Gender-Based Differences in COPD Patients with Type 2 Respiratory Failure—Impact on Clinical Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Inclusion and Exclusion Criteria
2.2. Data Collection and Study Protocol
2.3. Descriptions
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
4. Discussion
5. Limitations
Strength of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Venkatesan, P. GOLD COPD Report: 2024 Update. Lancet Respir. Med. 2024, 12, 15–16. [Google Scholar] [PubMed]
- Hoyert, D.L.; Xu, J.Q. Deaths: Preliminary data for 2011. Natl. Vital. Stat. Rep. 2011, 61, 1–65. [Google Scholar]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [PubMed]
- Lamprecht, B.; McBurnie, M.A.; Vollmer, W.M.; Gudmundsson, G.; Welte, T.; Nizankowska-Mogilnicka, E.; Studnicka, M.; Bateman, E.; Anto, J.M.; Burney, P.; et al. COPD in never smokers: Results from the population-based burden of obstructive lung disease study. Chest 2011, 139, 752–763. [Google Scholar] [PubMed]
- Menezes, A.M.; Perez-Padilla, R.; Jardim, J.R.; Muiño, A.; Lopez, M.V.; Valdivia, G.; Montes de Oca, M.; Talamo, C.; Hallal, P.C.; Victora, C.G. Chronic obstructive pulmonary disease in five Latin Ameri-can cities (the PLATINO study): A prevalence study. Lancet 2005, 366, 1875–1881. [Google Scholar]
- Marshall, D.C.; Al Omari, O.; Goodall, R.; Shalhoub, J.; Adcock, I.M.; Chung, K.F.; Salciccioli, J.D. Trends in prevalence, mortality, and disability-adjusted life years relating to chronic obstructive pulmonary disease in Europe: An observational study of the global burden of disease database, 2001–2019. BMC Pulm. Med. 2022, 22, 289. [Google Scholar]
- Agusti, A.; Faner, R. COPD beyond smoking: New paradigm, novel opportunities. Lancet Respir. Med. 2018, 6, 324–326. [Google Scholar]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar]
- Feller-Kopman, D.J.; Schwartzstein Richard, M. The evaluation, diagnosis, and treatment of the adult patient with acute hypercapnic respiratory failure. In UpToDate; Stoller, J.K., Geraldine, F., Eds.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2022; Available online: https://www.uptodate.com/contents/the-evaluation-diagnosis-and-treatment-of-the-adult-patient-with-acute-hypercapnic-respiratory-failure (accessed on 17 March 2025).
- Barberà, J.A.; Roca, J.; Ferrer, A.; Félez, M.A.; Díaz, O.; Roger, N.; Rodriguez-Roisin, R. Mechanisms of worsening gas exchange during acute exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J. 1997, 10, 1285–1291. [Google Scholar]
- National Institute for Health and Care Excellence. Chronic Obstructive Pulmonary Disease in over 16s: Diagnosis and Management. 2018. Available online: https://www.nice.org.uk/guidance/NG115 (accessed on 14 March 2025).
- Rochwerg, B.; Brochard, L.; Elliott, M.W.; Hess, D.; Hill, N.S.; Nava, S.; Navalesi, P.; Members of The Steering Committee; Antonelli, M.; Brozek, J.; et al. Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017, 50, 1602426. [Google Scholar]
- Mauvais-Jarvis, F.; Bairey Merz, N.; Barnes, P.J.; Brinton, R.D.; Carrero, J.J.; DeMeo, D.L.; De Vries, G.J.; Epperson, C.N.; Govindan, R.; Klein, S.L.; et al. Sex and gender: Modifiers of health, disease, and medicine. Lancet 2020, 396, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Merdji, H.; Long, M.T.; Ostermann, M.; Herridge, M.; Myatra, S.N.; De Rosa, S.; Metaxa, V.; Kotfis, K.; Robba, C.; De Jong, A.; et al. Sex and gender differences in intensive care medicine. Intensive Care Med. 2023, 49, 1155–1167. [Google Scholar]
- Modra, L.; Higgins, A.; Vithanage, R.; Abeygunawardana, V.; Bailey, M.; Bellomo, R. Sex differences in illness severity and mortality among adult intensive care patients: A systematic review and meta-analysis. J. Crit. Care 2021, 65, 116–123. [Google Scholar]
