Predictors and Clinical Impacts of Impaired Heart Rate Variability in Women with Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Prevalence and Predictors of Impaired HRV
3.3. De Novo AF and All-Cause Mortality
4. Discussion
- (i)
- Hypertension was the only predictor of reduced SDNN in patients with BC;
- (ii)
- De novo AF occurred significantly more often in BC patients with a reduced SDNN compared to cases with a normal SDNN;
- (iii)
- Although some HRV parameters, including SDNN index, LF, and VLF, were established to be associated with all-cause mortality in univariable analyses, none of the HRV parameters were found to predict all-cause mortality. The cancer stage was established as the only predictor of all-cause mortality.
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [PubMed]
- Anderson, B.O.; Ilbawi, A.M.; Fidarova, E.; Weiderpass, E.; Stevens, L.; Abdel-Wahab, M.; Mikkelsen, B. The global breast cancer initiative: A strategic collaboration to strengthen health care for non-communicable diseases. Lancet Oncol. 2021, 22, 578–581. [Google Scholar] [CrossRef]
- Arici, M.O.; Kivrak Salim, D.; Kocer, M.; Alparslan, A.S.; Karakas, B.R.; Ozturk, B. Predictive and Prognostic Value of Inflammatory and Nutritional Indexes in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. Medicina 2024, 60, 1849. [Google Scholar] [CrossRef] [PubMed]
- Nicolazzi, M.A.; Carnicelli, A.; Fuorlo, M.; Scaldaferri, A.; Masetti, R.; Landolfi, R.; Favuzzi, A.M. Anthracycline and trastuzum- ab-induced cardiotoxicity in breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2175–2185. [Google Scholar]
- Silva, E.N.; Ribeiro, M.L.; Caldeira, L.C.; Jorge, A.J.L.; Rosa, M.L.G.; Mesquita, E.T.; Villacorta, H.; Martins, W.d.A. Biomarkers and prediction of anthracyclic cardiotoxicity in breast cancer. Rev. Assoc. Med. Bras. (1992) 2024, 70 (Suppl. S1), e2024S106. [Google Scholar] [CrossRef]
- Alp, Ç.; Doğru, M.T.; Yalçın, S.; Karal, A.O. The effects of trastuzumab therapy on endothelial functions of breast cancer patients. Rev. Assoc. Med. Bras. (1992) 2024, 70, e20240517. [Google Scholar] [CrossRef] [PubMed]
- Özbay, B.; Şimşek, E.; Kemal, H.; Çakar, B.; Yavuzgil, O. Anthracycline chemotherapy-induced electro-mechanical changes: Strain echocardiography combined with repolarization parameters on electrocardiography to predict early cardiotoxicity. Turk. Kardiyol. Dern. Ars. 2022, 50, 478–484. [Google Scholar]
- Scott, J.M.; Jones, L.W.; Hornsby, W.E.; Koelwyn, G.J.; Khouri, M.G.; Joy, A.A.; Douglas, P.S.; Lakoski, S.G. Cancer therapy-induced autonomicdysfunction in early breast cancer: Implications for aerobic exercise training. Int. J. Cardiol. 2014, 171, e50–e51. [Google Scholar]
- Asarcikli, L.D.; Hayiroglu, M.İ.; Osken, A.; Keskin, K.; Kolak, Z.; Aksu, T. Heart rate variability and cardiac autonomic functions in post-COVID period. J. Interv. Card. Electrophysiol. 2022, 63, 715–721. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Kurtoğlu, E.; Afsin, A.; Aktaş, İ.; Aktürk, E.; Kutlusoy, E.; Çağaşar, Ö. Altered cardiac autonomic function after recovery from COVID 19. Ann. Noninvasive Electrocardiol. 2022, 27, e12916. