Corneal Tomographic Changes in Keratoconus Associated with Scleral Lens Wear: A Case-Control Analysis for 12-Month Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Information
- Patients diagnosed with keratoconus by an ophthalmologist based on clinical signs and corneal topography or tomography;
- Patients with available medical records and follow-up data of at least one year.
- Exclusion criteria wereas follows:
- History of ocular procedures, including intracorneal ring segment implantation, corneal cross-linking, refractive surgery, or cataract surgery;
- Age under 18 years;
- Pregnancy during the study period;
- Presence of ocular diseases other than keratoconus and mild dry-eye disease.
2.2. Ocular Examinations
2.3. Diagnosis of Keratoconus and Definition of Keratoconus Progression
2.4. Keratoconus Cone Location
2.5. Scleral Lens Fitting and Safety
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Location of TCT and Kmax
3.3. Interaction Effects on Tomographic Indices
3.4. Group Effects on Tomographic Indices
3.5. Impact on Keratoconus Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARTmax | Maximum Ambrósio relational thickness; |
ARC | Anterior radius curvature |
BAD-D | Belin/Ambrósio enhanced ectasia display “D” value |
BCVA | Best-corrected visual acuity |
Bk Km | Back (posterior) mean keratometry |
Bk K1 | Back (posterior) flat keratometry |
Bk K2 | Back (posterior) steep keratometry |
CKI | Central keratoconus index |
Fr Km | Front (anterior) mean keratometry |
Fr K1 | Front (anterior) flat keratometry |
Fr K2 | Front (anterior) steep keratometry |
HOAs | Higher-order aberrations |
IHA | Index of height asymmetry |
IHD | Index of height decentration |
ISV | Index of surface variance |
IVA | Index of vertical asymmetry |
KI | Keratoconus index |
Kmax | Anterior maximum keratometry |
LogMAR | Logarithm of the minimum angle of resolution |
PPI | Pachymetric progression index |
PRC | Posterior radius curvature |
Rmin | Minimum radius of curvature |
SA | Spherical aberration |
SL | Scleral lens |
TCT | Thinnest corneal thickness |
References
- Santodomingo-Rubido, J.; Carracedo, G.; Suzaki, A.; Villa-Collar, C.; Vincent, S.J.; Wolffsohn, J.S. Keratoconus: An updated review. Cont. Lens Anterior Eye 2022, 45, 101559. [Google Scholar] [CrossRef] [PubMed]
- Kymes, S.M.; Walline, J.J.; Zadnik, K.; Sterling, J.; Gordon, M.O. Changes in the quality-of-life of people with keratoconus. Am. J. Ophthalmol. 2008, 145, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Hadimani, S.R.; Kaur, H.; Shinde, A.J.; Chottopadhyay, T. Quality of life and vision assessment with scleral lenses in keratoconus. Saudi J. Ophthalmol. 2024, 38, 173–178. [Google Scholar] [CrossRef]
- Mushtaq, A.; Alvi, I. Long-Term Effectiveness of Scleral Lens Treatment in the Management of Keratoconus: A Systematic Review. Cureus 2025, 17, e77102. [Google Scholar] [CrossRef]
