Dynamic Cycle of Low Back Pain: A 17-Year, Population-Based Study Analyzing the National Health Insurance Service Data in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Cohort Description
2.3. Income-Based Variables
2.4. Healthcare Utilization Variables
2.5. Data Analysis
3. Results
3.1. Characteristics of the Patients with Back Pain
3.2. Recurrence of Back Pain
3.3. Burden of Multiple Episodes of Back Pain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, M.L.; De Luca, K.; Haile, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Ferreira, P.H.; Blyth, F.M.; Buchbinder, R. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020, 8, 299. [Google Scholar] [CrossRef]
- Gomes, L.A.; Cruz, E.B.; Henriques, A.R.; Branco, J.C.; Canhão, H.; Rodrigues, A.M. Patients’ self-reported medical care for low back pain: A nationwide population-based study. BMJ Open 2022, 12, e060966. [Google Scholar] [CrossRef]
- Diwan, A.D.; Melrose, J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023, 6, e1231. [Google Scholar] [CrossRef] [PubMed]
- Kahere, M.; Ginindza, T. The burden of non-specific chronic low back pain among adults in KwaZulu-Natal, South Africa: A protocol for a mixed-methods study. BMJ Open 2020, 10, e039554. [Google Scholar] [CrossRef]
- Sidiq, M.; Alenazi, W.; Kashoo, F.Z.; Qasim, M.; Lopez, M.P.; Ahmad, M.; Mani, S.; Shaphe, M.A.; Khodairi, O.; Almutairi, A. Prevalence of non-specific chronic low-back pain and risk factors among male soldiers in Saudi Arabia. PeerJ 2021, 9, e12249. [Google Scholar] [CrossRef]
- Traeger, A.C.; Buchbinder, R.; Elshaug, A.G.; Croft, P.R.; Maher, C.G. Care for low back pain: Can health systems deliver? Bull. World Health Organ. 2019, 97, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Dutmer, A.L.; Schiphorst Preuper, H.R.; Soer, R.; Brouwer, S.; Bültmann, U.; Dijkstra, P.U.; Coppes, M.H.; Stegeman, P.; Buskens, E.; van Asselt, A.D.I.; et al. Personal and Societal Impact of Low Back Pain: The Groningen Spine Cohort. Spine 2019, 44, E1443–E1451. [Google Scholar] [CrossRef]
- Fatoye, F.; Gebrye, T.; Mbada, C.E.; Useh, U. Clinical and economic burden of low back pain in low- and middle-income countries: A systematic review. BMJ Open 2023, 13, e064119. [Google Scholar] [CrossRef]
- Kahere, M.; Ngcamphalala, C.; Östensson, E.; Ginindza, T. The economic burden of low back pain in KwaZulu-Natal, South Africa: A prevalence-based cost-of-illness analysis from the healthcare provider’s perspective. PLoS ONE 2022, 17, e0263204. [Google Scholar] [CrossRef]
- Ahmed, H.; Kishore, K.; Bhat, P.; Alghadir, A.H.; Iqbal, A. Impact of Work-Related Chronic Low Back Pain on Functional Performance and Physical Capabilities in Women and Men: A Sex-Wise Comparative Study. BioMed Res. Int. 2022, 2022, 6307349. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Papalia, G.F.; Vadalà, G.; Fontana, L.; Iavicoli, S.; Papalia, R.; Denaro, V. The Effects of Workplace Interventions on Low Back Pain in Workers: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 12614. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.A.; Alfaifi, R.M.; Alhowimel, A.S.; Alodaibi, F.A.; Alzahrani, H.; Alenazi, A.M.; Alqahtani, B.A.; Elnaggar, R.K. The key determinants of low back pain among lifestyle behaviors in adolescents: A cross-sectional study from Saudi Arabia. Medicine 2024, 103, e37669. [Google Scholar] [CrossRef]
