated memory deficits in rats. Exp. Gerontol. 2013, 48, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Gu, J.; Geng, D.; Gao, D. Repetitive transcranial magnetic stimulation (rTMS) for multiple neurological conditions in rodent animal models: A systematic review. Neurochem. Int. 2022, 157, 105356. [Google Scholar] [CrossRef]
- Li, X.; Qi, G.; Yu, C.; Lian, G.; Zheng, H.; Wu, S.; Yuan, T.-F.; Zhou, D. Cortical plasticity is correlated with cognitive improvement in Alzheimer’s disease patients after rTMS treatment. Brain Stimul. 2021, 14, 503–510. [Google Scholar] [CrossRef]
- McNerney, M.W.; Heath, A.; Narayanan, S.K.; Yesavage, J. Repetitive Transcranial Magnetic Stimulation Improves Brain-Derived Neurotrophic Factor and Cholinergic Signaling in the 3xTgAD Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 86, 499–507. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, Y.; Liao, L.; Gao, S.; Tao, Y.; Fang, X.; Lian, Y.; Gao, C. The long-term effects of intermittent theta burst stimulation on Alzheimer’s disease-type pathologies in APP/PS1 mice. Brain Res. Bull. 2023, 202, 110735. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, J.; Lv, R.; Luo, Y.; Dai, W.; Li, W.; Tang, Y.; Wang, Y.; Ye, X.; Lin, W.-J. Repetitive transcranial magnetic stimulation increases the brain’s drainage efficiency in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 2021, 9, 102. [Google Scholar] [CrossRef]
- Kim, W.-I.; Han, J.-Y.; Song, M.-K.; Park, H.-K.; Jo, J. Cognitive Function Improvement in Mouse Model of Alzheimer’s Disease Following Transcranial Direct Current Stimulation. Brain Sci. 2020, 10, 547. [Google Scholar] [CrossRef]
- Podda, M.V.; Cocco, S.; Mastrodonato, A.; Fusco, S.; Leone, L.; Barbati, S.A.; Colussi, C.; Ripoli, C.; Grassi, C. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci. Rep. 2016, 6, 22180. [Google Scholar] [CrossRef]
- Jeong, W.-H.; Kim, W.-I.; Lee, J.-W.; Park, H.-K.; Song, M.-K.; Choi, I.-S.; Han, J.-Y. Modulation of Long-Term Potentiation by Gamma Frequency Transcranial Alternating Current Stimulation in Transgenic Mouse Models of Alzheimer’s Disease. Brain Sci. 2021, 11, 1532. [Google Scholar] [CrossRef]
- Adaikkan, C.; Middleton, S.J.; Marco, A.; Pao, P.-C.; Mathys, H.; Kim, D.N.-W.; Gao, F.; Young, J.Z.; Suk, H.-J.; Boyden, E.S.; et al. Gamma Entrainment Binds Higher-Order Brain Regions and Offers Neuroprotection. Neuron 2019, 102, 929–943.e8. [Google Scholar] [CrossRef]
- Martorell, A.J.; Paulson, A.L.; Suk, H.-J.; Abdurrob, F.; Drummond, G.T.; Guan, W.; Young, J.Z.; Kim, D.N.-W.; Kritskiy, O.; Barker, S.J.; et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell 2019, 177, 256–271.e22. [Google Scholar] [CrossRef]
- Purushothuman, S.; Johnstone, D.M.; Nandasena, C.; Mitrofanis, J.; Stone, J. Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex—Evidence from two transgenic mouse models. Alzheimer’s Res. Ther. 2014, 6, 2. [Google Scholar] [CrossRef]
- Enengl, J.; Hamblin, M.R.; Dungel, P. Photobiomodulation for Alzheimer’s Disease: Translating Basic Research to Clinical Application. J. Alzheimer’s Dis. 2020, 75, 1073–1082. [Google Scholar] [CrossRef]
- Park, M.; Hoang, G.M.; Nguyen, T.; Lee, E.; Jung, H.J.; Choe, Y.; Lee, M.H.; Hwang, J.Y.; Kim, J.G.; Kim, T. Effects of transcranial ultrasound stimulation pulsed at 40 Hz on Aβ plaques and brain rhythms in 5×FAD mice. Transl. Neurodegener. 2021, 10, 48. [Google Scholar] [CrossRef]
- Hsu, W.-Y.; Ku, Y.; Zanto, T.P.; Gazzaley, A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol. Aging 2015, 36, 2348–2359. [Google Scholar] [CrossRef]
- Cotelli, M.; Calabria, M.; Manenti, R.; Rosini, S.; Zanetti, O.; Cappa, S.F.; Miniussi, C. Improved language performance in Alzheimer disease following brain stimulation. J. Neurol. Neurosurg. Psychiatry 2011, 82, 794–797. [Google Scholar] [CrossRef]
- Cotelli, M.; Manenti, R.; Cappa, S.F.; Geroldi, C.; Zanetti, O.; Rossini, P.M.; Miniussi, C. Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch. Neurol. 2006, 63, 1602–1604. [Google Scholar] [CrossRef]
- Cotelli, M.; Manenti, R.; Cappa, S.F.; Zanetti, O.; Miniussi, C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur. J. Neurol. 2008, 15, 1286–1292. [Google Scholar] [CrossRef]
- Bentwich, J.; Dobronevsky, E.; Aichenbaum, S.; Shorer, R.; Peretz, R.; Khaigrekht, M.; Marton, R.G.; Rabey, J.M. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: A proof of concept study. J. Neural Transm. 2011, 118, 463–471. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Darwish, E.S.; Khedr, E.M.; El Serogy, Y.M.; Ali, A.M. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J. Neurol. 2012, 259, 83–92. [Google Scholar] [CrossRef]
- Rabey, J.M.; Dobronevsky, E.; Aichenbaum, S.; Gonen, O.; Marton, R.G.; Khaigrekht, M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: A randomized, double-blind study. J. Neural Transm. 2013, 120, 813–819. [Google Scholar] [CrossRef]
- Devi, G.; Voss, H.U.; Levine, D.; Abrassart, D.; Heier, L.; Halper, J.; Martin, L.; Lowe, S. Open-label, short-term, repetitive transcranial magnetic stimulation in patients with Alzheimer’s disease with functional imaging correlates and literature review. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 248–255. [Google Scholar] [CrossRef]
- Rutherford, G.; Lithgow, B.; Moussavi, Z. Short and Long-term Effects of rTMS Treatment on Alzheimer’s Disease at Different Stages: A Pilot Study. J. Exp. Neurosci. 2015, 9, 43–51. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, W.; Liu, X.; Xu, Q.; Tang, L.; Wu, S. Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer’s disease: A randomized, double-blind, sham-controlled study. Shanghai Arch. Psychiatry 2015, 27, 280–288. [Google Scholar] [CrossRef]
- Lee, J.; Choi, B.H.; Oh, E.; Sohn, E.H.; Lee, A.Y. Treatment of Alzheimer’s Disease with Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training: A Prospective, Randomized, Double-Blind, Placebo-Controlled Study. J. Clin. Neurol. 2016, 12, 57–64. [Google Scholar] [CrossRef]
- Alcalá-Lozano, R.; Morelos-Santana, E.; Cortés-Sotres, J.F.; Garza-Villarreal, E.A.; Sosa-Ortiz, A.L.; González-Olvera, J.J. Similar clinical improvement and maintenance after rTMS at 5 Hz using a simple vs. complex protocol in Alzheimer’s disease. Brain Stimul. 2018, 11, 625–627. [Google Scholar] [CrossRef]
- Zhang, F.; Qin, Y.; Xie, L.; Zheng, C.; Huang, X.; Zhang, M. High-frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer’s disease. J. Neural Transm. 2019, 126, 1081–1094. [Google Scholar] [CrossRef]
- Turriziani, P.; Smirni, D.; Mangano, G.R.; Zappalà, G.; Giustiniani, A.; Cipolotti, L.; Oliveri, M. Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 72, 613–622. [Google Scholar] [CrossRef]
- Padala, P.R.; Boozer, E.M.; Lensing, S.Y.; Parkes, C.M.; Hunter, C.R.; Dennis, R.A.; Caceda, R.; Padala, K.P. Neuromodulation for Apathy in Alzheimer’s Disease: A Double-Blind, Randomized, Sham-Controlled Pilot Study. J. Alzheimer’s Dis. 2020, 77, 1483–1493. [Google Scholar] [CrossRef]
- Bagattini, C.; Zanni, M.; Barocco, F.; Caffarra, P.; Brignani, D.; Miniussi, C.; Defanti, C.A. Enhancing cognitive training effects in Alzheimer’s disease: rTMS as an add-on treatment. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2020, 13, 1655–1664. [Google Scholar] [CrossRef]
