Routine Blood Examination Predicts the Course of Disease in Patients with Pseudoexfoliation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
XFS | pseudoexfoliation syndrome |
PEX | pseudoexfoliation |
XFG | pseudoexfoliation glaucoma |
NLR | neutrophil-to-lymphocyte ratio |
PLR | platelet-to-lymphocyte ratio |
LMR | lymphocyte-to-monocyte ratio |
SII | systemic inflammatory index |
SIRI | systemic inflammation response |
IOP | intraocular pressure |
CBC | complete blood count |
RDW | red cell distribution width |
CRP | C reactive protein |
References
- Tarkkanen, A.; Kivela, T.; John, G. Lindberg and the discovery of exfoliation syndrome. Acta Ophthalmol. 2002, 80, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Naumann, G.O.H.; Schlotzer-Schrehardt, U.; Kuchle, M. Pseudoexfoliation syndrome for the comprehensive ophthalmologist. Intraocular and systemic manifestation. Ophthalmology 1998, 105, 951–968. [Google Scholar]
- Gartaganis, S.P.; Patsoukis, N.E.; Nikolopoulos, D.K.; Georgiou, C.D. Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome. Eye 2007, 21, 1406–1411. [Google Scholar]
- Ovodenko, B.; Rostagno, A.; Neubert, T.A.; Shetty, V.; Thomas, S.; Yang, A.; Liebmann, J.; Ghiso, J.; Ritch, R. Proteomic analysis of exfoliation deposits. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1447–1457. [Google Scholar] [CrossRef]
- Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar]
- Wilson, M.S.; Wynn, T.A. Pulmonary fibrosis: Pathogenesis, etiology and regulation. Mucosal Immunol. 2009, 2, 103–121. [Google Scholar]
- Sarenac Vulovic, T.; Pavlovic, S.; Lutovac, M.; Zdravkovic, V.; Sreckovic, S.; Zdravkovic, N. Regulatory cytokines prescribe the outcome of the inflammation in the process of pseudoexfoliation production. J. Chin. Med. Assoc. 2019, 82, 935–940. [Google Scholar] [CrossRef]
- Ingersoll, M.A.; Platt, A.M.; Potteaux, S.; Randolph, G.J. Monocyte trafficking in acute and chronic inflammation. Trends Immunol. 2011, 32, 470–477. [Google Scholar] [CrossRef]
- Ustundag, Y.; Huysal, K.; Gecgel, S.K.; Unal, D. Relationship between C-reactive protein, systemic immune inflammation index, and routine hemogram-related inflammatory markers in low-grade inflammation. Int. J. Med. Biochem. 2018, 1, 24. [Google Scholar]
- Haybar, H.; Pezeshki, S.M.S.; Saki, N. Evaluation of complete blood count parameters in cardiovascular diseases: An early indicator of prognosis? Exp. Mol. Pathol. 2019, 110, 104267. [Google Scholar] [CrossRef]
- Janicijevic, K.; Kocic, S.; Pajovic, S.; Zdravkovic, N.; Sarenac Vulovic, T.; Janicijevic Petrovic, M. The importance of developing atherosclerosis in pseudoexfoliation glaucoma. Vojnosanit. Pregl. 2017, 74, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Kurtul, B.E.; Kurtul, A.; Altiaylik Ozer, P.; Kabatas, E.U.; Ertugrul, G.T. Serum Lipid Levels in Pseudoexfoliation Syndrome. Semin. Ophthalmol. 2017, 32, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Zenkel, M.; Lewczuk, P.; Jünemann, A.; Kruse, F.E.; Naumann, G.O.; Schlötzer-Schrehardt, U. Proinflammatory cytokines are involved in the initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am. J. Pathol. 2010, 176, 2868–2879. [Google Scholar] [CrossRef]
- Sanderson, J.E.; Mayosi, B.; Yusuf, S.; Reddy, S.; Hu, S.; Chen, Z.; Timmis, A. Global burden of cardiovascular disease. Heart 2007, 93, 1175. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancerstatistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Imtiaz, F.; Shafique, K.; Mirza, S.S.; Ayoob, Z.; Vart, P.; Rao, S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int. Arch. Med. 2012, 26, 2. [Google Scholar] [CrossRef]
