The Significance of Density Measurement and the Modified Bhalla and Reiff Scores in Predicting Exacerbations and Hospital Admissions in Cystic Fibrosis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. CT Acquisition
2.3. CT Evaluation
2.4. Statistical Analysis
2.5. Ethics Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CF | Cystic fibrosis |
pwCF | Patient with cystic fibrosis |
CFTR | Cystic fibrosis transmembrane conductance regulator protein |
CFRD | Cystic fibrosis-related diabetes |
CT | Computed tomography |
PFTs | Pulmonary function tests |
PLND | Percentage of lung tissue within the normal density range |
PEx | Pulmonary exacerbation |
ABPA | Allergic bronchopulmonary aspergillosis |
BSI | Bronchiectasis severity index |
CF-CT | Cystic fibrosis computerized tomography score |
References
- Andersen, D.H. Cystic fibrosis of the pancreas and its relation to celiac disease: A clinical and pathologic study. Am. J. Dis. Child. 1938, 56, 344–399. [Google Scholar] [CrossRef]
- Elborn, S. The History, and the Future, of Cystic Fibrosis. 4 July 2018. Available online: https://www.rbht.nhs.uk/blog/history-and-future-cystic-fibrosis (accessed on 12 November 2024).
- Grasemann, H.; Ratjen, F. Cystic Fibrosis. N. Engl. J. Med. 2023, 389, 1693–1707. [Google Scholar] [CrossRef] [PubMed]
- Bilton, D.; Canny, G.; Conway, S.; Dumcius, S.; Hjelte, L.; Proesmans, M.; Tümmler, B.; Vavrova, V.; De Boeck, K. Pulmonary exacerbation: Towards a definition for use in clinical trials. Report from the EuroCareCF Working Group on outcome parameters in clinical trials. J. Cyst. Fibros. 2011, 10, S79–S81. [Google Scholar] [CrossRef]
- Garcia, B.; Flume, P.A. Pulmonary complications of cystic fibrosis. In Proceedings of the Seminars in Respiratory and Critical Care Medicine, New York, NY, USA, 28 October 2019; Thieme Medical Publishers: New York, NY, USA, 2019; pp. 804–809. [Google Scholar]
- Brody, A.S.; Klein, J.S.; Molina, P.L.; Quan, J.; Bean, J.A.; Wilmott, R.W. High-resolution computed tomography in young patients with cystic fibrosis: Distribution of abnormalities and correlation with pulmonary function tests. J. Pediatr. 2004, 145, 32–38. [Google Scholar] [CrossRef]
- Brody, A.S.; Tiddens, H.A.; Castile, R.G.; Coxson, H.O.; De Jong, P.A.; Goldin, J.; Huda, W.; Long, F.R.; McNitt-Gray, M.; Rock, M. Computed tomography in the evaluation of cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 2005, 172, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.; Ciet, P.; Tiddens, H.A.; Zhang, W.; Guillerman, R.P.; van Straten, M. Monitoring cystic fibrosis lung disease by computed tomography. Radiation risk in perspective. Am. J. Respir. Crit. Care Med. 2014, 189, 1328–1336. [Google Scholar]
- Diab-Cáceres, L.; Girón-Moreno, R.M.; García-Castillo, E.; Pastor-Sanz, M.T.; Olveira, C.; García-Clemente, M.M.; Nieto-Royo, R.; Prados-Sánchez, C.; Caballero-Sánchez, P.; Olivera-Serrano, M.J. Predictive value of the modified Bhalla score for assessment of pulmonary exacerbations in adults with cystic fibrosis. Eur. Radiol. 2021, 31, 112–120. [Google Scholar] [CrossRef]
- Bedi, P.; Chalmers, J.D.; Goeminne, P.C.; Mai, C.; Saravanamuthu, P.; Velu, P.P.; Cartlidge, M.K.; Loebinger, M.R.; Jacob, J.; Kamal, F. The BRICS (Bronchiectasis Radiologically Indexed CT Score): A multicenter study score for use in idiopathic and postinfective bronchiectasis. Chest 2018, 153, 1177–1186. [Google Scholar] [CrossRef]