- Grabicki, M.; Kuźnar-Kamińska, B.; Rubinsztajn, R.; Brajer-Luftmann, B.; Kosacka, M.; Nowicka, A.; Piorunek, T.; Kostrzewska, M.; Chazan, R.; Batura-Gabryel, H. COPD Course and Comorbidities: Are There Gender Differences? Adv. Exp. Med. Biol. 2019, 1113, 43–51. [Google Scholar] [PubMed]
- Valentin, A.; Jordan, B.; Lang, T.; Hiesmayr, M.; Metnitz, P.G. Gender-related differences in intensive care: A multiple-center cohort study of therapeutic interventions and outcome in critically ill patients. Crit. Care Med. 2003, 31, 1901–1907. [Google Scholar]
- Reinikainen, M.; Niskanen, M.; Uusaro, A.; Ruokonen, E. Impact of gender on treatment and outcome of ICU patients. Acta Anaesthesiol. Scand 2005, 49, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Fowler, R.A.; Sabur, N.; Li, P.; Juurlink, D.N.; Pinto, R.; Hladunewich, M.A.; Adhikari, N.K.; Sibbald, W.J.; Martin, C.M. Sex-and age-based differences in the delivery and outcomes of critical care. CMAJ 2007, 177, 1513–1519. [Google Scholar] [CrossRef]
- Mahmood, K.; Eldeirawi, K.; Wahidi, M.M. Association of gender with outcomes in critically ill patients. Crit. Care 2012, 16, R92. [Google Scholar]
- Roche, N.; Deslée, G.; Caillaud, D.; Brinchault, G.; Court-Fortune, I.; Nesme-Meyer, P.; Surpas, P.; Escamilla, R.; Perez, T.; Chanez, P.; et al. Impact of gender on COPD expression in a real-life cohort. Respir. Res. 2014, 15, 20. [Google Scholar]
- Kristensen, M.L.; Vestergaard, T.R.; Bülow, H.H. Gender differences in randomised, controlled trials in intensive care units. Acta Anaesthesiol. Scand. 2014, 58, 788–793. [Google Scholar]
- Liao, K.M.; Chen, Y.C.; Cheng, K.C.; Wang, J.J.; Ho, C.H. Trends in intensive care unit admissions of COPD patients from 2003 to 2013 in Taiwan. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 2007–2012. [Google Scholar]
- Hill, A.; Ramsey, C.; Dodek, P.; Kozek, J.; Fransoo, R.; Fowler, R.; Doupe, M.; Wong, H.; Scales, D.; Garland, A. Examining mechanisms for gender differences in admission to intensive care units. Health Serv. Res. 2020, 55, 35–43. [Google Scholar] [PubMed]
- Zettersten, E.; Jäderling, G.; Bell, M.; Larsson, E. Sex and gender aspects on intensive care. A cohort study. J. Crit. Care 2020, 55, 22–27. [Google Scholar] [PubMed]
- Backman, B.H.; Virchow, J.C.; Lundbäck, B. COPD in women—New results presented. Respir. Med. 2021, 176, 106238. [Google Scholar]
- Matera, M.G.; Ora, J.; Calzetta, L.; Rogliani, P.; Cazzola, M. Sex differences in COPD management. Expert Rev. Clin. Pharmacol. 2021, 14, 323–332. [Google Scholar] [PubMed]
- Todorov, A.; Kaufmann, F.; Arslani, K.; Haider, A.; Bengs, S.; Goliasch, G.; Zellweger, N.; Tontsch, J.; Sutter, R.; Buddeberg, B.; et al. Gender differences in the provision of intensive care: A Bayesian approach. Intensive Care Med. 2021, 47, 577–587. [Google Scholar]
- Rogliani, P.; Cavalli, F.; Ritondo, B.L.; Cazzola, M.; Calzetta, L. Sex differences in adult asthma and COPD therapy: A systematic review. Respir. Res. 2022, 23, 222. [Google Scholar]
- Ruan, H.; Zhang, H.; Wang, J.; Zhao, H.; Han, W.; Li, J. Readmission rate for acute exacerbation of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Respir. Med. 2023, 206, 107090. [Google Scholar]
- Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech. Rep. Ser. 1995, 854, 1–452.
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar]
- Danzer, C.S. The Cardiothoracic Ratio. Am. J. Med. Sci. 1919, 157, 513–554. [Google Scholar] [CrossRef]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision. Available online: https://iris.who.int/handle/10665/246208 (accessed on 3 March 2025).