- Spolverato, G.; Maqsood, H.; Kim, Y.; Margonis, G.; Luo, T.; Ejaz, A.; Pawlik, T.M. Neutrophil-lymphocyte and platelet-lymphocyte ratio in patients after resection for hepato-pancreatico-biliary malignancies. J. Surg. Oncol. 2015, 111, 868–874. [Google Scholar] [CrossRef]
- Li, W.; Ma, G.; Wu, Q.; Deng, Y.; Wang, Y. Prognostic value oflymphocyte-to-monocyte ratio among Asian lung cancerpatients. Oncotarget 2017, 66, 110606–110613. [Google Scholar] [CrossRef]
- Yue, S.; Zhang, J.; Wu, J.; Teng, W.; Liu, L.; Chen, L. Use of the Monocyte-to-Lymphocyte Ratio to Predict Diabetic Retinopathy. Int. J. Environ. Res. Public Health 2015, 12, 10009–10019. [Google Scholar] [CrossRef]
- Lenti, M.V.; Di Sabatino, A. Intestinal fibrosis. Mol. Aspects Med. 2019, 65, 100–109. [Google Scholar] [CrossRef]
- Sarenac Vulovic, T.; Pavlovic, S.M.; Zdravkovic, N.S. Proinflammatory Cytokines Induce XFG Development. Ocul. Immunol. Inflamm. 2016, 24, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Sorkhabi, R.; Ghorbanihaghjo, A.; Ahoor, M.; Nahaei, M.; Rashtchizadeh, N. High-sensitivity C-reactive Protein and Tumor Necrosis Factor Alpha in Pseudoexfoliation Syndrome. Oman Med. J. 2013, 28, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Kymionis, G.D.; Kankariya, V.P.; Kontadakis, G.A. Serum C-reactive protein levels in exfoliation syndrome and exfoliative glaucoma. Eye 2011, 25, 1382–1383. [Google Scholar] [CrossRef]
- Alwani, A.; Andreasik, A.; Szatanek, R.; Siedlar, M.; Baj-Krzyworzeka, M. The Role of miRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022, 12, 100. [Google Scholar] [CrossRef]
- Bashir, J.; Beg, D.; Beigh, A.; Wani, E. Red cell distribution width levels in patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Indian J. Ophthalmol. 2022, 70, 2902–2905. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, T.; Li, J.; Yang, W.; Liu, E.; Li, G. Elevated red cell distribution width level is associated with oxidative stress and inflammation in a canine model of rapid atrial pacing. Int. J. Cardiol. 2014, 174, 174–176. [Google Scholar] [CrossRef]
- Felker, G.M.; Allen, L.A.; Pocock, S.J.; Shaw, L.K.; McMurray, J.J.; Pfeffer, M.A.; Swedberg, K.; Wang, G.; Yusuf, S.; Michelson, E.L.; et al. CHARM Investigators. Red cell distribution width as a novel prognostic marker in heart failure: Data fromthe CHARM program and the duke databank. J. Am. Coll Cardiol. 2007, 50, 40–47. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.; Yu, C.; Yang, X.F.; Wang, H. Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014, 7, 1. [Google Scholar] [CrossRef]
- Keskin, S.; Keskin, Z.; Taskapu, H.H.; Kalkan, H.; Kaynar, M.; Poyraz, N.; Toy, H. Prognostic value of preoperative neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios and multiphasic renal tomography findings in histological subtypes of renal cell carcinoma. BMC Urol. 2014, 14, 95. [Google Scholar] [CrossRef]
- Ozgonul, C.; Sertoglu, E.; Mumcuoglu, T.; Ozge, G.; Gokce, G. Prediction of Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma by Using Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio. Ocul. Immunol. Inflamm. 2016, 24, 665–670. [Google Scholar] [CrossRef]
