The Type of Preoperative Oral Antithrombotics as a Risk Factor for Venous Thromboembolism After Hip Surgery: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Inclusion and Exclusion Criteria
2.2. Anesthetic Procedures
2.3. Diagnosis of VTE
2.4. Use of Antithrombotics
2.5. Interruption of Antithrombotics Before Surgery
2.6. Preoperative Labratoy Examinations
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Patients
3.2. Use of Antithrombotics and Preoperative Laboratory Results (Table 2)
Group VTE+ (n = 24) | Group VTE- (n = 115) | p Value | 95% CI | |
---|---|---|---|---|
Antithrombotics, n (%) | ||||
Aspirin | 13 (54.2) | 61 (53.0) | 0.920 | 0.433–2.529 |
Clopidogrel | 3 (12.5) | 39 (33.9) | 0.038 * | 0.078–0.991 |
DOAC | 7 (29.4) | 29 (25.2) | 0.688 | 0.460–3.239 |
Warfarin | 0 (0.0) | 1 (0.9) | 0.647 | 0.974–1.008 |
Cilostazol | 5 (20.8) | 6 (5.2) | 0.010 * | 1.325–17.245 |
Interrupted duration, n (%) | 0.061 | |||
Under | 10 (41.7) | 72 (62.6) | ||
Normal | 13 (54.2) | 34 (29.6) | ||
Over | 1 (4.2) | 9 (7.8) | ||
Preoperative laboratory results | ||||
Platelet (103/μL) | 228.0 (112.8) | 204.0 (69.3) | 0.715 | |
PT INR | 1.0 (0.1) | 1.0 (0.1) | 0.989 | |
aPTT (sec) | 37.0 ± 4.8 | 39.4 ± 6.8 | 0.115 | |
D-dimer (μg/mL) | 7.5 (1.5) | 7.1 (1.5) | 0.881 | |
Albumin (g/dL) | 3.4 ± 0.6 | 3.7 ± 0.4 | 0.004 * | |
HbA1c (%) | 5.8 (1.7) | 5.9 (0.9) | 0.326 |
3.3. Regression Analysis for Predicting Risk Factors of VTE (Table 3)
Variables | Univariable | Multivariable | ||
---|---|---|---|---|
OR | p Value | OR | p Value | |
Age | 1.057 (0.998–1.119) | 0.060 | ||
Height | 0.955 (0.903–1.011) | 0.112 | ||
Weight | 0.978 (0.935–1.022) | 0.324 | ||
BMI | 1.010 (0.899–1.135) | 0.870 | ||
Sex (female/male) | 0.840 (0.496–1.423) | 0.517 | ||
Anesthetic type (GA/SA) | 1.121 (0.249–5.043) | 0.882 | ||
Anesthetic time | 1.001 (0.993–1.010) | 0.733 | ||
Hypertension | 0.607 (0.225–1.637) | 0.321 | ||
Diabetes | 0.465 (0.179–1.207) | 0.116 | ||
Atrial fibrillation | 1.178 (0.395–3.513) | 0.769 | ||
CVA history | 0.837 (0.331–2.120) | 0.708 | ||
Preoperative delirium | 0.209 | 0.000 | ||
ESRD | 3.394 (0.535–21.513) | 0.195 | ||
ACEi | 0.000 (0.000) | 0.999 | ||
ARB | 0.749 (0.310–1.810) | 0.521 | ||
BB | 1.001 (0.991–1.010) | 0.894 | ||
CCB | 0.606 (0.250–1.468) | 0.267 | ||
Diuretics | 1.410 (0.528–3.766) | 0.494 | ||
Insulin | 1.207 (0.129–11.297) | 0.869 | ||
Hypoglycemic agents | 0.519 (0.191–1.405) | 0.197 | ||
Aspirin | 1.046 (0.433–2.529) | 0.920 | ||
Clopidogrel | 0.278 (0.078–0.991) | 0.048 * | 0.237 (0.062–0.901) | 0.035 * |
DOAC | 1.221 (0.460–3.239) | 0.688 | ||
Warfarin | 0.000 (0.000) | 1.000 | ||
Cilostazol | 4.781 (1.325–17.245) | 0.017 * | 6.479 (1.542–27.226) | 0.011 * |
Antithrombotics cut duration | 1.509 (0.778–2.927) | 0.224 | ||
Platelet | 1.001 (0.995–1.007) | 0.841 | ||
PT INR | 0.678 (0.075–6.170) | 0.730 | ||
aPTT | 0.942 (0.874–1.015) | 0.117 | ||
D-dimer | 1.000 (1.000–1.001) | 0.669 | ||
Albumin | 0.285 (0.115–0.702) | 0.006 * | 0.211 (0.080–0.558) | 0.002 * |