- Wu, X.; Ji, G.-J.; Geng, Z.; Zhou, S.; Yan, Y.; Wei, L.; Qiu, B.; Tian, Y.; Wang, K. Strengthened theta-burst transcranial magnetic stimulation as an adjunctive treatment for Alzheimer’s disease: An open-label pilot study. Brain Stimul. 2020, 13, 484–486. [Google Scholar] [CrossRef]
- Brem, A.-K.; Di Iorio, R.; Fried, P.J.; Oliveira-Maia, A.J.; Marra, C.; Profice, P.; Quaranta, D.; Schilberg, L.; Atkinson, N.J.; Seligson, E.E.; et al. Corticomotor Plasticity Predicts Clinical Efficacy of Combined Neuromodulation and Cognitive Training in Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 200. [Google Scholar] [CrossRef]
- Sabbagh, M.; Sadowsky, C.; Tousi, B.; Agronin, M.E.; Alva, G.; Armon, C.; Bernick, C.; Keegan, A.P.; Karantzoulis, S.; Baror, E.; et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer’s disease. Alzheimer’s Dement. 2020, 16, 641–650. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Lv, S.; Li, Y.; Jia, S.; Niu, X.; Peng, D. Transcranial magnetic stimulation for sleep disorders in Alzheimer’s disease: A double-blind, randomized, and sham-controlled pilot study. Neurosci. Lett. 2022, 766, 136337. [Google Scholar] [CrossRef]
- Mayer, J.T.; Masse, C.; Chopard, G.; Nicolier, M.; Bereau, M.; Magnin, E.; Monnin, J.; Tio, G.; Haffen, E.; Vandel, P.; et al. Repetitive Transcranial Magnetic Stimulation as an Add-On Treatment for Cognitive Impairment in Alzheimer’s Disease and Its Impact on Self-Rated Quality of Life and Caregiver’s Burden. Brain Sci. 2021, 11, 740. [Google Scholar] [CrossRef]
- Wu, X.; Ji, G.-J.; Geng, Z.; Wang, L.; Yan, Y.; Wu, Y.; Xiao, G.; Gao, L.; Wei, Q.; Zhou, S.; et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer’s disease: A randomized controlled trial. Brain Stimul. 2022, 15, 35–45. [Google Scholar] [CrossRef]
- Vecchio, F.; Quaranta, D.; Miraglia, F.; Pappalettera, C.; Di Iorio, R.; L’abbate, F.; Cotelli, M.; Marra, C.; Rossini, P.M. Neuronavigated Magnetic Stimulation combined with cognitive training for Alzheimer’s patients: An EEG graph study. Geroscience 2022, 44, 159–172. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, F.; Zhang, M.; Zhu, W. Effects of repetitive transcranial magnetic stimulation combined with cognitive training on resting-state brain activity in Alzheimer’s disease. Neuroradiol. J. 2022, 35, 566–572. [Google Scholar] [CrossRef]
- Moreno, A.S.; Nguyen, J.-P.; Calmelet, A.; Le Saout, E.; Damier, P.; de Decker, L.; Malineau, C.; Nizard, J.; Canoui-Poitrine, F.; Lefaucheur, J.-P. Multi-site rTMS with cognitive training improves apathy in the long term in Alzheimer’s disease: A 4-year chart review. Clin. Neurophysiol. 2022, 137, 75–83. [Google Scholar] [CrossRef]
- Mimenza-Alvarado, A.J.; Aguilar-Navarro, S.G.; Martinez-Carrillo, F.M.; Ríos-Ponce, A.E.; Villafuerte, G. Use of Fast Gamma Magnetic Stimulation Over the Left Prefrontal Dorsolateral Cortex for the Treatment of MCI and Mild Alzheimer’s Disease: A Double-Blind, Randomized, Sham-Controlled, Pilot Study. Front. Neurol. 2021, 12, 729872. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Cong, Y.; Zhang, J.; Tan, M.; Zhang, H.; Geng, N.; Li, M.; Yu, W.; Shan, P. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer’s disease patients. Oncotarget 2017, 8, 33864–33871. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, L.; Yang, K.; Zhang, Y.; Lv, X.; Zhu, Z.; Chen, Z.; Zhu, Y.; Wei, L.; Li, X.; et al. Precision Repetitive Transcranial Magnetic Stimulation Over the Left Parietal Cortex Improves Memory in Alzheimer’s Disease: A Randomized, Double-Blind, Sham-Controlled Study. Front. Aging Neurosci. 2021, 13, 693611. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Wang, J.; Xu, L.; Yang, K.; Lv, X.; Zhu, Z.; Gong, Q.; Hu, W.; Li, X.; et al. Parietal-hippocampal rTMS improves cognitive function in Alzheimer’s disease and increases dynamic functional connectivity of default mode network. Psychiatry Res. 2022, 315, 114721. [Google Scholar] [CrossRef]
- Koch, G.; Bonnì, S.; Pellicciari, M.C.; Casula, E.P.; Mancini, M.; Esposito, R.; Ponzo, V.; Picazio, S.; Di Lorenzo, F.; Serra, L.; et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage 2018, 169, 302–311. [Google Scholar] [CrossRef]
- Koch, G.; Casula, E.P.; Bonnì, S.; Borghi, I.; Assogna, M.; Minei, M.; Pellicciari, M.C.; Motta, C.; D’acunto, A.; Porrazzini, F.; et al. Precuneus magnetic stimulation for Alzheimer’s disease: A randomized, sham-controlled trial. Brain 2022, 145, 3776–3786. [Google Scholar] [CrossRef]
- Anderkova, L.; Eliasova, I.; Marecek, R.; Janousova, E.; Rektorova, I. Distinct Pattern of Gray Matter Atrophy in Mild Alzheimer’s Disease Impacts on Cognitive Outcomes of Noninvasive Brain Stimulation. J. Alzheimer’s Dis. 2015, 48, 251–260. [Google Scholar] [CrossRef]
- Eliasova, I.; Anderkova, L.; Marecek, R.; Rektorova, I. Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer’s disease: A pilot study. J. Neurol. Sci. 2014, 346, 318–322. [Google Scholar] [CrossRef]
- Leocani, L.; Dalla Costa, G.; Coppi, E.; Santangelo, R.; Pisa, M.; Ferrari, L.; Bernasconi, M.P.; Falautano, M.; Zangen, A.; Magnani, G.; et al. Repetitive Transcranial Magnetic Stimulation with H-Coil in Alzheimer’s Disease: A Double-Blind, Placebo-Controlled Pilot Study. Front. Neurol. 2020, 11, 614351. [Google Scholar] [CrossRef]
- Yao, Q.; Tang, F.; Wang, Y.; Yan, Y.; Dong, L.; Wang, T.; Zhu, D.; Tian, M.; Lin, X.; Shi, J. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: A randomized clinical trial. Brain Stimul. 2022, 15, 910–920. [Google Scholar] [CrossRef]
- Cotelli, M.; Manenti, R.; Brambilla, M.; Petesi, M.; Rosini, S.; Ferrari, C.; Zanetti, O.; Miniussi, C. Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Front. Aging Neurosci. 2014, 6, 38. [Google Scholar] [CrossRef]
- Khedr, E.M.; El Gamal, N.F.; El-Fetoh, N.A.; Khalifa, H.; Ahmed, E.M.; Ali, A.M.; Noaman, M.; El-Baki, A.A.; Karim, A.A. A Double-Blind Randomized Clinical Trial on the Efficacy of Cortical Direct Current Stimulation for the Treatment of Alzheimer’s Disease. Front. Aging Neurosci. 2014, 6, 275. [Google Scholar] [CrossRef]
- Suemoto, C.K.; Apolinario, D.; Nakamura-Palacios, E.M.; Lopes, L.; Leite, R.E.P.; Sales, M.C.; Nitrini, R.; Brucki, S.M.; Morillo, L.S.; Magaldi, R.M.; et al. Effects of a non-focal plasticity protocol on apathy in moderate Alzheimer’s disease: A randomized, double-blind, sham-controlled trial. Brain Stimul. 2014, 7, 308–313. [Google Scholar] [CrossRef]
- Im, J.J.; Jeong, H.; Bikson, M.; Woods, A.J.; Unal, G.; Oh, J.K.; Na, S.; Park, J.-S.; Knotkova, H.; Song, I.-U.; et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimul. 2019, 12, 1222–1228. [Google Scholar] [CrossRef]
- Cespón, J.; Rodella, C.; Miniussi, C.; Pellicciari, M.C. Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer’s disease patients: A pilot study. Clin. Neurophysiol. 2019, 130, 2038–2052. [Google Scholar] [CrossRef]
- Inagawa, T.; Yokoi, Y.; Narita, Z.; Maruo, K.; Okazaki, M.; Nakagome, K. Safety and Feasibility of Transcranial Direct Current Stimulation for Cognitive Rehabilitation in Patients with Mild or Major Neurocognitive Disorders: A Randomized Sham-Controlled Pilot Study. Front. Hum. Neurosci. 2019, 13, 273. [Google Scholar] [CrossRef]
- Rasmussen, I.D.; Boayue, N.M.; Mittner, M.; Bystad, M.; Grønli, O.K.; Vangberg, T.R.; Csifcsák, G.; Aslaksen, P.M. High-Definition Transcranial Direct Current Stimulation Improves Delayed Memory in Alzheimer’s Disease Patients: A Pilot Study Using Computational Modeling to Optimize Electrode Position. J. Alzheimer’s Dis. 2021, 83, 753–769. [Google Scholar] [CrossRef]