- Gartaganis, S.P.; Georgakopoulos, C.D.; Patsoukis, N.E.; Gotsis, S.S.; Gartaganis, V.S.; Georgiou, C.D. Glutathione and lipid peroxide changes in pseudoexfoliation syndrome. Curr. Eye Res. 2005, 30, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Mastronikolis, S.; Pagkalou, M.; Plotas, P.; Kagkelaris, K.; Georgakopoulos, C.D. Emerging roles of oxidative stress in the pathogenesis of pseudoexfoliation syndrome (Review). Exp. Ther. Med. 2022, 24, 602. [Google Scholar] [CrossRef] [PubMed]
- Speckauskas, M.; Tamosiunas, A.; Jasinskas, V. Association of ocular pseudoexfoliation syndrome with ischaemic heart disease, arterial hypertension and diabetes mellitus. Acta Ophthalmol. 2012, 90, e470–e475. [Google Scholar] [CrossRef]
- Dikmen, N.T.; Un, Y. Systemic immuno-inflammatory index in patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Ther. Adv. Ophthalmol. 2023, 15, 25158414231197072. [Google Scholar] [CrossRef]
Parameters | Early | Late | XFG | Control | p |
---|---|---|---|---|---|
Leu | 7.1 ± 1.68 | 7.1 ± 1.59 | 7 ± 1.81 | 7.2 ± 1.74 | p > 0.05 |
Neu | 4 ± 0.78 | 4.1 ± 0.79 | 4 ± 0.81 | 3.9 ± 0.80 | p > 0.05 |
Mon | 0.76 ± 0.24 | 1.09 ± 0.31 | 1.11 ± 0.28 | 0.45 ± 0.21 | p < 0.05 |
Lymph | 2.1 ± 0.51 | 1.86 ± 0.57 | 1.85 ± 0.49 | 2 ± 0.47 | p < 0.05 |
MPV | 9.4 | 9.3 | 9.4 | 9.5 | p > 0.05 |
RDW | 13.9 | 14.7 | 14.8 | 14.1 | p < 0.05 |
Platelet | 251 ± 87 | 289 ± 86 | 301 ± 91 | 252 ± 81 | p < 0.05 |
Hol | 155.32 | 155.76 | 154.68 | 141 | p > 0.05 |
TG | 103.43 ± 21.23 | 105.54 ± 18.25 | 104.54 | 107.93 | p > 0.05 |
HDL | 44.65 ± 13.1 | 43.71 ± 12.24 | 45.62 ± 13.45 | 46.32 ± 15.81 | p > 0.05 |
LDL | 125.61 | 135.19 | 133.24 | 105.54 | p < 0.05 |
NLR | 1.9 ± 0.43 | 2.2 ± 0.41 | 2.16 ± 0.51 | 1.95 ± 0.46 | p > 0.05 |
PLR | 119.52 ± 34.2 | 155.38 ± 32.2 | 162.7 ± 39.2 | 126 ± 38.1 | p < 0.05 |
SIRI | 1.45 ± 0.42 | 2.4 ± 0.35 | 2.4 ± 0.37 | 0.88 ± 0.38 | p < 0.05 |
SII | 478.1 ± 185.6 | 637.04 ± 189.28 | 650.81 ± 191.25 | 491.4 ± 179.23 | p < 0.05, p < 0.01 |
SIMI | 90.84 ± 25.43 | 169.36 ± 31.12 | 180.6 ± 30.21 | 56.7 ± 26.65 | p < 0.05, p < 0.01 |
PIV | 363.35 ± 119.2 | 694.38 ± 124.25 | 722.4 ± 131.24 | 221.13 ± 109.12 | p < 0.05, p < 0.01 |
Mon/HDL | 0.017 ± 0.001 | 0.025 ± 0.0012 | 0.024 ± 0.0014 | 0.01 ± 0.009 | p > 0.05 |
Lymph/mon | 2.76 ± 0.12 | 1.71 ± 0.18 | 1.67 ± 0.23 | 4.44 ± 1.12 | p < 0.05, p < 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarenac Vulovic, T.; Cupic, K.; Petrovic, N.; Srejovic, J.; Vulovic, T.; Todorovic, Z.; Rakic, J.; Todorovic, D. Routine Blood Examination Predicts the Course of Disease in Patients with Pseudoexfoliation. Medicina 2025, 61, 652. https://doi.org/10.3390/medicina61040652
Sarenac Vulovic T, Cupic K, Petrovic N, Srejovic J, Vulovic T, Todorovic Z, Rakic J, Todorovic D. Routine Blood Examination Predicts the Course of Disease in Patients with Pseudoexfoliation. Medicina. 2025; 61(4):652. https://doi.org/10.3390/medicina61040652
Chicago/Turabian StyleSarenac Vulovic, Tatjana, Katarina Cupic, Nenad Petrovic, Jovana Srejovic, Tatjana Vulovic, Zeljko Todorovic, Jovan Rakic, and Dusan Todorovic. 2025. "Routine Blood Examination Predicts the Course of Disease in Patients with Pseudoexfoliation" Medicina 61, no. 4: 652. https://doi.org/10.3390/medicina61040652
APA StyleSarenac Vulovic, T., Cupic, K., Petrovic, N., Srejovic, J., Vulovic, T., Todorovic, Z., Rakic, J., & Todorovic, D. (2025). Routine Blood Examination Predicts the Course of Disease in Patients with Pseudoexfoliation. Medicina, 61(4), 652. https://doi.org/10.3390/medicina61040652