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bugada, D.; Bellini, V.; Lorini, L.F.; Mariano, E.R. Update on Selective Regional Analgesia for Hip Surgery Patients. Anesthesiol. Clin. 2018, 36, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Li, J.; Zhao, Y.; Ding, D.; Jiang, G.; Song, Z. Preoperative deep venous thrombosis (DVT) after femoral neck fracture in the elderly, the incidence, timing, location and related risk factors. BMC Musculoskelet. Disord. 2021, 22, 264. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Y.; Song, K.; Kang, H.; Ye, D.; Li, F. What was the Epidemiology and Global Burden of Disease of Hip Fractures From 1990 to 2019? Results From and Additional Analysis of the Global Burden of Disease Study 2019. Clin. Orthop. Relat. Res. 2023, 481, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef]
- Shan, L.; Shan, B.; Graham, D.; Saxena, A. Total hip replacement: A systematic review and meta-analysis on mid-term quality of life. Osteoarthr. Cartil. 2014, 22, 389–406. [Google Scholar] [CrossRef]
- Stone, J.; Hangge, P.; Albadawi, H.; Wallace, A.; Shamoun, F.; Knuttien, M.G.; Naidu, S.; Oklu, R. Deep vein thrombosis: Pathogenesis, diagnosis, and medical management. Cardiovasc. Diagn. Ther. 2017, 7, S276–S284. [Google Scholar] [CrossRef]
- Monreal, M.; Agnelli, G.; Chuang, L.H.; Cohen, A.T.; Gumbs, P.D.; Bauersachs, R.; Mismetti, P.; Gitt, A.K.; Kroep, S.; Willich, S.N.; et al. Deep Vein Thrombosis in Europe-Health-Related Quality of Life and Mortality. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619883946. [Google Scholar] [CrossRef]
- Goldhaber, S.Z.; Bounameaux, H. Pulmonary embolism and deep vein thrombosis. Lancet 2012, 379, 1835–1846. [Google Scholar] [CrossRef] [PubMed]
- Pivec, R.; Johnson, A.J.; Mears, S.C.; Mont, M.A. Hip arthroplasty. Lancet Lond. Engl. 2012, 380, 1768–1777. [Google Scholar] [CrossRef]
- Bourne, R.B.; Chesworth, B.M.; Davis, A.M.; Mahomed, N.N.; Charron, K.D.J. Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin. Orthop. 2010, 468, 57–63. [Google Scholar] [CrossRef]
- Jeffrey, I.W.; Job, H. New developments in anticoagulants: Past, present and future. Thromb. Haemost. 2017, 117, 1283–1288. [Google Scholar]
- Teresa, C.; Camille, S.; Vicky, T.; Maral, K. Delayed time to emergency hip surgery in patients taking oral anticoagulants. Thromb. Res. 2019, 184, 110–114. [Google Scholar]
- Maureen, D.L.; Bailey, P.; Jason, A. Perioperative mnagement of antithrombotic therapy. JAMA 2024, 332, 420–421. [Google Scholar]
- Douketis, J.D.; Spyropoulos, A.C.; Murad, M.H.; Arcelus, J.I.; Dager, W.E.; Dunn, A.S.; Fargo, R.A.; Levy, J.H.; Samama, C.M.; Shah, S.H.; et al. Perioperative management of antithrombotic therapy. Chest 2022, 162, e207–e243. [Google Scholar] [CrossRef] [PubMed]
- Sana, I.; Jayanth, S.; Ajay, E.K. Perioperative management of antiplatelet therapy in ophthalmic surgery. Int. Ophthalmol. Clin. 2020, 60, 17–30. [Google Scholar]
- Sabatine, M.S.; Cannon, C.P.; Gibson, C.M.; Lopez-Sendon, J.L.; Montalescot, G.; Theroux, P.; Claeys, M.J.; Cools, F.; Hill, K.A.; Skene, A.M.; et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N. Engl. J. Med. 2005, 352, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M. Aspirin and clopidogrel: Efficacy, safety, and the issue of drug resistance. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1980–1987. [Google Scholar] [CrossRef]