- Smirni, D.; Oliveri, M.; Misuraca, E.; Catania, A.; Vernuccio, L.; Picciolo, V.; Inzerillo, F.; Barbagallo, M.; Cipolotti, L.; Turriziani, P. Verbal Fluency in Mild Alzheimer’s Disease: Transcranial Direct Current Stimulation over the Dorsolateral Prefrontal Cortex. J. Alzheimer’s Dis. 2021, 81, 1273–1283. [Google Scholar] [CrossRef]
- Andrade, S.M.; Machado, D.G.d.S.; da Silva-Sauerc, L.; Regis, C.T.; Mendes, C.K.T.T.; de Araújo, J.S.S.; de Araújo, K.D.T.; Costa, L.P.; Queiroz, M.E.B.S.; Leitão, M.M.; et al. Effects of multisite anodal transcranial direct current stimulation combined with cognitive stimulation in patients with Alzheimer’s disease and its neurophysiological correlates: A double-blind randomized clinical trial. Neurophysiol. Clin. 2022, 52, 117–127. [Google Scholar] [CrossRef]
- Roncero, C.; Kniefel, H.; Service, E.; Thiel, A.; Probst, S.; Chertkow, H. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer’s disease and frontotemporal dementia. Alzheimer’s Dement. 2017, 3, 247–253. [Google Scholar] [CrossRef]
- Khedr, E.M.; Salama, R.H.; Abdel Hameed, M.; Abo Elfetoh, N.; Seif, P. Therapeutic Role of Transcranial Direct Current Stimulation in Alzheimer Disease Patients: Double-Blind, Placebo-Controlled Clinical Trial. Neurorehabilit. Neural Repair 2019, 33, 384–394. [Google Scholar] [CrossRef]
- Liu, C.S.; Herrmann, N.; Gallagher, D.; Rajji, T.K.; Kiss, A.; Vieira, D.; Lanctôt, K.L. A Pilot Study Comparing Effects of Bifrontal Versus Bitemporal Transcranial Direct Current Stimulation in Mild Cognitive Impairment and Mild Alzheimer Disease. J. ECT 2020, 36, 211–215. [Google Scholar] [CrossRef]
- Gangemi, A.; Colombo, B.; Fabio, R.A. Effects of short- and long-term neurostimulation (tDCS) on Alzheimer’s disease patients: Two randomized studies. Aging Clin. Exp. Res. 2021, 33, 383–390. [Google Scholar] [CrossRef]
- Ferrucci, R.; Mameli, F.; Guidi, I.; Mrakic-Sposta, S.; Vergari, M.; Marceglia, S.; Cogiamanian, F.; Barbieri, S.; Scarpini, E.; Priori, A. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 2008, 71, 493–498. [Google Scholar] [CrossRef]
- Boggio, P.S.; Khoury, L.P.; Martins, D.C.S.; Martins, O.E.M.S.; de Macedo, E.C.; Fregni, F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry 2009, 80, 444–447. [Google Scholar] [CrossRef]
- Boggio, P.S.; Ferrucci, R.; Mameli, F.; Martins, D.; Martins, O.; Vergari, M.; Tadini, L.; Scarpini, E.; Fregni, F.; Priori, A. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul. 2012, 5, 223–230. [Google Scholar] [CrossRef]
- Bystad, M.; Grønli, O.; Rasmussen, I.D.; Gundersen, N.; Nordvang, L.; Wang-Iversen, H.; Aslaksen, P.M. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: A randomized, placebo-controlled trial. Alzheimer’s Res. Ther. 2016, 8, 13. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, Y.; Sun, Y.; Ding, Y.; Huang, Z.; Liu, C.; Wang, Y. Efficacy and safety of simultaneous rTMS-tDCS over bilateral angular gyrus on neuropsychiatric symptoms in patients with moderate Alzheimer’s disease: A prospective, randomized, sham-controlled pilot study. Brain Stimul. 2022, 15, 1530–1537. [Google Scholar] [CrossRef]
- Bréchet, L.; Yu, W.; Biagi, M.C.; Ruffini, G.; Gagnon, M.; Manor, B.; Pascual-Leone, A. Patient-Tailored, Home-Based Non-invasive Brain Stimulation for Memory Deficits in Dementia Due to Alzheimer’s Disease. Front. Neurol. 2021, 12, 598135. [Google Scholar] [CrossRef]
- Dhaynaut, M.; Sprugnoli, G.; Cappon, D.; Macone, J.; Sanchez, J.S.; Normandin, M.D.; Guehl, N.J.; Koch, G.; Paciorek, R.; Connor, A.; et al. Impact of 40 Hz Transcranial Alternating Current Stimulation on Cerebral Tau Burden in Patients with Alzheimer’s Disease: A Case Series. J. Alzheimer’s Dis. 2022, 85, 1667–1676. [Google Scholar] [CrossRef]
- Kehler, L.; Francisco, C.O.; Uehara, M.A.; Moussavi, Z. The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; Volume 2020, pp. 3649–3653. [Google Scholar] [CrossRef]
- Benussi, A.; Cantoni, V.; Cotelli, M.S.; Brattini, C.; Datta, A.; Thomas, C.; Santarnecchi, E.; Pascual-Leone, A.; Borroni, B. Exposure to gamma tACS in Alzheimer’s disease: A randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimul. 2021, 14, 531–540. [Google Scholar] [CrossRef]
- Benussi, A.; Cantoni, V.; Grassi, M.; Brechet, L.; Michel, C.M.; Datta, A.; Thomas, C.; Gazzina, S.; Cotelli, M.S.; Bianchi, M.; et al. Increasing Brain Gamma Activity Improves Episodic Memory and Restores Cholinergic Dysfunction in Alzheimer’s Disease. Ann. Neurol. 2022, 92, 322–334. [Google Scholar] [CrossRef]
- Sprugnoli, G.; Munsch, F.; Cappon, D.; Paciorek, R.; Macone, J.; Connor, A.; El Fakhri, G.; Salvador, R.; Ruffini, G.; Donohoe, K.; et al. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer’s disease. Alzheimer’s Res. Ther. 2021, 13, 203. [Google Scholar] [CrossRef]
- Clements-Cortes, A.; Ahonen, H.; Evans, M.; Freedman, M.; Bartel, L. Short-Term Effects of Rhythmic Sensory Stimulation in Alzheimer’s Disease: An Exploratory Pilot Study. J. Alzheimer’s Dis. 2016, 52, 651–660. [Google Scholar] [CrossRef]
- Chan, D.; Suk, H.-J.; Jackson, B.L.; Milman, N.P.; Stark, D.; Klerman, E.B.; Kitchener, E.; Avalos, V.S.F.; de Weck, G.; Banerjee, A.; et al. Gamma frequency sensory stimulation in mild probable Alzheimer’s dementia patients: Results of feasibility and pilot studies. PLoS ONE 2022, 17, e0278412. [Google Scholar] [CrossRef]
- Cimenser, A.; Hempel, E.; Travers, T.; Strozewski, N.; Martin, K.; Malchano, Z.; Hajós, M. Sensory-Evoked 40-Hz Gamma Oscillation Improves Sleep and Daily Living Activities in Alzheimer’s Disease Patients. Front. Syst. Neurosci. 2021, 15, 746859. [Google Scholar] [CrossRef]
- He, Q.; Colon-Motas, K.M.; Pybus, A.F.; Piendel, L.; Seppa, J.K.; Walker, M.L.; Manzanares, C.M.; Qiu, D.; Miocinovic, S.; Wood, L.B.; et al. A feasibility trial of gamma sensory flicker for patients with prodromal Alzheimer’s disease. Alzheimer’s Dement. 2021, 7, e12178. [Google Scholar] [CrossRef]
- Ismail, R.; Hansen, A.K.; Parbo, P.; Brændgaard, H.; Gottrup, H.; Brooks, D.J.; Borghammer, P. The Effect of 40-Hz Light Therapy on Amyloid Load in Patients with Prodromal and Clinical Alzheimer’s Disease. Int. J. Alzheimer’s Dis. 2018, 2018, 6852303. [Google Scholar] [CrossRef]
- Blivet, G.; Relano-Gines, A.; Wachtel, M.; Touchon, J. A Randomized, Double-Blind, and Sham-Controlled Trial of an Innovative Brain-Gut Photobiomodulation Therapy: Safety and Patient Compliance. J. Alzheimer’s Dis. 2022, 90, 811–822. [Google Scholar] [CrossRef]
- Fong, T.K.H.; Cheung, T.; Ngan, S.T.J.; Tong, K.; Lui, W.Y.V.; Chan, W.C.; Wong, C.S.M.; Cheng, C.P.W. Transcranial pulse stimulation in the treatment of mild neurocognitive disorders. Ann. Clin. Transl. Neurol. 2023, 10, 1885–1890. [Google Scholar] [CrossRef]
- Matt, E.; Mitterwallner, M.; Radjenovic, S.; Grigoryeva, D.; Weber, A.; Stögmann, E.; Domitner, A.; Zettl, A.; Osou, S.; Beisteiner, R. Ultrasound Neuromodulation with Transcranial Pulse Stimulation in Alzheimer Disease: A Randomized Clinical Trial. JAMA Netw. Open 2025, 8, e2459170. [Google Scholar]
- Turnbull, I.M.; McGeer, P.L.; Beattie, L.; Calne, D.; Pate, B. Stimulation of the basal nucleus of Meynert in senile dementia of Alzheimer’s type. A preliminary report. Appl. Neurophysiol. 1985, 48, 216–221. [Google Scholar]