- Michaud, L.; Lipson, M.; Kramer, E.; Walker, M. The official guide to scleral lens terminology. Cont. Lens Anterior Eye 2020, 43, 529–534. [Google Scholar] [CrossRef]
- Vincent, S.J.; Alonso-Caneiro, D.; Collins, M.J. Corneal changes following short-term miniscleral contact lens wear. Cont. Lens Anterior Eye 2014, 37, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Soeters, N.; Visser, E.S.; Imhof, S.M.; Tahzib, N.G. Scleral lens influence on corneal curvature and pachymetry in keratoconus patients. Cont. Lens Anterior Eye 2015, 38, 294–297. [Google Scholar] [CrossRef]
- Serramito-Blanco, M.M.; Carpena-Torres, C.M.; Carballo, J.; Piñero, D.; Lipson, M.O.; Carracedo, G. Anterior Corneal Curvature and Aberration Changes After Scleral Lens Wear in Keratoconus Patients with and Without Ring Segments. Eye Contact Lens. 2019, 45, 141–148. [Google Scholar] [CrossRef]
- Serramito, M.; Carpena-Torres, C.; Carballo, J.; Piñero, D.; Lipson, M.; Carracedo, G. Posterior cornea and thickness changes after scleral lens wear in keratoconus patients. Cont. Lens Anterior Eye 2019, 42, 85–91. [Google Scholar] [CrossRef]
- Severinsky, B.; Fadel, D.; Davelman, J.; Moulton, E. Effect of Scleral Lenses on Corneal Topography in Keratoconus: A Case Series of Cross-Linked Versus Non-Cross-Linked Eyes. Cornea 2019, 38, 986–991. [Google Scholar] [CrossRef]
- De Luis Eguileor, B.; Acera, A.; Carro, A.S.; Lera, R.F.; Argaluza, J.E.; Ecenarro, J.E. Changes in the corneal thickness and limbus after 1 year of scleral contact lens use. Eye 2020, 34, 1654–1661. [Google Scholar] [CrossRef]
- Akcay BI, S.; Kockar, A.; Limon, U.; Kardes, E.; Dursun, A.D. Comparison of Clinical and Topographic Outcomes of Hybrid and Scleral Lenses in Advanced Keratoconus. Beyoglu Eye J. 2022, 7, 59–65. [Google Scholar] [PubMed]
- Kasıkcı, M.; Karalezli, A.; Eroğul, Ö.; Gobeka, H.H. Quantifying contact lens-related changes in keratoconus corneal topographic indices: An updated Pentacam Scheimpflug imaging analysis. Rom. J. Ophthalmol. 2022, 66, 245–256. [Google Scholar]
- Levit, A.; Benwell, M.; Evans, B.J. Randomised controlled trial of corneal vs. scleral rigid gas permeable contact lenses for keratoconus and other ectatic corneal disorders. Cont. Lens Anterior Eye 2020, 43, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Bandela, P.K.; Bharadwaj, S.R. Do visual performance and optical quality vary across different contact lens correction modalities in keratoconus? Cont. Lens Anterior Eye 2020, 43, 568–576. [Google Scholar] [CrossRef]
- Rubin, D.B. Bias Reduction Using Mahalanobis-Metric Matching. Biometrics 1980, 36, 293–298. [Google Scholar] [CrossRef]