- Steele, M.J.; Fox, J.S.; Fletcher, J.P.; Grigg, L.E.; Bell, G. Clopidogrel dilemma for orthopaedic surgeons. ANZ J. Surg. 2011, 81, 774–784. [Google Scholar] [CrossRef]
- Wang, X.L.; Deng, H.F.; Li, T.; Miao, S.Y.; Xiao, Z.H.; Liu, M.D.; Liu, K.; Xiao, X. Clopidogrel reduces lipopolysaccharide-induced inflammation and neutrophil-platelet aggregates in an experimental endotoxemic model. J. Biochem. Mol. Toxicol. 2019, 33, e22279. [Google Scholar] [CrossRef]
- Hadi, N.R.; Mohammad, B.I.; Ajeena, I.M.; Sahib, H.H. Antiatherosclerotic potential of clopidogrel: Antioxidant and antiinflammatory approaches. Biomed. Res. Int. 2013, 2013, 790263. [Google Scholar] [CrossRef]
- Moore, M.G.; Deschler, D.G. Clopidogrel (Plavix) reduces the rate of thrombosis in the rat tuck model for microvenous anastomosis. Otolaryngol. Head Neck Surg. 2007, 136, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, T.F.; Steffel, J. Individualized antithrombotic therapy. Hamostaseologie 2016, 36, 26–32. [Google Scholar]
- Esmon, C.T. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev. 2009, 23, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, T.W.; Myers, D.D.; Henke, P.K. Mechanisms of venous thrombosis and resolution. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 387–391. [Google Scholar] [CrossRef]
- Xiao, Z.; Theroux, P. Clopidogrel inhibits platelet-leukocyte interactions and thrombin receptor agonist peptide-induced platelet activation in patients with an acute coronary syndrome. J. Am. Coll. Cardiol. 2004, 43, 1982–1988. [Google Scholar] [CrossRef]
- Kim, J.S.; Kwon, S.U.; Uchiyama, S. Cilostazol research in Asia: Can it be applied to European and American patients? Int. J. Stroke 2015, 10 (Suppl. 1), 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kherallah, R.Y.; Khawaja, M.; Olson, M.; Angiolillo, D.; Birnbaum, Y. Cilostazol: A Review of Basic Mechanisms and Clinical Uses. Cardiovasc. Drugs Ther. 2022, 36, 777–792. [Google Scholar] [CrossRef]
- Fu, Y.H.; Liu, P.; Xu, X.; Wang, P.F.; Shang, K.; Ke, C.; Fei, C.; Yang, K.; Zhang, B.-F.; Zhuang, Y.; et al. Deep vein thrombosis in the lower extremities after femoral neck fracture: A retrospective observational study. J. Orthop. Surg. 2020, 28, 2309499019901172. [Google Scholar] [CrossRef]
- Li, Q.; Dai, B.; Xu, J.; Yao, Y.; Song, K.; Zhang, H.; Chen, D.; Jiang, Q. Can patients with femoral neck fracture benefit from preoperative thromboprophylaxis?: A prospective randomized controlled trial. Medicine 2017, 96, e7604. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Melita, H.; Mikhailidis, D.P.; Manolis, A.S. Update on Cilostazol: A Critical Review of Its Antithrombotic and Cardiovascular Actions and Its Clinical Applications. J. Clin. Pharmacol. 2022, 62, 320–358. [Google Scholar] [CrossRef]
- Folsom, A.R.; Lutsey, P.L.; Heckbert, S.R.; Cushman, M. Serum albumin and risk of venous thromboembolism. Thromb. Haemost. 2010, 104, 100–104. [Google Scholar] [PubMed]
- Parker, K.; Ragy, O.; Hamilton, P.; Thachil, J.; Kanigicherla, D. Thromboembolism in nephrotic syndrome: Controversies and uncertainties. Res. Pract. Thromb. Haemost. 2023, 7, 102162. [Google Scholar] [CrossRef]