- Laxton, A.W.; Tang-Wai, D.F.; McAndrews, M.P.; Zumsteg, D.; Wennberg, R.; Keren, R.; Wherrett, J.; Naglie, G.; Hamani, C.; Smith, G.S.; et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann. Neurol. 2010, 68, 521–534. [Google Scholar] [CrossRef]
- Fontaine, D.; Deudon, A.; Lemaire, J.J.; Razzouk, M.; Viau, P.; Darcourt, J.; Robert, P. Symptomatic treatment of memory decline in Alzheimer’s disease by deep brain stimulation: A feasibility study. J. Alzheimer’s Dis. 2013, 34, 315–323. [Google Scholar] [CrossRef]
- Sankar, T.; Chakravarty, M.M.; Bescos, A.; Lara, M.; Obuchi, T.; Laxton, A.W.; McAndrews, M.P.; Tang-Wai, D.F.; Workman, C.I.; Smith, G.S.; et al. Deep Brain Stimulation Influences Brain Structure in Alzheimer’s Disease. Brain Stimul. 2015, 8, 645–654. [Google Scholar] [CrossRef]
- Kuhn, J.; Hardenacke, K.; Lenartz, D.; Gruendler, T.; Ullsperger, M.; Bartsch, C.; Mai, J.K.; Zilles, K.; Bauer, A.; Matusch, A.; et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol. Psychiatry 2015, 20, 353–360. [Google Scholar] [CrossRef]
- Kuhn, J.; Hardenacke, K.; Shubina, E.; Lenartz, D.; Visser-Vandewalle, V.; Zilles, K.; Sturm, V.; Freund, H.-J. Deep Brain Stimulation of the Nucleus Basalis of Meynert in Early Stage of Alzheimer’s Dementia. Brain Stimul. 2015, 8, 838–839. [Google Scholar] [CrossRef]
- Hardenacke, K.; Hashemiyoon, R.; Visser-Vandewalle, V.; Zapf, A.; Freund, H.; Sturm, V.; Hellmich, M.; Kuhn, J. Deep Brain Stimulation of the Nucleus Basalis of Meynert in Alzheimer’s Dementia: Potential Predictors of Cognitive Change and Results of a Long-Term Follow-Up in Eight Patients. Brain Stimul. 2016, 9, 799–800. [Google Scholar] [CrossRef]
- Lozano, A.M.; Fosdick, L.; Chakravarty, M.M.; Leoutsakos, J.-M.; Munro, C.; Oh, E.; Drake, K.E.; Lyman, C.H.; Rosenberg, P.B.; Anderson, W.S.; et al. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 54, 777–787. [Google Scholar] [CrossRef]
- McMullen, D.P.; Rosenberg, P.; Cheng, J.; Smith, G.S.; Lyketsos, C.; Anderson, W.S. Bilateral Cortical Encephalomalacia in a Patient Implanted with Bilateral Deep Brain Stimulation for Alzheimer’s Disease: A Case Report. Alzheimer Dis. Assoc. Disord. 2016, 30, 70–72. [Google Scholar] [CrossRef]
- Ponce, F.A.; Asaad, W.F.; Foote, K.D.; Anderson, W.S.; Cosgrove, G.R.; Baltuch, G.H.; Beasley, K.; Reymers, D.E.; Oh, E.S.; Targum, S.D.; et al. Bilateral deep brain stimulation of the fornix for Alzheimer’s disease: Surgical safety in the ADvance trial. J. Neurosurg. 2016, 125, 75–84. [Google Scholar] [CrossRef]
- Dürschmid, S.; Reichert, C.; Kuhn, J.; Freund, H.-J.; Hinrichs, H.; Heinze, H.-J. Deep brain stimulation of the nucleus basalis of Meynert attenuates early EEG components associated with defective sensory gating in patients with Alzheimer disease—A two-case study. Eur. J. Neurosci. 2020, 51, 1201–1209. [Google Scholar] [CrossRef]
- Baldermann, J.C.; Hardenacke, K.; Hu, X.; Köster, P.; Horn, A.; Freund, H.-J.; Zilles, K.; Sturm, V.; Visser-Vandewalle, V.; Jessen, F.; et al. Neuroanatomical Characteristics Associated with Response to Deep Brain Stimulation of the Nucleus Basalis of Meynert for Alzheimer’s Disease. Neuromodulation 2018, 21, 184–190. [Google Scholar] [CrossRef]
- Leoutsakos, J.-M.S.; Yan, H.; Anderson, W.S.; Asaad, W.F.; Baltuch, G.; Burke, A.; Chakravarty, M.M.; Drake, K.E.; Foote, K.D.; Fosdick, L.; et al. Deep Brain Stimulation Targeting the Fornix for Mild Alzheimer Dementia (the ADvance Trial): A Two Year Follow-up Including Results of Delayed Activation. J. Alzheimer’s Dis. 2018, 64, 597–606. [Google Scholar] [CrossRef]
- Scharre, D.W.; Weichart, E.; Nielson, D.; Zhang, J.; Agrawal, P.; Sederberg, P.B.; Knopp, M.V.; Rezai, A.R.; Initiative, F.T.A.D.N. Deep Brain Stimulation of Frontal Lobe Networks to Treat Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 621–633. [Google Scholar] [CrossRef]
- Mao, Z.Q.; Wang, X.; Xu, X.; Cui, Z.Q.; Pan, L.S.; Ning, X.J.; Xu, B.X.; Ma, L.; Ling, Z.P.; Jia, J.J.; et al. Partial improvement in performance of patients with severe Alzheimer’s disease at an early stage of fornix deep brain stimulation. Neural Regen. Res. 2018, 13, 2164–2172. [Google Scholar] [CrossRef]
- Liu, C.; Han, T.; Xu, Z.; Liu, J.; Zhang, M.; Du, J.; Zhou, Q.; Duan, Y.; Li, Y.; Wang, J.; et al. Modulating Gamma Oscillations Promotes Brain Connectivity to Improve Cognitive Impairment. Cereb. Cortex 2022, 32, 2644–2656. [Google Scholar] [CrossRef]
- Skjerve, A.; Holsten, F.; Aarsland, D.; Bjorvatn, B.; Nygaard, H.A.; Johansen, I.M. Improvement in behavioral symptoms and advance of activity acrophase after short-term bright light treatment in severe dementia. Psychiatry Clin. Neurosci. 2004, 58, 343–347. [Google Scholar] [CrossRef]
- van Hoof, J.; Aarts, M.P.J.; Rense, C.G.; Schoutens, A.M.C. Ambient bright light in dementia: Effects on behaviour and circadian rhythmicity. Build. Environ. 2009, 44, 146–155. [Google Scholar] [CrossRef]
- Burns, A.; Allen, H.; Tomenson, B.; Duignan, D.; Byrne, J. Bright light therapy for agitation in dementia: A randomized controlled trial. Int. Psychogeriatr. 2009, 21, 711–721. [Google Scholar] [CrossRef]
- Suk, H.; Chan, D.; Jackson, B.; Fernandez, V.; Stark, D.; Milman, N.; Beach, S.; Uitermarkt, B.; Gander, P.; Boes, A.D.; et al. Sensory gamma frequency stimulation in cognitively healthy and AD individuals safely induces highly coordinated 40 hz neural oscillation: A preliminary study of non-invasive sensory stimulation for treating Alzheimer’s disease. Alzheimer’s Dement. 2020, 16, e041146. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Lu, M.-K.; Antal, A.; Classen, J.; Nitsche, M.; Ziemann, U.; Ridding, M.; Hamada, M.; Ugawa, Y.; Jaberzadeh, S.; et al. Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clin. Neurophysiol. 2017, 128, 2318–2329. [Google Scholar] [CrossRef]
- Antal, A.; Luber, B.; Brem, A.-K.; Bikson, M.; Brunoni, A.R.; Kadosh, R.C.; Dubljević, V.; Fecteau, S.; Ferreri, F.; Flöel, A.; et al. Non-invasive brain stimulation and neuroenhancement. Clin. Neurophysiol. Pract. 2022, 7, 146–165. [Google Scholar] [CrossRef]
- Šimko, P.; Kent, J.A.; Rektorova, I. Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer’s disease? An updated meta-analysis. Clin. Neurophysiol. 2022, 144, 23–40. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef]
- Beisteiner, R.; Matt, E.; Fan, C.; Baldysiak, H.; Schönfeld, M.; Novak, T.P.; Amini, A.; Aslan, T.; Reinecke, R.; Lehrner, J.; et al. Transcranial Pulse Stimulation with Ultrasound in Alzheimer’s Disease—A New Navigated Focal Brain Therapy. Adv. Sci. 2020, 7, 1902583. [Google Scholar] [CrossRef]
- Gu, L.; Xu, H.; Qian, F. Effects of Non-Invasive Brain Stimulation on Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 2022, 9, 410–424. [Google Scholar] [CrossRef]
- Dresler, M.; Sandberg, A.; Ohla, K.; Bublitz, C.; Trenado, C.; Mroczko-Wąsowicz, A.; Kühn, S.; Repantis, D. Non-pharmacological cognitive enhancement. Neuropharmacology 2013, 64, 529–543. [Google Scholar]
- Dresler, M.; Sandberg, A.; Bublitz, C.; Ohla, K.; Trenado, C.; Mroczko-Wąsowicz, A.; Kühn, S.; Repantis, D. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chem. Neurosci. 2018, 10, 1137–1148. [Google Scholar] [CrossRef]
Cognitive Functions | Study | Involved Oscillation |
---|---|---|