- Robson, E.K.; Kamper, S.J.; Davidson, S.; Viana da Silva, P.; Williams, A.; Hodder, R.K.; Lee, H.; Hall, A.; Gleadhill, C.; Williams, C.M. Healthy Lifestyle Program (HeLP) for low back pain: Protocol for a randomised controlled trial. BMJ Open 2019, 9, e029290. [Google Scholar] [CrossRef]
- da Silva, T.; Mills, K.; Brown, B.T.; Pocovi, N.; de Campos, T.; Maher, C.; Hancock, M.J. Recurrence of low back pain is common: A prospective inception cohort study. J. Physiother. 2019, 65, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Machado, G.C.; Maher, C.G.; Ferreira, P.H.; Latimer, J.; Koes, B.W.; Steffens, D.; Ferreira, M.L. Can Recurrence After an Acute Episode of Low Back Pain Be Predicted? Phys. Ther. 2017, 97, 889–895. [Google Scholar] [CrossRef]
- Elders, L.A.; Burdorf, A. Prevalence, incidence, and recurrence of low back pain in scaffolders during a 3-year follow-up study. Spine 2004, 29, E101–E106. [Google Scholar] [CrossRef]
- Hestbaek, L.; Leboeuf-Yde, C.; Manniche, C. Low back pain: What is the long-term course? A review of studies of general patient populations. Eur. Spine J. 2003, 12, 149–165. [Google Scholar] [CrossRef]
- Cassidy, J.D.; Côté, P.; Carroll, L.J.; Kristman, V. Incidence and course of low back pain episodes in the general population. Spine 2005, 30, 2817–2823. [Google Scholar] [CrossRef]
- Côté, P.; Baldwin, M.L.; Johnson, W.G.; Frank, J.W.; Butler, R.J. Patterns of sick-leave and health outcomes in injured workers with back pain. Eur. Spine J. 2008, 17, 484–493. [Google Scholar] [CrossRef]
- Hancock, M.J.; Maher, C.M.; Petocz, P.; Lin, C.W.; Steffens, D.; Luque-Suarez, A.; Magnussen, J.S. Risk factors for a recurrence of low back pain. Spine J. 2015, 15, 2360–2368. [Google Scholar] [CrossRef] [PubMed]
- Cherkin, D.C.; Deyo, R.A.; Wheeler, K.; Ciol, M.A. Physician variation in diagnostic testing for low back pain. Who you see is what you get. Arthritis Rheum. 1994, 37, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Watanabe, Y.; Kutsuna, T.; Futohashi, T.; Kusumoto, Y.; Chiba, H.; Kubo, M.; Takasaki, H. Spinal movement variability associated with low back pain: A scoping review. PLoS ONE 2021, 16, e0252141. [Google Scholar] [CrossRef]
- Dionne, C.E.; Dunn, K.M.; Croft, P.R.; Nachemson, A.L.; Buchbinder, R.; Walker, B.F.; Wyatt, M.; Cassidy, J.D.; Rossignol, M.; Leboeuf-Yde, C.; et al. A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine 2008, 33, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Alalawi, A.; Devecchi, V.; Gallina, A.; Luque-Suarez, A.; Falla, D. Assessment of Neuromuscular and Psychological Function in People with Recurrent Neck Pain during a Period of Remission: Cross-Sectional and Longitudinal Analyses. J. Clin. Med. 2022, 11, 2042. [Google Scholar] [CrossRef]
- Wáng, Y.X.; Wáng, J.Q.; Káplár, Z. Increased low back pain prevalence in females than in males after menopause age: Evidences based on synthetic literature review. Quant. Imaging Med. Surg. 2016, 6, 199–206. [Google Scholar] [CrossRef]
- Kazeminasab, S.; Nejadghaderi, S.A.; Amiri, P.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.A.; Safiri, S. Neck pain: Global epidemiology, trends and risk factors. BMC Musculoskelet. Disord. 2022, 23, 26. [Google Scholar] [CrossRef]
- Safiri, S.; Kolahi, A.A.; Cross, M.; Carson-Chahhoud, K.; Almasi-Hashiani, A.; Kaufman, J.; Mansournia, M.A.; Sepidarkish, M.; Ashrafi-Asgarabad, A.; Hoy, D.; et al. Global, regional, and national burden of other musculoskeletal disorders 1990-2017: Results from the Global Burden of Disease Study 2017. Rheumatology 2021, 60, 855–865. [Google Scholar] [CrossRef]