- Ferdi, A.C.; Nguyen, V.; Gore, D.M.; Allan, B.D.; Rozema, J.J.; Watson, S.L. Keratoconus Natural Progression: A Systematic Review and Meta-analysis of 11 529 Eyes. Ophthalmology 2019, 126, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Henriquez, M.A.; Larco, C.; Izquierdo, L., Jr. Definition of Progressive Keratoconus: A Systematic Review. Cornea 2024. [Google Scholar] [CrossRef]
- Sedaghat, M.R.; Momeni-Moghaddam, H.; Azimi Khorasani, A.; Belin, M.W.; Monfared, N.; Wolffsohn, J.S.; Pakdel, M.; Ghate, M.F.; Hemmatian, Z. Comparison of Keratoconus Cone Location of Different Topo/tomographical Parameters. Curr. Eye Res. 2021, 46, 1666–1672. [Google Scholar] [CrossRef]
- Esen, F.; Toker, E. Influence of Apical Clearance on Mini-Scleral Lens Settling, Clinical Performance, and Corneal Thickness Changes. Eye Contact Lens 2017, 43, 230–235. [Google Scholar] [CrossRef]
- McMonnies, C.W. Keratoconus fittings: Apical clearance or apical support? Eye Contact Lens 2004, 30, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Toprak, I.; Yaylalı, V.; Yildirim, C. Factors affecting outcomes of corneal collagen crosslinking treatment. Eye 2014, 28, 41–46. [Google Scholar] [CrossRef]
- Shetty, R.; Nuijts, R.M.; Nicholson, M.; Sargod, K.; Jayadev, C.; Veluri, H.; Roy, A.S. Cone location-dependent outcomes after combined topography-guided photorefractive keratectomy and collagen cross-linking. Am. J. Ophthalmol. 2015, 159, 419–425.e2. [Google Scholar] [CrossRef] [PubMed]
- Auffarth, G.U.; Wang, L.; Völcker, H.E. Keratoconus evaluation using the Orbscan Topography System. J. Cataract Refract. Surg. 2000, 26, 222–228. [Google Scholar] [CrossRef]
- Li, Y.; Tan, O.; Brass, R.; Weiss, J.L.; Huang, D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology 2012, 119, 2425–2433. [Google Scholar] [CrossRef]
- Demirbas, N.H.; Pflugfelder, S.C. Topographic pattern and apex location of keratoconus on elevation topography maps. Cornea 1998, 17, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, M.N.; Moshirfar, M.; Murri, M.S.; Skanchy, D.F.; Momeni-Moghaddam, H.; Ronquillo, Y.C.; Hoopes, P.C. Pentacam® Corneal Tomography for Screening of Refractive Surgery Candidates: A Review of the Literature, Part I. Med. Hypothesis Discov. Innov. Ophthalmol. 2019, 8, 177–203. [Google Scholar]
- Duncan, J.K.; Belin, M.W.; Borgstrom, M. Assessing progression of keratoconus: Novel tomographic determinants. Eye Vision 2016, 3, 6. [Google Scholar] [CrossRef]
- Vincent, S.J.; Alonso-Caneiro, D.; Collins, M.J. The time course and nature of corneal oedema during sealed miniscleral contact lens wear. Cont. Lens Anterior Eye 2019, 42, 49–54. [Google Scholar] [CrossRef]
- Fisher, D.; Collins, M.J.; Vincent, S.J. Fluid Reservoir Thickness and Corneal Edema during Open-eye Scleral Lens Wear. Optom. Vis. Sci. 2020, 97, 683–689. [Google Scholar] [CrossRef]