Episodic memory encoding and episodic memory retrieval processes | Klimesch et al., 1997 [72] Klimesch et al., 1994 [73] Klimesch et al., 2007 [74] | Increase in theta power, desynchronization in the lower and upper alpha band. |
Sauseng et al., 2005 [75] | Increase in theta oscillations spread from anterior to posterior recording sites; when information is retrieved, theta oscillations spread to posterior from anterior sites. | |
Jones et al., 2005 [76] Sirota et al., 2008 [77] | Increase in theta rhythms guides hippocampal–prefrontal interactions in encoding information. | |
Colgin and Moser, 2010 [78] | Memory encoding and retrieval are coordinated by different frequencies of hippocampal gamma oscillations; transitions between slow and fast gamma may occur. | |
Duzel et al., 2010 [79] | Temporal coordination of neocortical gamma oscillators by hippocampal theta oscillations is a mechanism by which information contained in spatially widespread neocortical assemblies can be synchronously transferred to the associative networks of the hippocampus. | |
Fell et al., 2011 [59] | Increased phase synchronization has been observed during various memory processes, including long-term memory encoding and retrieval. | |
Griffiths et al., 2019 [41] | Decreases in neocortical alpha/beta power reliably precede and predict increases in hippocampal “fast” gamma power during episodic memory formation; during episodic memory retrieval, however, increases in hippocampal “slow” gamma power reliably precede and predict later decreases in neocortical alpha/beta power. | |
Declarative long-term memory formation | Fell et al., 2002 [80] | Initial increase in rhinal–hippocampal phase synchronization followed by a later desynchronization in the gamma band. |
Long-term memory formation in perceptual learning task | Gruber et al., 2002 [81] | Increase in spectral gamma power at parietal electrode sites for identified pictures; highly synchronization in the gamma band between posterior electrodes. |
Semantic memory processes | Klimesch et al., 1994 [73] | Upper alpha band. |
Working memory process | Stam et al., 2000 [82] | Lower alpha band dimension increase, alpha1 band desynchronization. |
Onton et al., 2005 [83] | In female subjects, higher dimension in the theta band, more desynchronization in the theta and alpha1 band. | |
Gevins et al., 1997 [84] | Increase in frontal midline theta oscillations. | |
Lee et al., 2005 [85] | Increase in frontal midline theta oscillations, decrease in slow, parietocentral alpha signal. | |
Van Vugh et al., 2010 [40] | Increase in theta and alpha signals with performance improvement, increases in theta signals with both increased task difficulty and with practice, decrease in alpha signals in the difficult tasks, and increase in theta oscillations for structuring the recurrent interaction between neurons in different brain regions during working memory. | |
Fell et al., 2011 [59] | Increase in gamma oscillations primarily in the hippocampus and medial temporal lobe in the maintenance of two classes of stimuli (both letters and faces) in working memory; increased phase synchronization has been observed during various memory processes, including working memory maintenance. | |
Recognition of faces and facial expressions | Basar, 2006 [86] | Superposition of delta, theta, alpha, beta, and gamma oscillations, as parallel activations of neural assemblies in different cortical locations; known and anonymous faces can be differentiated by means of oscillatory brain dynamics; the differentiation of facial expression induces significant change in alpha and theta oscillation. |
Memory consolidation | Buzsaki, 2015 [71] | Hippocampal sharp-wave ripples assist in transferring compressed hippocampal representation to distributed circuits to support memory consolidation. |
Memory processing | Basar et al., 2001 [87] | Increase in theta oscillations. |
Memory maintenance | Jensen and Tesche, 2002 [88] Klimesch et al., 2007 [74] | Increase in theta oscillations in frontal brain regions. |
Working memory maintenance | Miller et al., 2018 [89] | Interactions between different rhythms in distinct cortical layers: executive control via interplay between network oscillations in gamma in superficial cortical layers (layers 2 and 3), and alpha and beta in deep cortical layers (layers 5 and 6); deep-layer alpha and beta are associated with top-down information and inhibition; this regulates the flow of bottom-up sensory information associated with superficial layer gamma. |
Retrieval of spatial memory | Bieri et al., 2014 [90] | Slow and fast gamma rhythms coordinate prospecting and retrospective spatial coding modes in hippocampal place cells, respectively. |
Replay of previously stored memories | Carr et al., 2012 [91] | Transient increases in slow gamma power and synchrony across dorsal CA3 and CA1 networks of both hemispheres, during sharp-wave ripples in both awake and quiescent states. |
Study | Experimental Design | Outcome |
---|---|---|
Driver et al., 2007 [108] | Recording of the gamma-frequency activity evoked with bath application of 200 nm kainate in hippocampal slices from mice overexpressing the human amyloid precursor protein (APPSWE) mutation (TAS10). | Decrease in hippocampal gamma-frequency oscillations in young TAS10 mice versus wild-type littermates. |
Villette et al., 2010 [109] | Bilateral corticohippocampal local field potential signals collections during behavioral sessions. | Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-β pathology in the rat. |
Verret et al., 2012 [110] | Electroencephalographic recordings in hAPP mice. | Aberrant gamma oscillatory activity and cognitive disfunction due to dysfunctions in the parvalbumin cells and inhibitory synaptic activity in transgenic mice. |
Pena-Ortega et al., 2012 [111] | Recordings of faster oscillations in Alzheimer’s disease-transgenic mice. | Decrease in entorhinal cortex beta–gamma bursts induced by amyloid beta is blocked involving GSK-3. |
Goutagny et al., 2013 [112] | Electrophysiological field potential recordings in the hippocampus of young transgenic CRND8 mice. | A significant proportion of 1-month-old TgCRND8 mice showed robust alterations of theta–gamma cross-frequency coupling in the principal output region of the subiculum, before Aβ overproduction. |
Klein et al., 2016 [113] | In vitro gamma oscillations in the medial (MEC) and lateral (LEC) entorhinal cortex of the transgenic amyloid precursor protein (APP)-presenilin 1 (PS1) mouse model of Alzheimer’s disease (AD) at 4–5 months of age. | Changes in rodents’ gamma oscillations in the entorhinal cortex at an early stage of AD. |
Gillespie et al., 2016 [114] | Local field potential signals recording of hippocampal network activity in apoE3-KI and apoE4-KI mice. | Decrease in gamma power during hippocampal sharp-wave ripples in APOE4-KI mice. |
Mably et al., 2017 [115] | Recording spikes from place cells in hippocampal subfield CA1, together with corresponding rhythmic activity in local field potentials, in the 3xTg AD mouse model. | Decreased gamma activity in mice models of AD. |
Etter et al., 2019 [116] | J20-amyloid precursor protein AD mouse model. | Reduced slow gamma amplitude and phase-amplitude coupling to theta oscillations phase, displaying spatial memory loss. |
Study | Methodology | Study Population | Outcome |