- Mirrakhimov, A.E.; Ali, A.M.; Barbaryan, A.; Prueksaritanond, S.; Hussain, N. Primary Nephrotic Syndrome in Adults as a Risk Factor for Pulmonary Embolism: An Up-to-Date Review of the Literature. Int. J. Nephrol. 2014, 2014, 916760. [Google Scholar] [CrossRef]
- Kumar, S.; Chapagain, A.; Nitsch, D.; Yaqoob, M.M. Proteinuria and hypoalbuminemia are risk factors for thromboembolic events in patients with idiopathic membranous nephropathy: An observational study. BMC Nephrol. 2012, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Chi, G.; Gibson, C.M.; Liu, Y.; Hernandez, A.F.; Hull, R.D.; Cohen, A.T.; Harrington, R.A.; Goldhaber, S.Z. Inverse relationship of serum albumin to the risk of venous thromboembolism among acutely ill hospitalized patients: Analysis from the APEX trial. Am. J. Hematol. 2019, 94, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Konigsbrugge, O.; Posch, F.; Riedl, J.; Reitter, E.M.; Zielinski, C.; Pabinger, I.; Ay, C. Association Between Decreased Serum Albumin With Risk of Venous Thromboembolism and Mortality in Cancer Patients. Oncologist 2016, 21, 252–257. [Google Scholar] [CrossRef]
- Ahmed, E.B.; Mohamed, N.E.; Hetatullah, A.; Rana, M.; Asma, E.; AbdulMoqeeth, M.; Ashour, A.; Hazem, E. Direct oral anticoagulants versus warfarin for venous thromboembolism prophylaxis in nephrotic syndrome patients: A retrospective study. Thromb. J. 2025, 30, 9. [Google Scholar]
- Anita, M.; Mayte Sanchez, K.; Turgut, T.; Katarzyna, K.; Sanjith, A.; Florina, A.; Antonio, A.; Miguel, A.B.; Adriana, B.C.; Daniel, G.C.; et al. Direct oral anticoagulants versus vitamin K antagonists for cerebral venous thrombosis (DOAC-CVT): An international, prospective, observational cohort study. Lancet Neurol. 2025, 24, 199–207. [Google Scholar]
- Chan, N.C.; Eikelboom, J.W.; Weitz, J.I. Evolving treatments for arterial and venous thrombosis: Role of the direct oral anticoagulants. Circ. Res. 2016, 118, 1409–1424. [Google Scholar] [CrossRef]
- Eikelboom, J.W.; Connolly, S.J.; Brueckmann, M.; Granger, C.B.; Kappetein, A.P.; Mack, M.J.; Blatchford, J.; Devenny, K.; Friedman, J.; Guiver, K.; et al. Dabigatran versus warfarin in patients with mechanical heart valves. N. Engl. J. Med. 2013, 369, 1206–1214. [Google Scholar] [CrossRef]
- Pau, C.; Cecilia, B.; Adriana, I.; Josefina, C.H.; Xavier, C.; Antoni, R.M. Direct oral anticoagulants versus vitamin K antagonists in patients with antiphospholipid syndromes: Meta-analysis of randomized trials. Eur. J. Intern. Med. 2020, 79, 43–50. [Google Scholar]
- Jeffrey, L.; Xiaowen, K.; Brian, H.; Eva, E.R.; Scott, K.; Vinay, S.; Mona, A.A.; Jay, K.; James, F.; Geoffrey, D.B. Outcomes in patients undergoing periprocedural interruption of warfarin or direct oral anticoagulants. J. Thromb. Haemost. 2022, 20, 2571–2578. [Google Scholar]
- Joseph, A.; Tzu-Fei, W.; Deborah, S.; James, D.; Gregoire, L.G.; Marc, C.; Joseph, R.S. Thrombotic and bleeding outcomes following the perioperative interruption of anticoagulation among patients with nonvalvular atrial fibrillation and active cancer. J. Thromb. Haemost. 2023, 21, 933–943. [Google Scholar]
- Brent, E.; Audrea, B.; Andrew, S.; Jessica, A.; Charles, A. Perioperative Venous Thromboembolism Prophylaxis in Orthopedic Trauma: A Practical Review. R. I. Med. J. 2025, 108, 63–68. [Google Scholar]