- Fisher, D.B.; Collins, M.J.P.; Vincent, S.J.P. Fluid reservoir thickness and corneal oedema during closed eye scleral lens wear. Cont. Lens Anterior Eye 2021, 44, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.; Collins, M.J.; Vincent, S.J. Scleral Lens Thickness and Corneal Edema Under Closed Eye Conditions. Eye Contact Lens 2022, 48, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.; Collins, M.J.; Vincent, S.J. Scleral Lens Thickness and Corneal Edema Under Open Eye Conditions. Eye Contact Lens 2022, 48, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Montalt, J.C.; Porcar, E.; España-Gregori, E.; Peris-Martínez, C. Visual quality with corneo-scleral contact lenses for keratoconus management. Cont. Lens Anterior Eye 2018, 41, 351–356. [Google Scholar] [CrossRef]
- Iqbal, A.M.; Mahadevan, R. Impact of Scleral Lens on Corneal Curvature and Pachymetry in Keratoconic Eyes. Cornea 2022, 41, 579–582. [Google Scholar] [CrossRef]
Characteristics | SL (n = 10) | Control (n = 14) | p Value |
---|---|---|---|
Age §, yr | 30.40 ± 6.52 | 27.43 ± 8.11 | |
<20 | 1 (10) | 0 | 0.210 |
20–30 | 4 (40) | 10 (71.4) | |
30–40 | 5 (50) | 3 (21.4) | |
>40 | 0 | 1 (7.2) | |
Gender §, male (%) | 7 (87.5) | 3(27.3) | 0.020 * |
Severity † (%) | |||
grade 2 | 2 (20) | 2 (14.3) | 0.711 |
grade 4 | 8 (80) | 12 (85.7) | |
Corneal scarring (%) | 7 (70) | 1 (7.14) | 0.002 * |
Fleischer ring (%) | 7 (70) | 5 (35.7) | 0.214 |
Vogt’s striae (%) | 7 (70) | 8 (57.1) | 0.678 |
Variables | Baseline | 12-Month Follow-Up | Difference | |||
---|---|---|---|---|---|---|
SL (n = 10) | Control (n = 14) | SL (n = 10) | Control (n = 14) | SL (n = 10) | Control (n = 14) | |
BCVA (logMAR) | 0.95 ± 0.67 | 0.76 ± 0.63 | 1.12 ± 0.78 | 0.83 ± 0.56 | 0.17 ± 0.23 | 0.07 ± 0.46 |
TCT (µm) | 342.3 ± 87.44 | 450.71 ± 53.06 | 342.9 ± 91.33 | 437.07 ± 55.84 | 0.6 ± 24.77 | −13.64 ± 21.29 |
Kmax (D) | 77.7 ± 14.28 | 69.95 ± 11.69 | 74.97 ± 11.43 | 70.89 ± 12.35 | −2.73 ± 7.41 | 0.94 ± 1.6 |
ARTmax (µm) | 48.7 ± 43.06 | 119.21 ± 83.48 | 53.2 ± 49.89 | 107.29 ± 74.29 | 4.5 ± 13.41 | −11.93 ± 17.26 |
PPI | 8.07 ± 5.34 | 2.94 ± 1.27 | 7.74 ± 4.87 | 3.13 ± 1.34 | −0.33 ± 1.42 | 0.19 ± 0.3 |
BAD-D | 33.28 ± 15.74 | 14.75 ± 8.14 | 27.9 ± 11.59 | 15.37 ± 8.03 | −5.38 ± 10.62 | 0.62 ± 1.84 |
ARC (mm) | 5.06 ± 1.01 | 5.72 ± 0.93 | 5.09 ± 0.76 | 5.71 ± 0.87 | 0.03 ± 0.43 | −0.02 ± 0.15 |
PRC (mm) | 3.37 ± 0.8 | 4.22 ± 0.84 | 3.41 ± 0.77 | 4.12 ± 0.8 | 0.04 ± 0.17 | −0.09 ± 0.17 |
Anterior Q value | −1.51 ± 0.84 | −1.39 ± 0.77 | −1.50 ± 0.67 | −1.41 ± 0.79 | 0.01 ± 0.32 | −0.02 ± 0.1 |
Posterior Q value | −1.65 ± 0.61 | −1.33 ± 0.77 | −1.41 ± 0.58 | −1.25 ± 0.75 | 0.23 ± 0.62 | 0.08 ± 0.38 |
Fr Km (D) | 65.27 ± 10.92 | 56.09 ± 7.62 | 63.87 ± 8.92 | 56.39 ± 7.87 | −1.40 ± 3.93 | 0.3 ± 0.83 |
Fr K1 (D) | 63.01 ± 9.9 | 53.29 ± 7.33 | 61.63 ± 7.68 | 53.33 ± 7.15 | −1.38 ± 3.94 | 0.04 ± 0.98 |
Fr K2 (D) | 67.79 ± 12.22 | 59.29 ± 8.29 | 66.36 ± 10.41 | 59.88 ± 8.94 | −1.43 ± 4.22 | 0.59 ± 2.09 |