---|---|---|---|
Alpha oscillations | |||
Leuchter et al., 1987 [117] | EEG, resting state | AD vs. multi-infarct dementia vs. controls | Decrease in EEG alpha coherence |
Petit et al., 1993 [118] | EEG, resting state and REM sleep | AD vs. controls | Decrease in EEG alpha oscillations |
Besthorn et al., 1994 [119] | EEG, resting state | 50 AD vs. 42 controls | Decrease in EEG alpha coherence |
Dunkin et al., 1994, [120] | EEG, resting state | AD patients | Decrease in EEG alpha coherence |
Cook and Leuchter, 1996 [121] | EEG, resting state | AD patients | Decrease in EEG alpha synchrony |
Chiaramonti et al., 1997 [122] | Quantitative EEG, resting state | 31 AD | Decrease in EEG alpha oscillations |
Jelic et al., 1998 [123] | EEG, resting state | 14 AD | Decrease alpha/theta oscillations ratio |
Locatelli et al., 1998 [124] | EEG, resting state | 10 AD vs. 10 controls | Decrease in EEG alpha synchrony |
Rodriguez et al., 1999 [125] | Quantitative EEG, resting state | 48 AD | Decrease in EEG alpha oscillations |
Huang et al., 2000 [126] | EEG, resting state | 38 mild AD vs. 31 MCI | Decrease in alpha oscillations |
Adler et al., 2003 [127] | EEG, resting state | 31 AD vs. 17 controls | Decrease in EEG alpha coherence |
Hogan et al., 2003 [128] | EEG, memory paradigm | 10 AD vs. 10 controls | Decrease in alpha evoked coherence |
Moretti et al., 2004 [129] | EEG, resting state | Mild AD patients | Decrease in alpha2 and alpha3 power |
Zeng-Yan, 2005 [130] | EEG, photic stimulation | 35 AD vs. 33 controls | Decrease in alpha evoked coherence |
Babiloni et al., 2004 [131] | EEG, resting state and LORETA | 48 mild AD vs. 20 vascular dementia vs. 30 controls | Decrease in alpha rhythms in central, parietal, temporal, and limbic |
Babiloni et al., 2006 [132] | EEG, resting state | AD vs. controls | Decrease in alpha power |
Guntekin et al., 2008 [133] | EEG, visual oddball | 21 AD vs. 19 controls | Decrease in EEG alpha evoked coherence |
Ponomareva et al., 2008 [134] | EEG, resting state | 145 AD | Increased excitability and dysfunction of deep brain and alpha rhythm-generating structures |
Beta oscillations | |||
Petit et al., 1993 [118] | EEG, resting state and REM sleep | AD vs. controls | Decrease in EEG beta oscillations |
Besthorn et al., 1994 [119] | EEG, resting state | 50 AD vs. 42 controls | Decrease in EEG beta coherence |
Chiaramonti et al., 1997 [122] | Quantitative EEG, resting state | 31 AD | Decrease in EEG beta oscillations |
Wada et al., 1998 [135] | EEG, resting state and during photic stimulation | 10 AD vs. 10 controls | Decrease in EEG beta synchrony |
Rodriguez et al., 1999 [125] | Quantitative EEG, resting state | 48 AD | Decrease in EEG beta oscillations |
Huang et al., 2000 [126] | EEG, resting state | 38 mild AD vs. 31 MCI | Decrease in beta oscillations |
Zeng-Yan, 2005 [130] | EEG, photic stimulation | Decrease in EEG beta evoked coherence | |
Babiloni et al., 2006 [132] | EEG, resting state | AD vs. controls | Decrease in beta power |
Delta oscillations | |||
Petit et al., 1993 [118] | EEG, resting state and REM sleep | AD vs. controls | Increase in EEG delta oscillations |
Besthorn et al., 1994 [119] | EEG, resting state | 50 AD vs. 42 controls | Increase in EEG delta oscillations |
Chiaramonti et al., 1997 [122] | Quantitative EEG, resting state | 31 AD | Increase in EEG delta oscillations |
Wada et al., 1998 [135] | EEG, resting state and during photic stimulation | 10 AD vs. 10 controls | Decrease in EEG delta synchrony |
Rodriguez et al., 1999 [125] | Quantitative EEG, resting state | 48 AD | Increase in EEG delta oscillations |
Huang et al., 2000 [126] | EEG, resting state | 38 mild AD vs. 31 MCI vs. 24 controls | Increase in delta oscillations |
Moretti et al., 2004 [129] | EEG, resting state | AD patients | Increase in delta power |
Babiloni et al., 2004 [131] | EEG, resting state and LORETA | AD patients | Increase in delta oscillations in occipital, temporal, and limbic brain regions |
Babiloni et al., 2006 [132] | EEG, resting | AD vs. controls | Increase in delta power |
Yener et al., 2007 [136] | EEG, Visual oddball | 22 probable AD vs. 20 controls | Increase in delta oscillations |
Yener et al., 2008 [137] | EEG, Visual oddball | 17 MCI vs. 17 controls | Decrease in delta amplitudes |
Guntekin et al., 2008 [133] | EEG, Visual oddball | 21 AD vs. 19 controls | Decrease in delta evoked coherence |
Theta oscillations | |||
Petit et al., 1993 [118] | EEG, resting state and REM sleep | AD vs. controls | Increase in EEG theta oscillations |
Besthorn et al., 1994 [119] | EEG, resting state | 50 AD vs. 42 controls | Increase in EEG theta oscillations |
Chiaramonti et al., 1997 [122] | Quantitative EEG, resting state | 31 AD | Increase in EEG theta oscillations |
Jelic et al., 1998 [123] | EEG, resting state | 14 AD | Decrease alpha/theta oscillations ratio |
Wada et al., 1998 [135] | EEG, resting state and during photic stimulation | 10 AD vs. 10 controls | Decrease in EEG theta synchrony |
Rodriguez et al., 1999 [125] | Quantitative EEG, resting state | in 48 AD | Increase in EEG theta oscillations |
Huang et al., 2000 [126] | EEG, resting state | 38 mild AD vs. 31 MCI vs. 24 controls | Increase in theta oscillations |
Yener et al., 2007 [136] | EEG, visual oddball | 22 probable AD vs. 20 controls | Decrease in theta synchrony |
Guntekin et al., 2008 [133] | EEG, visual oddball | 21 AD vs. 19 controls | Decrease in theta evoked coherence |
Babiloni et al., 2004 [131] | EEG, resting state | AD patients | No changes in theta oscillations |
Babiloni et al., 2006 [132] | EEG, resting state | AD vs. controls | Increase in theta power |
Prichep et al., 2006 [138] | EEG, resting state | Prodromic AD | Increase in theta power |
Gamma oscillations | |||
Osipova et al., 2006 [139] | Whole-head magnetoencephalography | AD patients | Increase in magnetic auditory 40 Hz steady-state response |
Van Deursen et al., 2008 [140] | EEG, resting state, music listening, story listening, and visual stimulation | 15 AD vs. 20 MCI vs. 20 controls | Increase in EEG gamma oscillations |
Van Deursen et al., 2011 [141] | Whole-head magnetoencephalography | 15 AD vs. 20 MCI vs. 20 controls | Increase in 40 Hz steady-state response |
Study | Target Area | Disease Stage | Tools and Scales | Main Outcomes |
---|---|---|---|---|
Turnbull et al., 1985 [253] | NBM | Mild–moderate AD | Global cognition, EEG, FDG-PET | No changes in clinical outcomes. Preservation of glucose metabolic activity in ipsilateral temporal and parietal lobes |
Laxton et al., 2010 [254] | Fornix | Mild AD | MMSE, ADAS-cog, FDG-PET | Slower decline in cognitive scores. Increased glucose metabolism in temporal and parietal lobes |
Fontaine et al., 2013 [255] | Fornix | Mild AD | MMSE, ADAS-cog, FDG-PET, FCSRT | Stabilization in cognitive scores. Increased glucose metabolism in mesial temporal lobes |
Sankar et al., 2015 [256] | Fornix | Mild AD | MMSE, ADAS-cog, MRI | Slower hippocampal atrophy progression |
Kuhn et al., 2015 [257] | NBM | Mild–moderate AD | ADAS-cog, EEG, FDG-PET | Stabilization in cognitive scores and improved glucose metabolism |
Kuhn et al., 2015 [258] | NBM | Mild AD | MMSE, ADAS-cog | Stabilization in cognitive scores |
Hardenacke et al., 2016 [259] | NBM | Mild AD | ADAS-cog | Slower decline in cognitive scores |