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.D.; Norberto, A.R.; Oliveira, F.R.; Paiva, L.D.S.; Baracat, E.C.; Soares Júnior, J.M.; Vanderlei, L.C.M.; Sorpreso, I.C.E. Do heart rate variability indices present potential to predict late postmenopausal? A retrospective study. Rev. Assoc. Med. Bras. (1992) 2022, 68, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Kerkutluoglu, M.; Gunes, H.; Iyigun, U.; Dagli, M.; Doganer, A. Is the Effect of the COVID-19 Vaccine on Heart Rate Variability Permanent? Medicina 2023, 59, 852. [Google Scholar] [CrossRef] [PubMed]
- Garbilis, A.; Mednieks, J. Differences in Heart Rate Variability in the Frequency Domain between Different Groups of Patients. Medicina 2024, 60, 900. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar]
- Teng, A.E.; Noor, B.; Ajijola, O.A.; Yang, E.H. Chemotherapy and radiation-associated cardiac autonomic dysfunction. Curr. Oncol. Rep. 2021, 23, 18. [Google Scholar] [CrossRef]
- Nunan, D.; Sandercock, G.R.; Brodie, D.A. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin. Electrophysiol. 2010, 33, 1407–1417. [Google Scholar] [CrossRef]
- Evrengül, H.; Tanriverdi, H.; Dursunoglu, D.; Kaftan, A.; Kuru, O.; Unlu, U.; Kilic, M. Time and frequency domain analyses of heart rate variability in patients with epilepsy. Epilepsy Res. 2005, 63, 131–139. [Google Scholar] [CrossRef]
- Arab, C.; Dias, D.P.; Barbosa, R.T.; Carvalho, T.D.; Valenti, V.E.; Crocetta, T.B.; Ferreira, M.; de Abreu, L.C.; Ferreira, C. Heart rate variability measure in breast cancer patients and survivors: A systematic review. Psychoneuroendocrinology 2016, 68, 57–68. [Google Scholar] [CrossRef]
- Caro-Morán, E.; Fernández-Lao, C.; Galiano-Castillo, N.; Cantarero-Villanueva, I.; Arroyo-Morales, M.; Díaz-Rodríguez, L. Heart Rate Variability in Breast Cancer Survivors After the First Year of Treatments: A Case-Controlled Study. Biol. Res. Nurs. 2016, 18, 43–49. [Google Scholar] [CrossRef]
- Vigo, C.; Gatzemeier, W.; Sala, R.; Malacarne, M.; Santoro, A.; Pagani, M.; Lucini, D. Evidence of altered autonomic cardiac regula-tion in breast cancer survivors. J. Cancer Surviv.-Res. Pract. 2015, 9, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Giese-Davis, J.; Wilhelm, F.H.; Tamagawa, R.; Palesh, O.; Neri, E.; Taylor, C.B.; Kraemer, H.C.; Spiegel, D. Higher vagal activity as related to survival inpatients with advanced breast cancer:an analysis of autonomic dysregulation. Psychosom. Med. 2015, 77, 346–355. [Google Scholar] [PubMed]
- Catai, A.M.; Pastre, C.M.; Godoy, M.F.; Silva, E.D.; Takahashi, A.C.M.; Vanderlei, L.C.M. Heart rate variability:are you using it properly? Standardisation checklist of procedures. Braz. J. Phys. Ther. 2020, 24, 91–102. [Google Scholar] [CrossRef]
- Carvalho, T.D.; Pastre, C.M.; Rossi, R.C.; Abreu, L.C.; Valenti, V.E.; Vanderlei, L.C.M. Geometric index of heart rate variability in chronic obstructive pulmonary disease. Rev. Port. Pneumol. 2011, 17, 260–265. [Google Scholar] [CrossRef]