- Draper, K.; Choi, S.H.J.; Fung, A.; Baxter, K.; Taylor, D.; Chen, J.C.; Misskey, J. Evaluation of factors associated with limb thrombus formation after endovascular aortic aneurysm repair. J. Vasc. Surg. 2023, 77, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Jeremie, T.; Bogdan, B.; Basil, F.; Cyril, L.; Anais, C.; Karin, L.; Jean-Philippe, M.; Francis, C. Comprehensive assessment of 1-year post operative venous thromboembolism and associated mortality risks in hepatopancreatobiliary cancer surgeries: A national survey. Surgery 2025, 181, 109171. [Google Scholar]
- Sin, Y.L.; Chaozer, E. Venous thromboembolism risk assessmentand and thromboprophylaxis practice in hospitalized medical patients: The experience of a Singapore teaching hospital. Int. J. Angiol. 2025, 34, 75–77. [Google Scholar]
Group VTE+ (n = 24) | Group VTE- (n = 115) | p Value | 95% CI | |
---|---|---|---|---|
Baseline characteristics | ||||
Age (yr) | 85.0 (11.0) | 81.5 (8.0) | 0.058 | |
Height (cm) | 154.0 (8.0) | 160.0 (12.0) | 0.036 * | |
Weight (kg) | 54.4 (18.5) | 55.2 (14.0) | 0.371 | |
BMI (kg/m2) | 22.6 ± 5.3 | 22.5 ± 3.4 | 0.903 | |
Female, n (%) | 18 (75.0) | 70 (60.9) | 0.19 | |
Anesthetic type | ||||
General anesthesia, n (%) | 24 (100.0) | 115 (100.0) | ||
Anesthetic time (min) | 180.0 (80.1) | 190.5 (63.0) | 0.865 | |
Past medical history, n (%) | ||||
Hypertension | 17 (70.8) | 92 (80.0) | 0.321 | 0.225–1.637 |
Diabetes | 7 (29.2) | 54 (47.0) | 0.110 | 0.179–1.207 |
Atrial fibrillation | 5 (20.8) | 21 (18.3) | 0.769 | 0.395–3.513 |
CVA history | 8 (33.3) | 43 (37.4) | 0.708 | 0.331–2.120 |
Preoperative delirium | 0 | 0 | ||
ESRD | 2 (8.3) | 3 (2.6) | 0.171 | 0.535–21.513 |
Medications, n (%) | ||||
Antihypertensives | ||||
ACEi | 0 (0.0) | 2 (1.7) | 0.515 | 0.959–1.007 |
ARB | 11 (45.8) | 61 (53.0) | 0.520 | 0.310–1.810 |
BB | 7 (29.2) | 32 (27.8) | 0.894 | 0.405–2.818 |
CCB | 12 (50.0) | 71 (62.3) | 0.264 | 0.250–1.468 |
Diuretics | 7 (29.2) | 26 (22.6) | 0.492 | 0.528–3.766 |
Antidiabetic agents | ||||
Insulin | 1 (4.2) | 4 (3.5) | 0.869 | 0.129–11.297 |
Hypoglycemic agent | 6 (25.0) | 45 (39.1) | 0.191 | 0.194–1.405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-J.; Lee, J.; Hong, S.-W.; Kim, S.-H. The Type of Preoperative Oral Antithrombotics as a Risk Factor for Venous Thromboembolism After Hip Surgery: A Retrospective Study. Medicina 2025, 61, 729. https://doi.org/10.3390/medicina61040729
Lee Y-J, Lee J, Hong S-W, Kim S-H. The Type of Preoperative Oral Antithrombotics as a Risk Factor for Venous Thromboembolism After Hip Surgery: A Retrospective Study. Medicina. 2025; 61(4):729. https://doi.org/10.3390/medicina61040729
Chicago/Turabian StyleLee, Yea-Ji, Jaemoon Lee, Seung-Wan Hong, and Seong-Hyop Kim. 2025. "The Type of Preoperative Oral Antithrombotics as a Risk Factor for Venous Thromboembolism After Hip Surgery: A Retrospective Study" Medicina 61, no. 4: 729. https://doi.org/10.3390/medicina61040729
APA StyleLee, Y.-J., Lee, J., Hong, S.-W., & Kim, S.-H. (2025). The Type of Preoperative Oral Antithrombotics as a Risk Factor for Venous Thromboembolism After Hip Surgery: A Retrospective Study. Medicina, 61(4), 729. https://doi.org/10.3390/medicina61040729