Lozano et al., 2016 [260] | Fornix | Mild AD | ADAS-cog, CDR-SB, MRI, FDG-PET | Slower decline in cognitive scores. Increased glucose metabolism |
McMullen et al., 2016 [261] | Fornix | AD | ADAS-cog, MRI, FDG-PET | Slower decline in cognitive scores. Increased glucose metabolism |
Ponce et al., 2016 [262] | Fornix | AD | Safety | Safety of procedures |
Durschmid et al., 2017 [263] | NBM | AD | EEG | Occurrence of early complex of EEG components under stimulation |
Baldermann et al., 2018 [264] | NBM | AD | MMSE, ADAS-cog, ADAS-mem, MRI | Less advanced atrophy may profit from DBS of the NBM |
Leoutsakos et al., 2018 [265] | Fornix | Mild AD | ADAS-cog, CDR-SB, CVLT, NPI | Safety of procedures |
Scharre et al., 2018 [266] | VC/VS | AD with biomarkers | CDR, FDG-PET | Slower cognitive decline |
Mao et al., 2018 [267] | Fornix | Severe AD | MMSE, MoCA, CDR | Safety and tolerability of procedures. Slower cognitive decline |
Study | Target Area | Disease Stage | Tools and Scales | Main Outcomes |
---|---|---|---|---|
Cotelli et al., 2006 [188] | L/R DLPFC | Mild–moderate AD | Naming, MMSE | Significant enhancement in action naming capabilities |
Cotelli et al., 2008 [189] | L/R DLPFC | Mild/moderate–severe AD | Naming, MMSE | Significant enhancement in action naming capabilities |
Cotelli et al., 2011 [187] | L DLPFC | AD | BADA, MMSE | Enhancement in cognitive performance. Durability of improvement. |
Bentwich et al., 2012 [190] | L/R DLPFC, Bro, Wer, L/R PC | Mild AD | ADAS-cog, CGIC | Enhancement in cognitive performance |
Ahmed et al., 2012 [191] | L/R DLPFC | AD | MMSE, IADL, GDS | Enhancement in cognitive performance |
Rabey et al., 2013 [192] | L/R DLPFC, Bro, Wer | Mild–moderate AD | ADAS-cog, CGIC | Enhancement in cognitive performance and neuropsychiatric symptoms |
Eliasova et al., 2014 [218] | R IFG | MCI and mild AD | Stroop, TMT, CVSET | Significant improvement in attention and psychomotor speed |
Devi et al., 2014 [193] | L/R DLPFC | AD | BDAE, MRI | Improvement in language domain |
Rutherford et al., 2015 [194] | L/R DLPFC | AD | ADAS-cog, MoCA, RMBC | Enhancement in cognitive performance and slower cognitive decline |
Wu et al., 2015 [195] | L DLPFC | AD | BEHAVE-AD | Combined medical and rTMS treatment improve both cognitive functioning and the behavioral and psychological symptoms |
Anderkova et al., 2015 [217] | R IFG, R STG, VTX, | TMT, Stroop, MRI | Enhancement in cognitive performance. Distinct pattern of GM atrophy in MCI/AD diminishes the cognitive effects induced by rTMS of the temporal neocortex | |
Lee et al., 2016 [196] | Bro, Wer, L/R DLPFC, L/R PC | MCI and mild AD | ADAS-cog, MMSE, CGIC | Efficacy of combined therapy. Improvement in memory and language domains |
Zhao et al., 2017 [212] | PC and TC | MCI and mild AD | ADAS-cog, MMSE, MoCA, AVLT | Efficacy of combined therapy. Improvement in cognitive function, memory and language |
Koch et al., 2018 [215] | Precuneus | Prodromal AD with positive biomarkers | ADCS-PACC, EEG, TMS/EEG | Significant improvements in episodic memory tasks |
Alcalà-Lozano et al., 2018 [197] | L DLPFC | AD | ADAS-cog, MMSE, NPI, GDS, CGIC | Improving cognitive function, behavior and functionality after 3 weeks of treatment, and the effects were maintained for 4 weeks more without treatment |
Zhang et al., 2019 [198] | L DLPFC | AD | ADAS-cog, MMSE, ACE-III, NPI, MRI | Possible effects of rTMS-CT on preventing clinical and neuronal functional deterioration in the left DLPFC of AD patients |
Turriziani et al., 2019 [199] | L/R DLPFC | AD | Memory, MMSE, RAVLT, other | Inhibitory rTMS over the R DLPFC can improve recognition memory function in AD patients |
Padala et al., 2020 [200] | L DLPFC | AD | AES-C, MMSE, IADL, CGIC | Safety of stimulation. Improving apathy, function, and cognition |
Bagattini et al., 2020 [201] | L DLPFC | MCI and mild–moderate AD | FNAT, MMSE, RAVLT, TMT, other | Significant improvements in cognitive performance |
Wu et al., 2020 [202] | L DLPFC | Mild–moderate AD | MMSE, MoCA, GDS, NPI, MRI | Significant improvements in cognitive performance and neuropsychiatric symptoms. |
Brem et al., 2020 [203] | L/R DLPFC, Bro, Wer, L/R PC | Mild–moderate AD | ADAS-cog, CGIC, TMS | Combined rTMS and cognitive training may improve the cognitive status of AD patients, with TMS-induced cortical plasticity at baseline serving as predictor of therapeutic outcome |
Sabbagh et al., 2020 [204] | L/R DLPFC, Bro, Wer, L/R PC, L PC | Mild–moderate AD | ADAS-cog, CGIC | Combined therapy led to substantial improvements in cognitive functions and quality of life |
Jia et al., 2021 [213] | L PC | Mild–moderate AD | MMSE, CDR, PVLT | Improvement in cognition scores |
Li et al., 2021 [174] | L DLPFC | AD | ADAS-cog, MMSE | Improvement in cognition scores after 6 weeks of rTMS. The cortical plasticity improvement correlated to the observed cognition change |
Liu et al., 2021 [268] | L/R angular gyrus | AD patients and 41 healthy controls | Neuropsychological assessments, MRI, EEG | 40-Hz rTMS modulated gamma-band oscillations in the L posterior TP region. rTMS prevented GM volume loss, enhanced local functional integration within L/R angular gyrus, global functional integration in L/R angular gyrus and the L middle frontal gyrus, strengthened information flow from the L posterior TP region to the F areas, and strengthened the dynamic connectivity between anterior and posterior brain regions |
Leocani et al., 2021 [219] | L/R PFC | AD | ADAS-cog, MMSE, BDI | Safety of stimulation. Beneficial, but transient, effects on cognition |
Zhou et al., 2021 [205] | L/R DLPFC | Mild–moderate AD | PSQI, ADAS-cog | Improvement in cognition scores, but not in activities of daily living (ADL) |
Teti Mayer et al., 2021 [206] | L DLPFC | Mild–moderate AD | MMSE, MDRS, QoL, other | Enhancement in semantic memory and reducing in anxiety. |
Wu et al., 2022 [207] | L DLPFC | Mild–moderate AD | AM, MMSE, MoCA, CDR, NPI, other | Accelerated intermittent theta-burst stimulation of the DLPFC demonstrated an effective and well-tolerated complementary treatment for patients with AD |
Vecchio et al., 2022 [208] | L/R DLPFC, Bro, Wer, L/R PC | Mild–moderate AD | ADAS-cog, EEG | Improvement in cognitive scales. Delta and alpha1 Small Word graph is a diagnostic biomarkers of AD, whereas the alpha2 Small Word graph represents a prognostic biomarker of cognitive recovery |
Qin et al., 2022 [209] | L DLPFC, L TC | Mild–moderate AD | MRI, ADAS-cog, NPI, ACE-III, other | rTMS combined with cognitive training induced increased low frequency fluctuation neural oscillations and functional connectivity in brain regions subserving cognition |
Suarez et al., 2022 [210] | L/R DLPFC, Bro, Wer, L/R PC | AD | ADAS-cog, MMSE, apathy | Combined treatment produced long-term improvement in apathy and more general cognitive improvement only in patients who responded well to the initial 6-week protocol |
Yao et al., 2022 [220] | Cerebellum | AD | ADAS-cog, MMSE, MoCA, MRI, other | 5 Hz rTMS of the bilateral cerebellum improves cognitive performance and brain connectivity modulation |
Mimeza-Alvarado et al., 2022 [211] | L DLPFC | MCI and mild AD | ADAS-cog, FAB, VF, ADL, GDS, | Safety of application of fast gamma magnetic stimulation on L DLPFC twice a day for 6 months from home |