- Carvalho, T.D.; Pastre, C.M.; de Godoy, M.F.; de Abreu, L.C.; Ramos, E.M.C.; Valenti, V.E.; Vanderlei, L.C.M.; Fereira, C.; OPitta, F.; EValenti, V. Fractal correlation property of heart rate variability in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2011, 6, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Connor, A.E.; Schmaltz, C.L.; Jackson-Thompson, J.; Visvanathan, K. Comorbidities and the risk of cardiovascular disease mortality among racially diverse patients with breast cancer. Cancer 2021, 127, 2614–2622. [Google Scholar] [CrossRef]
- Braithwaite, D.; Tammemagi, C.M.; Moore, D.H.; Ozanne, E.M.; Hiatt, R.A.; Belkora, J.; West, D.W.; Satariano, W.A.; Liebman, M.; Esserman, L. Hypertension is an independent predictor of survival disparity between African-American and white breast cancer patients. Int. J. Cancer 2009, 124, 1213–1219. [Google Scholar] [CrossRef]
- He, B.; Ji, D.; Zhang, B. Hypertension and its correlation with autonomic nervous system dysfunction, heart rate variability and chronic inflammation. Blood Pressure 2024, 33, 2405156. [Google Scholar] [CrossRef]
- Yao, X.; Hu, Q.; Liu, X.; Ling, Q.; Leng, Y.; Zhao, H.; Yu, P.; Ma, J.; Zhao, Y.; Liu, M.; et al. Atrial fibrillation and breast cancer—Vicious twins? A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1113231. [Google Scholar] [CrossRef]
- Murtaza, M.; Baig, M.M.A.; Ahmed, J.; Serbanoiu, L.I.; Busnatu, S.S. Higher Mortality Associated With New-Onset Atrial Fibrillation in Cancer Patients: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 867002. [Google Scholar] [CrossRef]
- Jons, C.; Raatikainen, P.; Gang, U.J.; Huikuri, H.V.; Joergensen, R.M.; Johannesen, A.; Dixen, U.; Messier, M.; McNITT, S.; Thomsen, P.E.B.; et al. Autonomic dysfunction and new-onset atrial fibrillation in patients with left ventricular systolic dysfunction after acute myocardial infarction: A CARISMA substudy. J. Cardiovasc. Electrophysiol. 2010, 21, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Yang, Y.; Chi, M.; Chen, Z.; Huang, Y.; Ouyang, W.; Li, W.; He, L.; Wei, T.; Rizzo, A. Diagnostic role of heart rate variability in breast cancer and its relationship with peripheral serum carcinoembryonic antigen. PLoS ONE 2023, 18, e0282221. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, Z.; Tse, G.; Feng, X.; Korantzopoulos, P.; Letsas, K.P.; Yan, B.P.; Wu, W.K.K.; Zhang, H.; Li, G.; et al. Association of Cancer and the Risk of Developing Atrial Fibrillation: A Systematic Review and Meta-Analysis. Cardiol. Res. Pract. 2019, 2019, 8985273. [Google Scholar] [CrossRef]
- Gue, Y.X.; Lip, G.Y.H. Hypertension and atrial fibrillation: Closing a virtuous circle. PLoS Med. 2021, 18, e1003598. [Google Scholar] [CrossRef]
- Shah, H.; Patel, S.; Prajapati, T.; Patel, H.; Vaishnav, B. Comparison of heart rate variability in normotensive and hypertensive Indian adults. Indian Heart J. 2023, 75, 210–212. [Google Scholar] [CrossRef]
- Wu, S.; Chen, M.; Wang, J.; Shi, B.; Zhou, Y. Association of Short-Term Heart Rate Variability with Breast Tumor Stage. Front. Physiol. 2021, 12, 678428. [Google Scholar] [CrossRef]
- Luna-Alcala, S.; Espejel-Guzmán, A.; Lerma, C.; Leon, P.; Guerra, E.C.; Fernández, J.R.E.; Martinez-Dominguez, P.; Serrano-Roman, J.; Cabello-Ganem, A.; Aparicio-Ortiz, A.D.; et al. Heart rate variability-based prediction of early cardiotoxicity in breast-cancer patients treated with anthracyclines and trastuzumab. Cardiooncology 2024, 10, 32. [Google Scholar] [CrossRef]