Bk Km (D) | −10.69 ± 2.04 | −8.44 ± 1.36 | −10.46 ± 1.89 | −8.50 ± 1.42 | 0.23 ± 0.39 | −0.06 ± 0.18 |
Bk K1 (D) | −10.27 ± 1.82 | −7.90 ± 1.39 | −10.03 ± 1.6 | −7.93 ± 1.33 | 0.24 ± 0.35 | −0.03 ± 0.22 |
Bk K2 (D) | −11.17 ± 2.37 | −9.09 ± 1.37 | −10.97 ± 2.3 | −9.19 ± 1.54 | 0.2 ± 0.52 | −0.10 ± 0.3 |
Front elevation (µm) | 40.7 ± 30.79 | 39.64 ± 23.33 | 44.7 ± 21.57 | 39.5 ± 21.02 | 4 ± 22.47 | −0.14 ± 5.27 |
Back elevation (µm) | 92.16 ± 57.78 | 79.71 ± 39.05 | 113.8 ± 39.64 | 79.86 ± 37.24 | 21.64 ± 36.81 | 0.14 ± 11.53 |
ISV | 171.9 ± 60.16 | 134.71 ± 58.35 | 163.8 ± 49.06 | 131.86 ± 58.41 | −8.10 ± 27.63 | −2.86 ± 10.1 |
IHA | 51.63 ± 42.22 | 53.7 ± 42.58 | 40.38 ± 49.65 | 43.12 ± 45.31 | −11.25 ± 19.12 | −10.58 ± 31.88 |
IVA | 1.13 ± 0.48 | 1.09 ± 0.51 | 1.09 ± 0.48 | 1.01 ± 0.6 | −0.04 ± 0.22 | −0.09 ± 0.29 |
IHD | 0.24 ± 0.11 | 0.21 ± 0.1 | 0.2 ± 0.08 | 0.2 ± 0.11 | −0.04 ± 0.09 | 0 ± 0.03 |
KI | 1.43 ± 0.26 | 1.36 ± 0.2 | 1.45 ± 0.21 | 1.35 ± 0.21 | 0.02 ± 0.13 | 0 ± 0.06 |
Rmin (mm) | 4.49 ± 0.9 | 4.96 ± 0.91 | 4.6 ± 0.73 | 4.93 ± 0.94 | 0.11 ± 0.39 | −0.03 ± 0.11 |
CKI | 1.19 ± 0.12 | 1.17 ± 0.12 | 1.16 ± 0.09 | 1.16 ± 0.12 | −0.03 ± 0.07 | 0 ± 0.03 |
Total HOAs (µm) | 2 ± 0.65 | 1.47 ± 0.72 | 1.76 ± 0.42 | 1.54 ± 0.79 | −0.24 ± 0.46 | 0.07 ± 0.52 |
SA (µm) | −0.79 ± 0.84 | −0.72 ± 0.6 | −0.61 ± 0.6 | −0.73 ± 0.6 | 0.18 ± −0.01 | 0.01 ± 0.17 |
Coma (µm) | 1.4 ± 0.5 | 1.08 ± 0.57 | 1.25 ± 0.57 | 1.08 ± 0.72 | −0.14 ± 0.63 | 0 ± 0.52 |
TCT angle (degree) | 226.41 ± 37.32 | 232.67 ± 31.76 | 238.43 ± 41.81 | 227.54 ± 26.36 | 12.02 ± 18.78 | −5.13 ± 19.5 |
Kmax angle (degree) | 192.96 ± 82.01 | 248.38 ± 53.74 | 211.44 ± 71.03 | 245.03 ± 64.23 | 18.48 ± 47.34 | −3.35 ± 69.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-H.; Tsai, T.-H.; Hsiao, C.-H.; Sun, C.-C.; Lee, J.-S.; Lin, K.-K. Corneal Tomographic Changes in Keratoconus Associated with Scleral Lens Wear: A Case-Control Analysis for 12-Month Follow-Up. Medicina 2025, 61, 728. https://doi.org/10.3390/medicina61040728
Lin W-H, Tsai T-H, Hsiao C-H, Sun C-C, Lee J-S, Lin K-K. Corneal Tomographic Changes in Keratoconus Associated with Scleral Lens Wear: A Case-Control Analysis for 12-Month Follow-Up. Medicina. 2025; 61(4):728. https://doi.org/10.3390/medicina61040728
Chicago/Turabian StyleLin, Wei-Hsiang, Tsung-Hsien Tsai, Ching-Hsi Hsiao, Chi-Chin Sun, Jiahn-Shing Lee, and Ken-Kuo Lin. 2025. "Corneal Tomographic Changes in Keratoconus Associated with Scleral Lens Wear: A Case-Control Analysis for 12-Month Follow-Up" Medicina 61, no. 4: 728. https://doi.org/10.3390/medicina61040728
APA StyleLin, W.-H., Tsai, T.-H., Hsiao, C.-H., Sun, C.-C., Lee, J.-S., & Lin, K.-K. (2025). Corneal Tomographic Changes in Keratoconus Associated with Scleral Lens Wear: A Case-Control Analysis for 12-Month Follow-Up. Medicina, 61(4), 728. https://doi.org/10.3390/medicina61040728