- Stewart, W.F.; Yan, X.; Boscarino, J.A.; Maeng, D.D.; Mardekian, J.; Sanchez, R.J.; Von Korff, M.R. Patterns of health care utilization for low back pain. J. Pain Res. 2015, 8, 523–535. [Google Scholar] [CrossRef]
- Goo, M.; Jun, D. A seventeen-year, population-based study to identify dynamic patterns of interfering neck pain and its burden in South Korea. Musculoskelet. Sci. Pract. 2025, 75, 103236. [Google Scholar] [CrossRef]
- Fritz, J.M.; Kim, M.; Magel, J.S.; Asche, C.V. Cost-Effectiveness of Primary Care Management with or Without Early Physical Therapy for Acute Low Back Pain: Economic Evaluation of a Randomized Clinical Trial. Spine 2017, 42, 285–290. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n = 3,086,665 | |
---|---|---|
Patient age in 2010 (n, %) | ||
<30 years | 419,809 | (13.6%) |
30–39 years | 650,289 | (20.7%) |
40–49 years | 801,983 | (26.0%) |
50–59 years | 848,458 | (27.5%) |
>59 years | 376,126 | (12.2%) |
Sex (n, %) | ||
Male | 1,353,551 | (43.9%) |
Female | 1,733,114 | (56.2%) |
Health insurance premium decile (n, %) | ||
Level 1 | 333,510 | (10.8%) |
Level 2 | 205,642 | (6.7%) |
Level 3 | 255,974 | (8.3%) |
Level 4 | 262,461 | (8.5%) |
Level 5 | 298,599 | (9.7%) |
Level 6 | 319,567 | (10.4%) |
Level 7 | 332,505 | (10.8%) |
Level 8 | 346,008 | (11.2%) |
Level 9 | 361,081 | (11.7%) |
Level 10 | 371,318 | (12.0%) |
Regional Health Vulnerability Index a (n, %) | ||
Level 1 | 276,097 | (9.0%) |
Level 2 | 305,137 | (9.9%) |
Level 3 | 299,732 | (9.7%) |
Level 4 | 356,010 | (11.5%) |
Level 5 | 312,286 | (10.1%) |
Level 6 | 265,137 | (8.6%) |
Level 7 | 323,910 | (10.5%) |
Level 8 | 273,606 | (8.8%) |
Level 9 | 338,373 | (11.0%) |
Level 10 | 335,780 | (10.9%) |
Health Insurance Premium Decile (n, %) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 | Level 7 | Level 8 | Level 9 | Level 10 | Total | |
Level 1 | 22,953 (6.9%) | 14,041 (6.8%) | 21,558 (8.4%) | 22,517 (8.6%) | 23,933 (8.0%) | 25,173 (7.9%) | 26,431 (8.0%) | 28,925 (8.4%) | 35,167 (9.7%) | 55,399 (14.9%) | 276,097 (8.9%) |
Level 2 | 26,491 (8.0%) | 17,583 (8.6%) | 24,768 (9.7%) | 25,263 (9.6%) | 27,993 (9.4%) | 29,780 (9.3%) | 32,038 (9.6%) | 34,816 (10.1%) | 38,780 (10.7%) | 47,625 (12.8%) | 305,137 (9.9%) |
Level 3 | 28,093 (8.4%) | 18,950 (9.2%) | 24,204 (9.5%) | 23,713 (9.0%) | 26,680 (8.9%) | 28,656 (9.0%) | 30,913 (9.3%) | 34,155 (9.9%) | 38,898 (10.8%) | 45,470 (12.2%) | 299,732 (9.7%) |
Level 4 | 35,112 (10.5%) | 23,477 (11.4%) | 31,107 (12.2%) | 31,169 (11.9%) | 35,338 (11.8%) | 37,129 (11.6%) | 38,462 (11.6%) | 41,015 (11.8%) | 42,528 (11.8%) | 40,673 (10.9%) | 356,010 (11.5%) |
Level 5 | 34,083 (10.2%) | 21,590 (10.5%) | 26,024 (10.2%) | 26,026 (9.9%) | 29,795 (10.0%) | 32,297 (10.1%) | 34,119 (10.3%) | 35,515 (10.3%) | 36,687 (10.2%) | 36,150 (9.7%) | 312,286 (10.1%) |
Level 6 | 28,978 (8.7%) | 18,008 (8.8%) | 22,930 (9.0%) | 22,708 (8.7%) | 25,768 (8.6%) | 27,458 (8.6%) | 28,883 (8.7%) | 30,889 (8.9%) | 31,098 (8.6%) | 28,417 (7.7%) | 265,137 (8.6%) |
Level 7 | 36,773 (11.0%) | 23,671 (11.5%) | 26,241 (10.2%) | 27,189 (10.4%) | 30,672 (10.3%) | 34,350 (10.8%) | 35,893 (10.8%) | 36,164 (10.4%) | 36,880 (10.2%) | 36,077 (9.7%) | 323,910 (10.5%) |
Level 8 | 34,382 (10.3%) | 19,920 (9.7%) | 22,048 (8.6%) | 23,206 (8.8%) | 27,096 (9.1%) | 29,329 (9.2%) | 30,650 (9.2%) | 30,166 (8.7%) | 29,109 (8.1%) | 27,700 (7.5%) | 273,606 (8.9%) |
Level 9 | 42,614 (12.8%) | 25,122 (12.2%) | 29,479 (11.5%) | 30,679 (11.7%) | 35,307 (11.8%) | 37,325 (11.7%) | 36,753 (11.1%) | 36,287 (10.5%) | 35,820 (9.9%) | 28,987 (7.8%) | 338,373 (11.0%) |