- Özdemir, T.; Yilmaz Demirci, N.; Kiliç, H.; Koç, O.; Kaya, A.; Öztürk, C. An epidemiologic study of physician-diagnosed chronic obstructive pulmonary disease in the Turkish population: COPDTURKEY-1. Turk. J. Med. Sci. 2020, 50, 132–140. [Google Scholar] [PubMed]
- Ozyilmaz, E.; Kokturk, N.; Teksut, G.; Tatlicioglu, T. Unsuspected risk factors of frequent exacerbations requiring hospital admission in chronic obstructive pulmonary disease. Int. J. Clin. Pract. 2013, 67, 691–697. [Google Scholar] [PubMed]
- Samuelsson, C.; Sjoberg, F.; Karlstrom, G.; Nolin, T.; Walther, S.M. Gender differences in outcome and use of resources do exist in Swedish intensive care, but to no advantage for women of premenopausal age. Crit. Care 2015, 19, 129. [Google Scholar]
- Başara, B.B.; Aygün, A.; Özdemir, T.A.; Kulali, B. Health Statistics Yearbook 2023; Ministry of Health: Ankara, Turkey, 2023. Available online: https://sbsgm.saglik.gov.tr/TR-93567/health-statistics-yearbook.html (accessed on 3 March 2025).
- Hollinger, A.; Gayat, E.; Feliot, E.; Paugam-Burtz, C.; Fournier, M.C.; Duranteau, J.; Lefrant, J.Y.; Leone, M.; Jaber, S.; Mebazaa, A.; et al. Gender and survival of critically ill patients: Results from the FROG-ICU study. Ann. Intensive Care 2019, 9, 43. [Google Scholar]
- Shen, H.N.; Lu, C.L.; Yang, H.H. Women receive more trials of noninvasive ventilation for acute respiratory failure than men: A nationwide population-based study. Crit. Care 2011, 15, R174. [Google Scholar]
- Bhatt, S.P.; Dransfield, M.T. Chronic obstructive pulmonary disease and cardiovascular disease. Transl. Res. 2013, 162, 237–251. [Google Scholar]
- Liu, X.; Chen, Z.; Li, S.; Xu, S. Association of Chronic Obstructive Pulmonary Disease with Arrhythmia Risks: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 732349. [Google Scholar]
- Terzano, C.; Romani, S.; Conti, V.; Paone, G.; Oriolo, F.; Vitarelli, A. Atrial fibrillation in the acute hypercapnic exacerbations of COPD. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2908–2917. [Google Scholar]
- Divo, M.; Cote, C.; de Torres, J.P.; Paone, G.; Oriolo, F.; Vitarelli, A. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012, 186, 155–161. [Google Scholar]
- Sawalha, S.; Hedman, L.; Backman, H. The impact of comorbidities on mortality among men and women with COPD: Report from the OLIN COPD study. Ther. Adv. Respir. Dis. 2019, 13, 1753466619860058. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.I.; Doo, K.; Sottilo-Brammeier, J.; Lane, C.; Liebler, J.M. Super Obesity in the Medical Intensive Care Unit. J. Intensive Care Med. 2020, 35, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Szlagor, M.; Dybiec, J.; Młynarska, E.; Rysz, J.; Franczyk, B. Chronic Kidney Disease as a Comorbidity in Heart Failure. Int. J. Mol. Sci. 2023, 24, 2988. [Google Scholar] [CrossRef]