Koch et al., 2022 [216] | Precuneus | Mild–moderate AD with biomarkers | CDR-SB, ADAS-cog, TMS/EEG, other | The group receiving precuneus rTMS maintained the performance, while the sham group displayed a decline |
Wei et al., 2022 [214] | L PC | Mild–moderate AD | MMSE, PVLT, MRI | Increase in cognitive performance and dynamic functional connectivity in DMN |
Casula et al., 2022 [149] | L DLPFC, Precuneus, L PPC | Mild–moderate AD | TMS-EEG, cognitive evaluation | Novel evidence that frontal lobe gamma activity is dampened in AD patients, which is measurable by TMS EEG |
Study | Target Area | Disease Stage | Tools and Scales | Main Outcomes |
---|---|---|---|---|
Ferrucci et al., 2008 [234] | TC, PC | AD | Word recognition task | tDCS over the TP areas can affect recognition memory performance in AD patients |
Boggio et al., 2009 [235] | TC | Mild–moderate AD | Stroop, Digit Span, VRM | Improvement on a visual recognition memory task after temporal and prefrontal tDCS |
Boggio et al., 2012 [236] | TC | AD | ADAS-cog, MMSE, VRM, VAT | Anodal tDCS over the T cortex in 5 consecutive daily sessions improves visual recognition memory, and the improvement persists for at least 4 weeks after therapy |
Cotelli et al., 2014 [221] | L DLPFC | AD | FNAT, MMSE, ADL, NPI, other | Anodal tDCS plus individualized computerized memory training improved performance after 2 weeks |
Khedr et al., 2014 [222] | L DLPFC | AD | MMSE, IQ-WAIS, ERP, TMS | Repeated sessions of tDCS improve cognitive function and reduce the P300 latency |
Suemoto et al., 2014 [223] | L DLPFC | AD | MMSE, apathy, NPI, ADAS-cog, other | Repeated anodal tDCS over the left DLPFC had no effect on apathy in elderly patients with moderate AD |
Bystad et al., 2016 [237] | L TC | AD | CVLT, MMSE, TMT | Active tDCS stimulation did not significantly improve verbal memory function in AD |
Roncero et al., 2017 [230] | Inferior TPC | AD | Memory | tDCS stimulation improves anomia |
Khedr et al., 2019 [231] | L/R TPC | Mild–moderate AD | MMSE, CDT, MoCA, CDS | Improvement in the total score of each cognitive rating scale |
Im et al., 2019 [224] | L DLPFC | Mild AD | MMSE, FDG-PET, other | Daily anodal tDCS over the DLPFC for 6 months improves or stabilizes cognition |
Cespon et al., 2019 [225] | L DLPFC | AD | Reaction times, ERP | Appropriate tDCS parameters induce behavioral improvements |
Inagawa et al., 2019 [226] | L DLPFC | Mild–moderate AD | ADAS-cog, MMSE, FAB | tDCS is safe and tolerable but causes no statistically significant cognitive effects |
Liu et al., 2020 [232] | L/R FC, L/R TC | MCI and mild AD | ADAS-cog, MOCA | Improvements in specific memory tasks can be safely achieved after a single session of bitemporal tDCS |
Rasmussen et al., 2021 [227] | L DLPFC | AD | MMSE, MRI | High-definition tDCS improves delayed memory in AD |
Gangemi et al., 2021 [233] | L FC, L TC | Mild AD | MMSE, MODA | t-DCS intervention was effective both in the short- and the long-term to slow down the progression of AD on specific neurophysiological domains and on neurophysiological activity |
Smirni et al., 2021 [228] | L/R DLPFC | Mild AD | VF | tDCS over DLPFC can improve verbal fluency tasks in AD patients |
Andrade et al., 2022 [229] | L/R DLPFC, Bro, Wer, L/R PC | Mild–moderate AD | ADAS-cog, EEG | Anodal tDCS and cognitive stimulation improved cognitive function and changed EEG brain activity |
Study | Target Area | Disease Stage | Tools and Scales | Main Outcomes |
---|---|---|---|---|
Kehler et al., 2020 [241] | L DLPFC | MCI or mild to moderate AD patients | WMS-IV and MADRS | tACS determines maintenance of cognitive improvement |
Benussi et al., 2021 [242] | Precuneus | MCI with biomarkers | RAVLT, FNAT, TMS | Significant improvements in episodic memory and increased cholinergic transmission immediately after -tACS in AD patients |
Bréchet et al., 2021 [239] | L TPC | AD with biomarkers | EEG, MoCA, memory index | Feasibility and safety of intervention |
Sprugnoli et al., 2021 [244] | Individualized on amyloid PET | Mild–moderate AD | ASL-MRI, ADAS-cog, MMSE, EEG | Significant increase in blood perfusion in bilateral T lobes, correlating with improvements in episodic memory and changes in gamma band spectral power |
Dhaynaut et al., 2022 [240] | L/R TC | Mild–moderate AD with biomarkers | Tau/amyloid/microglia-PET | Increase in gamma spectral power on EEG and a significant decrease in phosphorylated Tau burden following tACS treatment, primarily in the targeted left and right temporal lobe regions |
Benussi et al., 2022 [243] | Precuneus | MCI and mild AD with biomarkers | RAVLT, FNAT, TMS, EEG, genetics | Significant improvements in episodic memory and increased cholinergic transmission immediately after tACS in early-stage AD |
Study | Target Area | Disease Stage | Tools and Scales | Main Outcomes |
---|---|---|---|---|
Skjerve et al., 2004 [269] | BLT, illumination: 5000–8000 lux. | AD patients | CMAI, BEHAVE-AD, SWD, and wrist-worn actigraphy (Actiwatch). | Short-duration bright light improves behavioral symptoms and aspects of activity rhythm disturbances even in severe AD |
Van Hoof et al., 2009 [270] | High-intensity light stimulation. Bluish (6500 K) and yellowish (2700 K) light | AD patients | GIP, tympanic temperature | Bright light reduces depressive symptoms and agitation |
Burns et al., 2009 [271] | Full spectrum BLT (10,000 lux), standard fluorescent tube light (100 lux) | AD patients | MMSE, CSDD, CRBRS, MOUSEPAD, and CMAI | Bright light reduces agitation |
Van Deursen et al., 2011 [141] | Auditory 40 Hz stimulation | AD patients | TRR, 40 Hz steady state response | 40-Hz SSR might be a candidate marker of disease progression. |
Clements-Cortes et al., 2016 [245] | Sound; vibrotactile- somatosensory (39.96–40.06 Hz) | From mild to moderate AD patients | SLUMS, OERS, and behavioral observation | 40 Hz sound stimulation has a good impact on mild and moderate AD |
Suk et al., 2020 [272] | Concurrent light and sound | AD patients | EEG, iEEG | Safety and feasibility of treatment. Sensory stimulation increased the spectral power and coherence at 40 Hz |
He et al., 2021 [248] | Light and sound (40 Hz) | MCI due to AD patients | MRI, EEG, venous blood draws, lumbar punctures, and cognitive testing | Prolonged gamma sensory flicker is safe, tolerable, and feasible with preliminary indications of immune and network effects |
Chan et al., 2021 [247] | Light and sound (40 Hz) | Mild AD patients | EEG, MRI, fMRI, actigraphy recordings, cognitive assessments | Safety and feasibility of treatment. Reduction in nighttime active periods. Improvement in functional abilities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacino, F.; Manganotti, P.; Benussi, A. Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer’s Disease. Medicina 2025, 61, 547. https://doi.org/10.3390/medicina61030547
Palacino F, Manganotti P, Benussi A. Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer’s Disease. Medicina. 2025; 61(3):547. https://doi.org/10.3390/medicina61030547
Chicago/Turabian StylePalacino, Federica, Paolo Manganotti, and Alberto Benussi. 2025. "Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer’s Disease" Medicina 61, no. 3: 547. https://doi.org/10.3390/medicina61030547
APA StylePalacino, F., Manganotti, P., & Benussi, A. (2025). Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer’s Disease. Medicina, 61(3), 547. https://doi.org/10.3390/medicina61030547