Level 10 | 43,943 (13.2%) | 23,123 (11.2%) | 27,531 (10.8%) | 29,932 (11.4%) | 35,975 (12.1%) | 37,947 (11.9%) | 38,341 (11.5%) | 38,065 (11.0%) | 36,112 (10.0%) | 24,811 (6.7%) | 335,780 (10.9%) |
Total | 333,422 (10.8%) | 205,485 (6.76%) | 255,890 (8.3%) | 262,402 (8.5%) | 298,557 (9.7%) | 319,444 (10.4%) | 332,483 (10.8%) | 345,997 (11.2%) | 361,079 (11.7%) | 371,309 (12.0%) | 3,086,068 (100%) |
Characteristics | Values | % or SD |
---|---|---|
Onset age at first episode (n, %) | ||
<30 years | 435,196 | (14.1%) |
30–39 years | 649,714 | (21.0%) |
40–49 years | 823,188 | (26.7%) |
50–59 years | 842,107 | (27.3%) |
>59 years | 336,460 | (10.9%) |
Number of episodes during the study period (mean, SD) | 5.0 | 4.9 |
Number of patients with (n, %) | ||
A single episode | 634,715 | (20.6%) |
Two episodes | 561,079 | (18.2%) |
Three episodes | 420,040 | (13.6%) |
Four episodes | 310,054 | (10.0%) |
Five episodes | 231,341 | (7.5%) |
Six episodes | 176,798 | (5.7%) |
Seven episodes | 137,288 | (4.5%) |
Eight episodes | 108,058 | (3.5%) |
Nine episodes | 86,637 | (2.8%) |
Ten episodes | 69,744 | (2.3%) |
More than ten episodes | 359,911 | (11.4%) |
Mean duration of each episode in days (mean, SD) | 15.3 | 46.5 |
Patients with a single episode (n = 634,715) | 6.5 | 23.2 |
Patients with two or more episodes (n = 2,451,950) | 13.31 | 40.2 |
Total duration of all episodes in days (mean, SD) | 67.5 | 172.4 |
Patients with a single episode (n = 634,715) | 8.6 | 24.1 |
Patients with two or more episodes (n = 2,451,950) | 107.7 | 253.4 |
Follow-up duration per patient (mean, SD) | 3266.4 | 286.5 |
Mean number of healthcare visits per episode (mean, SD) | 3.5 | 9.6 |
Episodes a | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | |
Total number of patients at each episode (n) | 3,086,665 | 2,451,950 | 1,890,871 | 1,470,831 | 1,160,777 | 929,436 | 752,638 | 615,350 | 507,292 | 420,655 |
Recurrence rate of a new back pain episode relative to the previous episode (%) | - b | 79.4 | 77.1 | 77.8 | 78.9 | 80.1 | 81.0 | 81.8 | 82.4 | 82.9 |
Duration of each episode in days(mean, (SD)) | 7.6 (28.1) | 10.0 (32.5) | 11.4 (35.8) | 12.8 (38.8) | 14.1 (41.2) | 15.2 (43.7) | 16.4 (46.7) | 17.4 (48.2) | 18.5 (50.6) | 19.5 (51.3) |
Number of healthcare visits at each episode (mean, (SD)) | 2.8 (6.8) | 3.0 (7.00) | 3.2 (7.9) | 3.3 (8.3) | 3.4 (8.6) | 3.5 (8.4) | 3.6 (9.0) | 3.7 (8.8) | 3.8 (9.4) | 3.9 (10.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goo, M.-R.; Jun, D.-H.; Lee, D.-Y. Dynamic Cycle of Low Back Pain: A 17-Year, Population-Based Study Analyzing the National Health Insurance Service Data in South Korea. Medicina 2025, 61, 782. https://doi.org/10.3390/medicina61050782
Goo M-R, Jun D-H, Lee D-Y. Dynamic Cycle of Low Back Pain: A 17-Year, Population-Based Study Analyzing the National Health Insurance Service Data in South Korea. Medicina. 2025; 61(5):782. https://doi.org/10.3390/medicina61050782
Chicago/Turabian StyleGoo, Mi-Ran, Deok-Hoon Jun, and Do-Youn Lee. 2025. "Dynamic Cycle of Low Back Pain: A 17-Year, Population-Based Study Analyzing the National Health Insurance Service Data in South Korea" Medicina 61, no. 5: 782. https://doi.org/10.3390/medicina61050782
APA StyleGoo, M.-R., Jun, D.-H., & Lee, D.-Y. (2025). Dynamic Cycle of Low Back Pain: A 17-Year, Population-Based Study Analyzing the National Health Insurance Service Data in South Korea. Medicina, 61(5), 782. https://doi.org/10.3390/medicina61050782