- Mandviwala, T.; Khalid, U.; Deswal, A. Obesity and Cardiovascular Disease: A Risk Factor or a Risk Marker? Curr. Atheroscler. Rep. 2016, 18, 21. [Google Scholar] [CrossRef]
- Ning, N.; Gao, D.; Triggiani, V.; Iacoviello, M.; Mitchell, J.E.; Ma, R.; Zhang, Y.; Kou, H. Prognostic Role of Hypothyroidism in Heart Failure: A Meta-Analysis. Medicine 2015, 94, e1159. [Google Scholar] [CrossRef] [PubMed]
- Robert-Ebadi, H.; Bertoletti, L.; Combescure, C.; Le Gal, G.; Bounameaux, H.; Righini, M. Effects of impaired renal function on levels and performance of D-dimer in patients with suspected pulmonary embolism. Thromb. Haemost. 2014, 112, 614–620. [Google Scholar]
- Han, M.K.; Postma, D.; Mannino, D.M.; Giardino, N.D.; Buist, S.; Curtis, J.L.; Martinez, F.J. Gender and Chronic Obstructive Pulmonary Disease: Why It Matters. Am. J. Respir. Crit. Care Med. 2007, 176, 1179–1184. [Google Scholar] [CrossRef]
General | Female | Male | p | |
---|---|---|---|---|
n (%) | 258 (100%) | 91 (35.3%) | 167 (64.7%) | <0.01 |
Age | 69 ± 10 | 72 ± 12 | 68 ± 8 | 0.03 |
Kyphoscoliosis | 8 (3.1%) | 5 (5.5%) | 3 (1.8%) | 0.102 |
Morbid obesity | 26 (10.1%) | 17 (18.7%) | 9 (5.4%) | <0.001 |
OSAS | 13 (5%) | 6 (6.6%) | 7 (4.2%) | 0.400 |
Hypertension | 147 (57%) | 65 (71.4%) | 82 (49.1%) | <0.001 |
Diabetes Mellitus | 81 (31.4%) | 32 (35.2%) | 49 (29.3%) | 0.336 |
Coronary artery disease | 52 (20.2%) | 20 (22.0%) | 32 (19.2%) | 0.591 |
Atrial fibrillation | 39 (15.1%) | 20 (22.0%) | 19 (11.4%) | 0.023 |
Kidney disease | 72 (27.9%) | 33 (36.2%) | 39 (23.3%) | 0.027 |
Neurological disease | 7 (2.7%) | 6 (6.6%) | 1 (0.6%) | 0.005 |
Depression/anxiety | 44 (17.1%) | 17 (18.7%) | 27 (16.2%) | 0.609 |
Bronchiectasis | 19 (7.4%) | 3 (3.3%) | 16 (9.6%) | 0.065 |
Pneumonia | 17 (6.6%) | 8 (8.8%) | 9 (5.4%) | 0.294 |
History of previous tuberculosis | 12 (4.7%) | 2 (2.2%) | 10 (6.0%) | 0.168 |
Pulmonary embolism | 16 (6.2%) | 8 (8.8%) | 8 (4.8%) | 0.204 |
Heart failure | 124 (48.1%) | 59 (64.8%) | 65 (38.9%) | <0.001 |
Lung cancer | 22 (8.5%) | 4 (4.4%) | 18 (10.8%) | 0.080 |
Hypothyroidism | 18 (7.0%) | 11 (12.8%) | 7 (4.7%) | 0.024 |
Emphysema | 69 (26.7%) | 5 (5.5%) | 64 (38.3%) | <0.001 |
Anemia | 65 (25.2%) | 27 (29.7%) | 38 (22.9%) | 0.233 |
Body mass index (Mean ± SD) | 28 ± 8 | 31 ± 9 | 27 ± 7 | <0.001 |
Charlson comorbidity index (Mean ± SD) | 5 ± 2 | 5 ± 2 | 4 ± 1 | 0.002 |
Cardiothoracic ratio (Mean ± SD) | 0.56 ± 0.09 | 0.61 ± 0.07 | 0.53 ± 0.09 | <0.001 |
Length of stay (Mean ± SD) | 9 ± 5 | 10 ± 7 | 9 ± 7 | 0.926 |
Systemic steroid treatment | 184 (71.3%) | 55 (60.4%) | 129 (77.2%) | 0.004 |
Antibiotic treatment | 222 (86%) | 77 (84.6%) | 145(68.8%) | 0.625 |