All Patients (n = 136) | Normal SDNN (n = 86) | Reduced SDNN (n = 50) | p-Value | Missing (%) | |
---|---|---|---|---|---|
Age, years | 56.8 ± 10.8 | 55.2 ± 10.8 | 59.5 ± 10.3 | 0.013 * | 0 |
Body mass index, kg/m2 | 28.7 ± 6.8 | 27.5 ± 5.6 | 30.6 ± 8.1 | 0.044 * | 39 |
Smoking history, n (%) | 50 (36.8) | 34 (39.5) | 16 (32) | 0.380 | 0 |
Indication for Holter monitorization | 0.332 | 0 | |||
| 113 (83.1) | 74 (86) | 39 (78) | ||
| 23 (16.9) | 12 (14) | 11 (22) | ||
Comorbidities, n (%) | |||||
Hypertension | 49 (36) | 22 (25.6) | 27 (54) | <0.001 * | 0 |
Diabetes | 16 (11.8) | 6 (7) | 10 (20) | 0.046 * | 0 |
Cancer characteristics | |||||
Stage | 0.853 | 0 | |||
| 28 (20.6) | 16 (18.6) | 12 (24) | ||
| 67 (49.3) | 43 (50) | 24 (48) | ||
| 31 (22.8) | 21 (24.4) | 10 (20) | ||
| 10 (7.4) | 6 (7) | 4 (8) | ||
Grade | 0.706 | 0.07 | |||
| 18 (13.3) | 11 (12.8) | 7 (14.3) | ||
| 60 (44.4) | 40 (46.5) | 20 (40.8) | ||
| 56 (41.5) | 34 (39.5) | 22 (44.9) | ||
| 1 (0.7) | 1 (1.2) | 0 (0) | ||
Side of the cancer | 0.181 | 0 | |||
| 73 (53.7) | 41 (47.7) | 32 (64) | ||
| 56 (41.2) | 40 (46.5) | 16 (32) | ||
| 7 (5.1) | 5 (5.8) | 2 (4) | ||
ECOG category | 0.263 | 0 | |||
| 69 (50.7) | 40 (46.5) | 29 (58) | ||
| 61 (44.9) | 43 (50) | 18 (36) | ||
| 6 (4.4) | 3 (3.5) | 3 (6) | ||
| 0 (0%) | 0 (0) | 0 (0) | ||
Cancer treatment, n (%) | |||||
| 112 (82.4) | 70 (81.4) | 42 (84) | 0.880 | 0 |
| 39 (28.7) | 25 (29.1) | 14 (28) | 0.894 | 0 |
| 84 (61.8) | 57 (66.3) | 27 (54) | 0.200 | 0 |
| 109 (80.1) | 71 (82.6) | 38 (76) | 0.483 | 0 |
Anthracycline cardiotoxicity, n (%) | 4 (2.9) | 3 (3.5) | 1 (2) | 1.000 | 0 |
Medications (Cardiovascular), n (%) | |||||
RAS inhibitors | 47 (34.6) | 20 (23.3) | 27 (54) | <0.001 | 0 |
Statins | 8 (5.9) | 1 (1.2) | 7 (14) | 0.004 * | 0 |
Antiplatelet treatment | 17 (12.5) | 5 (5.8) | 12 (24) | 0.003 * | 0 |
Echocardiographic measurements | |||||
LA diameter, mm | 35.8 ± 3.2 | 35.1 ± 2.9 | 36.9 ± 3.5 | 0.002 * | 0 |
LVEDD, mm | 44.0 ± 1.9 | 43.6 ± 2.0 | 44.6 ± 1.7 | 0.004 * | 0 |
LVEF, % | 60.4 ± 3.0 | 60.3 ± 3.6 | 60.5 ± 1.9 | 0.749 | 0 |
Laboratory parameters | |||||
Hemoglobin, g/dL | 12.8 ±1.1 | 13.0 ± 0.9 | 12.6 ± 1.3 | 0.040 * | 0 |
Creatinine, mg/dL | 0.68 ± 0.16 | 0.66 ± 0.14 | 0.71 ± 0.18 | 0.099 | 0 |
TSH, IU/L | 1.85 (1.23–2.78) | 1.73 (1.14–2.83) | 2.11 (1.44–2.80) | 0.041 * | 0 |
Vitamin B12, pg/mL | 319 (235–453) | 301 (229–456) | 330 (2448–455) | 0.075 | 0 |
Ca 15-3 | 15.3 (10.4–22.0) | 15.2 (9.4–22.6) | 16.0 (12.3–20.9) | 0.896 | 0 |
Heart rate variability parameters | |||||
Mean heart rate, bpm | 77.6 ± 10.2 | 74.6 ± 8.4 | 82.7 ± 11.1 | <0.001 * | 0 |
SDNN, ms | 114 (87–144) | 137 (116–160) | 81 (72–90) | <0.001 * | 0 |
SDNN index | 46 (37–56) | 50 (44–66) | 36 (29–44) | <0.001 * | 0 |
pNN50 | 6 (2–11) | 8 (4–16) | 2.5 (1–5) | <0.001 * | 0 |
RMSSD, ms | 27 (23–35) | 30 (26–40) | 23 (21–28) | <0.001 * | 0 |
Triangular index | 23 (18–29) | 27 (21–33) | 18 (14–22) | <0.001 * | 0 |
HF, ms2 | 138 (85–226) | 161 (118–351) | 94 (45–151) | <0.001 * | 0 |
LF, ms2 | 280 (150–448) | 378 (266–563) | 145 (94–240) | <0.001 * | 0 |