- Reiff, D.B.; Wells, A.U.; Carr, D.H.; Cole, P.; Hansell, D. CT findings in bronchiectasis: Limited value in distinguishing between idiopathic and specific types. AJR Am. J. Roentgenol. 1995, 165, 261–267. [Google Scholar] [CrossRef]
- Coxson, H.O. Lung parenchyma density and airwall thickness in airway diseases. Breathe 2012, 9, 36–45. [Google Scholar] [CrossRef]
- de Groot, P.M.; Jimenez, C.A.; Godoy, M.C.; Wu, C.C. Pleural Effusions: Clues for Diagnosis and Characterization. In Proceedings of the Seminars in Roentgenology, Philadelphia, PA, USA, 6 July 2023; WB Saunders: Philadelphia, PA, USA, 2023; pp. 431–439. [Google Scholar]
- Gümüş, A.; Özçelik, N.; Kara, B.Y.; Hürsoy, N.; Özyurt, S.; Şahin, Ü. Computed tomography attenuation in differential diagnosis of transudative and exudative pleural effusions. Clinics 2024, 79, 100463. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Camiciottoli, G.; Diciotti, S. Lung densitometry: Why, how and when. J. Thorac. Dis. 2017, 9, 3319–3345. [Google Scholar] [CrossRef]
- Cheng, T.; Li, Y.; Pang, S.; Wan, H.; Shi, G.; Cheng, Q.; Li, Q.; Pan, Z.; Huang, S. Normal lung attenuation distribution and lung volume on computed tomography in a Chinese population. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Ohkubo, H.; Kanemitsu, Y.; Uemura, T.; Takakuwa, O.; Takemura, M.; Maeno, K.; Ito, Y.; Oguri, T.; Kazawa, N.; Mikami, R. Normal lung quantification in usual interstitial pneumonia pattern: The impact of threshold-based volumetric CT analysis for the staging of idiopathic pulmonary fibrosis. PLoS ONE 2016, 11, e0152505. [Google Scholar]
- de Jong, P.A.; Tiddens, H.A. Cystic fibrosis–specific computed tomography scoring. Proc. Am. Thorac. Soc. 2007, 4, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, M.; Turcios, N.; Aponte, V.; Jenkins, M.; Leitman, B.; McCauley, D.; Naidich, D. Cystic fibrosis: Scoring system with thin-section CT. Radiology 1991, 179, 783–788. [Google Scholar] [CrossRef]
- Kilcoyne, A.; Lavelle, L.P.; McCarthy, C.J.; McEvoy, S.H.; Fleming, H.; Gallagher, A.; Loeve, M.; Tiddens, H.; McKone, E.; Gallagher, C.C. Chest CT abnormalities and quality of life: Relationship in adult cystic fibrosis. Ann. Transl. Med. 2016, 4, 87. [Google Scholar] [CrossRef]
- Turcios, N.L. Cystic fibrosis lung disease: An overview. Respir. Care 2020, 65, 233–251. [Google Scholar] [CrossRef]
- Goss, C.H. Acute pulmonary exacerbations in cystic fibrosis. In Proceedings of the Seminars in Respiratory and Critical Care Medicine, New York, NY, USA, 28 October 2019; Thieme Medical Publishers: New York, NY, USA, 2019; pp. 792–803. [Google Scholar]
- Heltshe, S.L.; Goss, C.H.; Thompson, V.; Sagel, S.D.; Sanders, D.B.; Marshall, B.C.; Flume, P.A. Short-term and long-term response to pulmonary exacerbation treatment in cystic fibrosis. Thorax 2016, 71, 223–229. [Google Scholar] [CrossRef]
- Sanders, D.B.; Bittner, R.C.; Rosenfeld, M.; Redding, G.J.; Goss, C.H. Pulmonary exacerbations are associated with subsequent FEV1 decline in both adults and children with cystic fibrosis. Pediatr. Pulmonol. 2011, 46, 393–400. [Google Scholar] [CrossRef]