Anxiolytic/antidepressant treatment | 38 (14.7%) | 14 (15.4%) | 24 (14.4%) | 0.827 |
Nutritional support | 19 (7.4%) | 6 (6.6%) | 13 (7.8%) | 0.727 |
Number of patients prescribed BPAPs at home | 138 (53.5%) | 50 (54.9%) | 88 (52.7%) | 0.730 |
Number of patients prescribed OCs at homes | 91 (35.3%) | 31 (34.1%) | 60 (35.9%) | 0.765 |
General 258 (100%) | Female 91 (35.3%) | Male 167 (64.7%) | p | |
---|---|---|---|---|
Compensation in Hospitalization | 0.761 | |||
Compensated (PH = 7.35–7.45) n (%) | 187 (72.5%) | 67 (73.6%) | 120 (71.9%) | |
Decompensated (PH < 7.35) n (%) | 71 (27.5%) | 24 (26.4%) | 47 (28.1%) | |
Admission PH | 7.29 ± 0.08 | 7.28 ± 0.07 | 7.29 ± 0.08 | 0.686 |
Discharged PH | 7.46 ± 0.05 | 7.47 ± 0.04 | 7.46 ± 0.05 | 0.402 |
Admission PaCO2 | 79.1 ± 15.7 | 77.5 ± 15.2 | 79.8 ± 16.0 | 0.239 |
Discharged PaCO2 | 50.4 ± 7.7 | 51.6 ± 6.1 | 49.8 ± 7.4 | 0.036 |
Admission aHCO3 | 37.8 ± 7.7 | 37.0 ± 9.0 | 38.3 ± 6.9 | 0.160 |
Discharged aHCO3 | 36.1 ± 5.3 | 37.0 ± 5.3 | 35.7 ± 5.3 | 0.031 |
Admission aHCO3 | 31.9 ± 7.3 | 31.9 ± 8.0 | 31.9 ± 6.8 | 0.680 |
Discharged aHCO3 | 34.5 ± 4.9 | 35.3 ± 4.4 | 34.1 ± 5.1 | 0.038 |
Admission aBe | 8.5 ± 7.6 | 8.2 ± 8.4 | 8.6 ± 7.1 | 0.679 |
Discharged aBe | 11.0 ± 5.3 | 11.7 ± 4.3 | 10.6 ± 5.8 | 0.021 |
Admission sBe | 11.3 ± 7.9 | 10.4 ± 8.7 | 11.8 ± 7.3 | 0.208 |
Discharged sBe | 12.9 ± 6.3 | 13 ± 5 | 12 ± 6 | 0.035 |
Admission CRP | 77 ± 88 | 62 ± 76 | 86 ± 94 | 0.086 |
Discharged CRP | 24 ± 29 | 20 ± 22 | 25 ± 32 | 0.792 |
Admission BUN | 59 ± 34 | 66 ± 35 | 55 ± 33 | 0.006 |
Discharged BUN | 52 ± 25 | 52 ± 23 | 52 ± 25 | 0.848 |
Admission creatinine | 1.15 ± 0.59 | 1.16 ± 0.52 | 1.15 ± 0.63 | 0.591 |
Discharged creatinine | 0.94 ± 0.50 | 0.87 ± 0.27 | 0.98 ± 0.59 | 0.136 |
Admission sodium | 138.6 ± 4.8 | 139.0 ± 4.2 | 138.4 ± 5.1 | 0.500 |
Discharged sodium | 138.6 ± 3.4 | 139.4 ± 3.4 | 138.2 ± 3.4 | 0.003 |
Admission potassium | 4.58 ± 0.78 | 4.56 ± 0.72 | 4.60 ± 0.81 | 0.237 |
Discharged potassium | 4.19 ± 0.63 | 4.14 ± 0.58 | 4.21 ± 0.67 | 0.229 |
Admission chloride | 96.5 ± 6.7 | 96.3 ± 6.3 | 96.7 ± 7.0 | 0.399 |
Discharged chloride | 96.1 ± 4.3 | 95.9 ± 4.7 | 96.1 ± 4.1 | 0.683 |
Admission magnesium | 2.03 ± 0.35 | 2.00 ± 0.35 | 2.04 ± 0.36 | 0.636 |
Discharge magnesium | 1.95 ± 0.24 | 1.91 ± 0.26 | 1.96 ± 0.22 | 0.183 |
Admission calcium | 8.76 ± 0.76 | 8.67 ± 0.85 | 8.81 ± 0.70 | 0.594 |
Discharge calcium | 8.69 ± 0.60 | 8.73 ± 0.61 | 8.67 ± 0.60 | 0.501 |
Admission albumin | 3.50 ± 0.52 | 3.48 ± 0.50 | 3.51 ± 0.54 | 0.518 |
Discharge albumin | 3.16 ± 0.45 | 3.14 ± 0.39 | 3.17 ± 0.48 | 0.465 |
Admission leukocyte | 10.92 ± 4.39 | 11.01 ± 4.27 | 10.87 ± 4.46 | 0.753 |
Dischage leukocyte | 9.08 ± 3.41 | 8.68 ± 2.91 | 9.30 ± 3.64 | 0.294 |
Admission lymphocyte | 1.27 ± 1.06 | 1.36 ± 0.98 | 1.22 ± 1.10 | 0.127 |