VLF, ms2 | 631 (392–786) | 699 (534–824) | 406 (300–552) | <0.001 * | 0 |
LF/HF | 1.96 (1.26–2.71) | 2.02 (1.33–3.00) | 1.78 (1.13–2.33) | <0.001 * | 0 |
Follow-up, months | 61.2 (48.3–82.4) | 65.8 (53.3–83.3) | 54.9 (40.3–79.0) | 0.075 | 0 |
Variable | OR (CI) | p-Value | OR (CI) | p-Value |
---|---|---|---|---|
Age, (>58 years) | 1.03 (1.00–1.07) | 0.029 * | 0.71 (0.19–2.57) | 0.603 |
BMI, (>27) | 2.76 (1.08–7.05) | 0.033 * | 1.88 (0.67–5.26) | 0.963 |
left chest radiotherapy | 0.58 (0.31–1.085) | 0.089 | 0.83 (0.25–2.7131) | 0.833 |
Stage | 0.89 (0.58–1.36) | 0.602 | ||
ECOG score | 0.76 (0.41–1.40) | 0.386 | ||
Anthracycline therapy | 1.20 (0.47–3.04) | 0.701 | ||
HER2-targeted therapy | 0.94 (0.43–2.05) | 0.894 | ||
Hormonotherapy | 0.66 (0.28–1.57) | 0.357 | ||
Hypertension | 3.41 (1.63–7.14) | 0.001 * | 3.61 (1.01–12.92) | 0.048 * |
Diabetes mellitus | 3.33 (1.13–9.82) | 0.029 * | 1.04 (0.16–6.49) | 0.963 |
Hemoglobin, (<12.6) | 0.71 (0.52–0.99) | 0.043 * | 0.75 (0.26–2.15) | 0.604 |
Creatinine, (>0.68) | 5.84 (0.69–49.15) | 0.104 | 1.22 (0.43–3.43) | 0.702 |
Vitamin B12 | 1.00 (0.99–1.00) | 0.363 |
Variable | HR (CI) | p-Value | HR (CI) | p-Value |
---|---|---|---|---|
Left-sided cancer | 0.41 (0.13–1.30) | 0.132 | 0.67 (0.18–2.46) | 0.550 |
Stage | 4.05 (2.14–7.66) | <0.001 * | 3.93 (1.81–8.55) | <0.001 * |
ECOG score | 1.90 (0.82–4.43) | 0.133 | 1.15 (0.40–3.25) | 0.791 |
Ca 15-3 | 1.00 (1.002–1.003) | <0.001 * | 1.00 (0.99–1.00) | 0.901 |
Hypertension | 2.75 (0.98–7.74) | 0.055 | 3.54 (0.99–1.00) | 0.051 |
SDNN | 0.98 (0.97–1.00) | 0.053 | 1.00 (0.98–1.03) | 0.732 |
SDNN index | 0.95 (0.91–0.98) | 0.009 * | 0.96 (0.90–1.03) | 0.228 |
RMSSD # | 0.92 (0.84–1.00) | 0.051 | ||
pNN50 # | 0.93 (0.84–1.02) | 0.159 | ||
HF, ms2 # | 0.99 (0.99–1.00) | 0.120 | ||
LF, ms2 | 0.99 (0.99–1.00) | 0.041 * | 1.00 (0.99–1.00) | 0.978 |
LF/HF | 0.86 (0.50–1.47) | 0.588 | ||
VLF, ms2 | 0.99 (0.99–1.00) | 0.022 * | 0.96 (0.90–1.03) | 0.835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceren, İ.; Çitir Durmuşoğlu, B.N.; Şener, Y.Z.; Bozduman Habip, F.; Köroğlu, S.; Demir, N.; Ateş, Ö.; Eroğlu Büyüköner, E. Predictors and Clinical Impacts of Impaired Heart Rate Variability in Women with Breast Cancer. Medicina 2025, 61, 608. https://doi.org/10.3390/medicina61040608
Ceren İ, Çitir Durmuşoğlu BN, Şener YZ, Bozduman Habip F, Köroğlu S, Demir N, Ateş Ö, Eroğlu Büyüköner E. Predictors and Clinical Impacts of Impaired Heart Rate Variability in Women with Breast Cancer. Medicina. 2025; 61(4):608. https://doi.org/10.3390/medicina61040608
Chicago/Turabian StyleCeren, İmran, Beyza Nur Çitir Durmuşoğlu, Yusuf Ziya Şener, Fadime Bozduman Habip, Sedat Köroğlu, Necla Demir, Öztürk Ateş, and Elif Eroğlu Büyüköner. 2025. "Predictors and Clinical Impacts of Impaired Heart Rate Variability in Women with Breast Cancer" Medicina 61, no. 4: 608. https://doi.org/10.3390/medicina61040608
APA StyleCeren, İ., Çitir Durmuşoğlu, B. N., Şener, Y. Z., Bozduman Habip, F., Köroğlu, S., Demir, N., Ateş, Ö., & Eroğlu Büyüköner, E. (2025). Predictors and Clinical Impacts of Impaired Heart Rate Variability in Women with Breast Cancer. Medicina, 61(4), 608. https://doi.org/10.3390/medicina61040608