- Cheng, W.-C.; Chang, C.-L.; Sheu, C.-C.; Wang, P.-H.; Hsieh, M.-H.; Chen, M.-T.; Ou, W.-F.; Wei, Y.-F.; Yang, T.-M.; Lan, C.-C. Correlating Reiff scores with clinical, functional, and prognostic factors: Characterizing noncystic fibrosis bronchiectasis severity: Validation from a nationwide multicenter study in Taiwan. Eur. J. Med. Res. 2024, 29, 286. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Yang, B.; Yoo, J.Y.; Cho, J.Y.; Kang, H.; Shin, Y.M.; Kim, E.-G.; Lee, K.M.; Choe, K.H. Clinical characteristics, radiological features, and disease severity of bronchiectasis according to the spirometric pattern. Sci. Rep. 2022, 12, 13167. [Google Scholar] [CrossRef] [PubMed]
- de Boer, K.; Vandemheen, K.L.; Tullis, E.; Doucette, S.; Fergusson, D.; Freitag, A.; Paterson, N.; Jackson, M.; Lougheed, M.D.; Kumar, V. Exacerbation frequency and clinical outcomes in adult patients with cystic fibrosis. Thorax 2011, 66, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Brody, A.S.; Sucharew, H.; Campbell, J.D.; Millard, S.P.; Molina, P.L.; Klein, J.S.; Quan, J. Computed tomography correlates with pulmonary exacerbations in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2005, 172, 1128–1132. [Google Scholar] [CrossRef]
Variables, n = 63 Patients | |
---|---|
Age, median, median, (IQR) | 23.2 (19.9–27.0) |
Gender (male), n (%) | 33 (52.4) |
Mutations, n (%) | Homozygot F508del: 11 (17.5) Heterozygot F508del: 11 (17.5) Non-F508del: 31 (49.2) Unknown: 10 (15.9) |
Modulator drug status (on), n, % | 3 (4.7) at the time of CT scan 7 (11.1) any time during follow-up *** |
Long-term oxygen therapy (on), | 21 (33.3) |
CFRD | 6 (9.5) |
Chronic liver disease | 28 (44.4) |
Chronic renal disease | 6 (9.5) |
Exocrin pancreas insufficiency | 55 (87.3) |
Initial FEV1, lt, median, (IQR) * | 2.13 (1.14–2.99) |
Initial ppFEV1, %, median, (IQR) * | 55.5 (34.5–86.0) |
Initial FVC, lt, median, (IQR) * | 2.98 (1.84–4.02) |
Initial ppFVC, %, median, (IQR) * | 75.5 (49.5–94.5) |
Initial FEV1/FVC, median, (IQR) * | 69.1 (60.4–77.7) |
Exacerbations in one year period, n, median, (IQR) | 2 (0–3) |
Hospitalization in one year period, n, median, (IQR) | 1 (0–2) |
Last FEV1, lt, median, (IQR) ** | 2.41 (1.50–3.24) |
Last ppFEV1,%, median, (IQR) ** | 60.5 (43.0–87.0) |
Last FVC, lt, median, (IQR) ** | 3.33 (2.15–4.61) |
Last ppFVC, %, median, (IQR) ** | 88.5 (55.0–99.5) |
Last FEV1/FVC, median, (IQR) ** | 70.1 (60.1–80.2) |
Modified Bhalla score, median, IQR | 9.0 (7.0–12.0) |
Modified Reiff score, median, IQR | 11.0 (8.0–15.0) |
Total volume, mililiters, mean ± SD | 4974.5 ± 1116.9 |
Density, HU, median, (IQR) | −803 (−830–−776) |
Volume of lung parenchyma within normal density, mililiters, mean ± SD | 3859.2 ± 1072.4 |
Percentage of lung parenchyma within normal density, %, median, (IQR) | 79.4 (74.5–82.0) |
0 | 1 | 2 | 3 | |
---|---|---|---|---|
Severity of bronchiectasis | 1 (1.6%) | 5 (7.9%) | 13 (20.6%) | 44 (69.8%) |
Thickening | 2 (3.2%) | 25 (39.7%) | 29 (46.0%) | 7 (11.1%) |
Extension of bronchiectasis | 1 (1.6%) | 3 (4.8%) | 9 (14.3%) | 50 (79.4%) |
Mucous plugging | 3 (4.8%) | 4 (6.3%) | 18 (28.6%) | 38 (60.3%) |
Sacculations | 31 (49.2%) | 22 (34.9%) | 8 (12.7%) | 2 (3.2%) |
Involvement of bronchial generations | 1 (1.6%) | 0 | 1 (1.6%) | 61 (96.8%) |
Bullae | 41 (65.1%) | 8 (12.7%) | 12 (19.0%) | 2 (3.2%) |