Discharge lymphocyte | 1.36 ± 1.39 | 1.29 ± 0.73 | 1.40 ± 1.65 | 0.680 |
Admission monocyte | 0.611 ± 0.254 | 0.601 ± 0.352 | 0.616 ± 0.376 | 0.695 |
Discharge monocyte | 0.589 ± 0.254 | 0.573 ± 0.234 | 0.598 ± 0.265 | 0.618 |
Admission neutrophil | 8.81 ± 3.94 | 8.78 ± 3.91 | 8.83 ± 3.97 | 0.827 |
Discharge neutrophil | 7.05 ± 2.96 | 6.62 ± 2.76 | 7.29 ± 3.05 | 0.119 |
Admission eosinophil | 0.082 ± 0.185 | 0.073 ± 0.118 | 0.087 ± 0.213 | 0.938 |
Discharge eosinophil | 0.123 ± 0.154 | 0.144 ± 0.191 | 0.111 ± 0.129 | 0.485 |
Admission basophil | 0.037 ± 0.035 | 0.036 ± 0.026 | 0.038 ± 0.039 | 0.599 |
Discharge basophil | 0.028 ± 0.022 | 0.029 ± 0.024 | 0.027 ± 0.021 | 0.493 |
Admission hemoglobin | 13.2 ± 2.6 | 12.1 ± 2.3 | 13.8 ± 2.6 | <0.001 |
Discharge hemoglobin | 12.2 ± 2.6 | 11.4 ± 2.2 | 12.7 ± 2.7 | <0.001 |
Admission platelet | 244 ± 92 | 253 ± 94 | 239 ± 91 | 0.162 |
Discharge platelet | 233 ± 87 | 229 ± 90 | 234 ± 85 | 0.456 |
Admission procalcitonin | 0.81 ± 4.90 | 0.35 ± 0.99 | 1.07 ± 6.06 | 0.510 |
Discharge procalcitonin | 0.11 ± 0.27 | 0.10 ± 0.24 | 0.11 ± 0.28 | 0.822 |
Admission D-dimer | 2497 ± 4667 | 3535 ± 6411 | 1933 ± 3255 | 0.036 |
Admission troponin | 347 ± 1660 | 249 ± 697 | 401 ± 2005 | 0.702 |
Admission BNP | 355 ± 519 | 469 ± 603 | 294 ± 458 | 0.004 |
Admission T4 | 0.98 ± 0.23 | 0.95 ± 0.21 | 0.99 ± 0.24 | 0.381 |
Admission TSH | 2.05 ± 9.32 | 3.42 ± 15 | 1.27 ± 2 | 0.640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozdemir, T.; Yıldız, M.; Arı, M.; Arı, E.; Eraslan Doğanay, G.; Cırık, M.Ö.; Doğancı, M.; Özdilekcan, Ç.; Kızılgöz, D.; Şipit, Y.T. Gender-Based Differences in COPD Patients with Type 2 Respiratory Failure—Impact on Clinical Practice. Medicina 2025, 61, 587. https://doi.org/10.3390/medicina61040587
Ozdemir T, Yıldız M, Arı M, Arı E, Eraslan Doğanay G, Cırık MÖ, Doğancı M, Özdilekcan Ç, Kızılgöz D, Şipit YT. Gender-Based Differences in COPD Patients with Type 2 Respiratory Failure—Impact on Clinical Practice. Medicina. 2025; 61(4):587. https://doi.org/10.3390/medicina61040587
Chicago/Turabian StyleOzdemir, Tarkan, Murat Yıldız, Maşide Arı, Emrah Arı, Güler Eraslan Doğanay, Mustafa Özgür Cırık, Melek Doğancı, Çiğdem Özdilekcan, Derya Kızılgöz, and Yusuf Tuğrul Şipit. 2025. "Gender-Based Differences in COPD Patients with Type 2 Respiratory Failure—Impact on Clinical Practice" Medicina 61, no. 4: 587. https://doi.org/10.3390/medicina61040587
APA StyleOzdemir, T., Yıldız, M., Arı, M., Arı, E., Eraslan Doğanay, G., Cırık, M. Ö., Doğancı, M., Özdilekcan, Ç., Kızılgöz, D., & Şipit, Y. T. (2025). Gender-Based Differences in COPD Patients with Type 2 Respiratory Failure—Impact on Clinical Practice. Medicina, 61(4), 587. https://doi.org/10.3390/medicina61040587