Air trapping | 20 (31.7%) | 23 (36.5%) | 20 (31.7%) | |
Atelectasis | 16 (25.4%) | 25 (39.7%) | 22 (34.9%) |
Exacerbations | Hospitalizations | First FEV1 | First ppFEV1 | First FVC | First ppFVC | First FEV1/FVC | |
---|---|---|---|---|---|---|---|
Variables | |||||||
Modified Bhalla score | −0.559 ** | −0.636 ** | 0.685 ** | 0.736 ** | 0.669 ** | 0.732 ** | 0.396 ** |
Severity of bronchiectasis | 0.394 ** | 0.333 ** | −0.457 ** | −0.406 ** | −0.438 ** | −0.361 ** | −0.278 * |
Thickening | 0.542 ** | 0.492 ** | −0.479 ** | −0.504 ** | −0.497 ** | −0.534 ** | −0.150 |
Extension of bronchiectasis | 0.466 ** | 0.360 ** | −0.568 ** | −0.639 ** | −0.493 ** | −0.604 ** | −0.504 ** |
Mucous plugging | 0.520 ** | 0.456 ** | −0.566 ** | −0.593 ** | −0.532 ** | −0.584 ** | −0.404 ** |
Sacculations | 0.430 ** | 0.541 ** | −0.599 ** | −0.563 ** | −0.610 ** | −0.558 ** | −0.276 * |
Involvement of bronchial generations | 0.239 | 0.171 | −0.326 * | −0.289 * | −0.326 * | −0.299 * | −0.062 |
Bullae | 0.095 | 0.383 ** | −0.546 ** | −0.603 ** | −0.571 ** | −0.640 ** | −0.256 |
Air trapping | 0.328 ** | 0.386 ** | −0.625 ** | −0.686 ** | −0.560 ** | −0.636 ** | −0.532 ** |
Atelectasis | 0.162 | 0.265 * | −0.274 * | −0.227 | −0.328 * | −0.241 | 0.019 |
Reiff score | 0.427 ** | 0.512 ** | −0.728 ** | −0.701 ** | −0.705 ** | −0.675 ** | −0.486 ** |
Total LV | 0.014 | −0.134 | 0.351 * | 0.173 | 0.453 ** | 0.192 | −0.239 |
Mean density | 0.231 | 0.405 ** | −0.404 ** | −0.419 ** | −0.455 ** | −0.452 ** | 0.039 |
Percentage within normal density range(%) | −0.378 ** | −0.567 ** | 0.661 ** | 0.665 ** | 0.696 ** | 0.706 ** | 0.194 |
Total volume within normal density range | −0.092 | −0.280 * | 0.476 ** | 0.328 * | 0.573 ** | 0.356 ** | −0.148 |
Variables | AUC (95% CI) | p-Value | Optimal Cut-Off Point * | Sensitivity | Specificity |
---|---|---|---|---|---|
Modified Bhalla score | 0.841 (0.710–0.966) | 0.002 | 6.5 | 0.75 | 0.836 |
Modified Reiff score | 0.785 (0.636–0.934) | 0.01 | 13.5 | 0.875 | 0.727 |
The percantage of normal parenchyma within normal lung density range | 0.828 (0.713–0.944) | 0.003 | 76.5 | 0.875 | 0.764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karcıoğlu, O.; Ardalı Düzgün, S. The Significance of Density Measurement and the Modified Bhalla and Reiff Scores in Predicting Exacerbations and Hospital Admissions in Cystic Fibrosis Patients. Medicina 2025, 61, 808. https://doi.org/10.3390/medicina61050808
Karcıoğlu O, Ardalı Düzgün S. The Significance of Density Measurement and the Modified Bhalla and Reiff Scores in Predicting Exacerbations and Hospital Admissions in Cystic Fibrosis Patients. Medicina. 2025; 61(5):808. https://doi.org/10.3390/medicina61050808
Chicago/Turabian StyleKarcıoğlu, Oğuz, and Selin Ardalı Düzgün. 2025. "The Significance of Density Measurement and the Modified Bhalla and Reiff Scores in Predicting Exacerbations and Hospital Admissions in Cystic Fibrosis Patients" Medicina 61, no. 5: 808. https://doi.org/10.3390/medicina61050808
APA StyleKarcıoğlu, O., & Ardalı Düzgün, S. (2025). The Significance of Density Measurement and the Modified Bhalla and Reiff Scores in Predicting Exacerbations and Hospital Admissions in Cystic Fibrosis Patients. Medicina, 61(5), 808. https://doi.org/10.3390/medicina61050808